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Stéphane Crépey
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Since the 2008 crisis, investment banks charge to their clients, in the
form of rebates with respect to the counterparty-risk-free value of
financial derivatives, various add-ons meant to account for
counterparty risk and its capital and funding implications.

These add-ons are dubbed XVAs, where VA stands for valuation
adjustment and X is a catch-all letter to be replaced by C for credit,
D for debt, F for funding, M for margin, K for capital (!), and so on.
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Pricing XVA add-ons at trade level

funds transfer price (FTP)

But also accounting XVA entries at the aggregate portfolio level

In June 2011 the Basel Committee reported that

During the financial crisis, roughly two-thirds of losses attributed to
counterparty credit risk were due to CVA losses and only about one-
third were due to actual defaults

In January 2014 JP Morgan has recorded a $1.5 billion FVA loss

Individual FTP of a trade actually computed as portfolio incremental
XVAs of the trade
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XVAs deeply affect the derivative pricing task by making it global,
nonlinear, and entity-dependent

But, before coming to the technical implications, the fundamental
points are:

1. To understand what deserves to be priced and what does not

⊇ Double counting issues

2. To establish not only the pricing, but also the corresponding
collateralization, accounting, and dividend policy of the bank
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Hull and White (2012) Risk Magazine notes, although one need not
agree with their conclusions that rely on perfect market assumptions,
had the merit to shift the debate to the right grounds:

Properly accounting for the misalignement of interest between the
shareholders and creditors and the bank
And, the way we put it, for the coexistence and interaction within the
bank of XVA versus “clean” desks.
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The XVA benchmark model

BK and GK papers
(dozens of thousands of downloads on ssrn and arxiv!!) illustrate

their points using a Black–Scholes model S for an underlying market
risk factor, in conjunction with independent Poisson counterparties
and bank defaults

Warning: using a Black–Scholes (replication) framework as an XVA
toy model is convenient.

But, as FVA and KVA are mostly about market incompleteness in our
opinion, there are some pitfalls to it.
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The XVA benchmark model (cont’d)

BK advocate a replication XVA approach and blame risk-neutral
approaches outside the realm of replication (see the first paragraph in
their 2013 paper).

But BK papers themselves end-up doing what they call
semi-replication, which is nothing but a form of risk-neutral pricing
without (exact) replication.

Addressing the KVA by replication, as done under the GK approach,
is a bit of a contradiction in terms.

More detailed comparison and comments in later sections of these
slides.
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Synopsis

Assumption 1

For accepting a new deal, shareholders need be at least indifferent given
the cash flows before τ only.

From this point of view, a key distinction is between

the cash flows received by the bank prior its default time τ
the cash flows received by the bank during the default resolution period
starting at τ .

The first stream of cash flows affects the bank shareholders, whereas
the second stream of cash flows only affects creditors.
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Assumption 2

A bank cannot replicate jump-to-default related cash-flows.

Own default related cash-flows, in particular

See Castagna and Fede (2013, Section 10.7)
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1. Based on this market incompleteness tenet, we show that the all
inclusive XVA add-on (funds transfer price FTP) that aligns derivative
prices to the interest of bank shareholders is

FTP = CVA + FVA + KVA,

a. to be contrasted with the “fair valuation” (CVA−DVA) of
counterparty risk,

b. where each XVA term is nonnegative (and solves a nonstandard
backward SDE stopped before the bank default time τ).
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2. Meant incrementally at every new deal, the above XVA add-on will be
interpreted dynamically as the cost of the possibility for the bank to

go into run-off,

i.e. lock its portfolio and let it amortize in the future,

while staying in line with shareholder interest, from any point in time
onward if wished.
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→ Basel III Pillar 2 FTP as a “soft landing” or “anti-Ponzi” corrective
pricing scheme accounting for counterparty risk incompleteness:
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Contra-assets and Contra-liabilities

CA: Contra-assets, entail the valuation of all cash-flows related to the
credit risk of either the counterparties or the bank and occurring
before the default of the bank itself, i.e. having an impact on

shareholder value.

CVA, FVA, ...

CL: Contra-liabilities, entail the valuation of all the cash-flows received by
the bank during the resolution process starting at its default time ,
i.e. only having an impact on bank creditors, by modifying the
recovery rate of the bank, but not on shareholders.

DVA, FDA, ...
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In this section we present the main ideas of our XVA approach in an
elementary static one-year setup, with r set equal to 0.

Assume that at time 0 a bank, with equity E = w0 corresponding to
its initial wealth, enters a derivative position (or portfolio) with a
client.

Let P = EP denote the mark-to-market of the deal ignoring
counterparty risk and assuming risk-free funding.
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We assume that the bank and its client are both default prone with
zero recovery.

We denote by J and J1 the survival indicators of the bank and its
client at time 1

Both being assumed alive at time 0
With default probability of the bank Q(J = 0) = γ
And no joint default for simplicity, i.e Q(J = J1 = 0) = 0.
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XVA Cost of Capital Pricing Approach

In order to focus on counterparty risk and XVAs, we assume that the
market risk of the bank is perfectly hedged by means of perfectly
collateralized back-to-back trades

The back-to-back hedged derivative portfolio reduces to its
counterparty risk related cash flows

At the bottom of this work lies the fact that a bank cannot replicate
jump-to-default exposures

Cost of capital pricing approach in incomplete counterparty risk
markets
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Standing risk-neutral valuation measure Q
Derivative entry prices in our sense include, on top of the valuation of
the corresponding cash-flows, a KVA risk premium

Risk margin (RM) in a Solvency II terminology
Computed assuming P = Q, as little of relevance can be said about the
historical probability measure for XVA computations entailing
projections over decades
The discrepancy between P and Q is left to model risk

Cost of capital pricing approach applied to the counterparty risk
embedded into the derivative portfolio of a bank
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Cash Flows

The counterparty risk related cash flows affecting the bank before its
default are its counterparty default losses and funding expenditures,
respectively denoted by C◦ and F◦.
The bank wants to charge to its client an add-on, or obtain from its
client a rebate,

depending on the bank being “seller or buyer”,

denoted by CA, accounting for its expected counterparty default
losses and funding expenditures.
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Accounting for the to-be-determined add-on CA, in order to enter the
position, the bank needs to borrow (P − CA)+ unsecured or invest
(P − CA)− risk-free, depending on the sign of (P − CA), in order to
pay (P − CA) to its client.
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At time 1:
If alive (i.e. J = 1), then the bank closes the position while receiving P
if its client is alive (i.e. J1 = 1) or pays P− if its client is in default
(i.e. J1 = 0).

Note J1P − (1− J1)P− = P − (1− J1)P+. Hence the counterparty
default loss of the bank appears as the random variable

C◦ = (1− J1)P+. (1)

In addition, the bank reimburses its funding debt (P − CA)+ or
receives back the amount (P − CA)− it had lent at time 0.
If in default (i.e. J = 0), then the bank receives back P+ on the
derivative as well as the amount (P − CA)− it had lent at time 0.
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We assume that unsecured borrowing is fairly priced as γ × the
amount borrowed by the bank, so that the funding expenditures of
the bank amount to

F◦ = γ(P − CA)+,

deterministically in this one-period setup.

We assume further that a fully collateralized back-to-back market
hedge is set up by the bank in the form of a deal with a third party,
with no entrance cost and a payoff to the bank −(P − P) at time 1,
irrespective of the default status of the bank and the third party at
time 1.
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Collecting cash flows, the wealth of the bank at time 1 is

w1 = E−F◦ + (1− J)
(
P+ + (P − CA)−

)
+J
(
J1P − (1− J1)P− − (P − CA)+ + (P − CA)−

)
− (P − P)

=
(
E− (C◦ + F◦ − CA)

)
+ (1− J)(P− + (P − CA)+), (2)

as easily checked for each of the three possible values of the pair (J, J1)
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The result of the bank over the year is

w1 − w0 = w1 − E = −(C◦ + F◦ − CA)

+ (1− J)P−︸ ︷︷ ︸
C•

+ (1− J)(P − CA)+︸ ︷︷ ︸
F•

.

However, the cash flow (C• + F•) is only received by the bank if it is
in default at time 1, so that it only benefits bank creditors.

Hence, the profit-and-loss of bank shareholders reduces to
−(C◦ + F◦ − CA), i.e. the trading loss-and-profit of the bank, which
we denote by L, appears as

L = C◦ + F◦ − CA. (3)
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Remark 1

The derivation (2) allows for negative equity, which is interpreted as
recapitalization.

In a variant of the model excluding recapitalization, where the default
of the bank would be modeled in a structural fashion as E− L < 0
and negative equity is excluded, we would get instead of (2)

w1 = (E− L)+ + 1{E<L}(P− + (P − CA)+). (4)

In our approach we consider a model with recapitalization for reasons
explained later.
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CVA and FVA

In order to balance the trading loss and profit L, the bank charges to
its client the add-on

CA = EC◦︸︷︷︸
CVA

+EF◦︸︷︷︸
FVA

,
(5)

which accounts for the expected counterparty default losses and
funding expenditures of the bank.
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Note that, since

FVA = EF◦ = F◦ = γ(P − CA)+

(all deterministically in a one-period setup), (5) is in fact an equation
for CA.
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Equivalently, we have the following semi-linear equation for
FVA = CA− CVA :

FVA = γ(P − CVA− FVA)+,

which has the unique solution

FVA =
γ

1 + γ
(P − CVA)+.
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Substituting this and (1) into (5), we obtain

CA = E[(1− J1)P+]︸ ︷︷ ︸
CVA

+
γ

1 + γ
(P − CVA)+︸ ︷︷ ︸
FVA

.
(6)
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KVA and Funds Transfer Price

Note that the realized recovery is

C• + F• = (1− J)(P− + (P − CA)+)

because of the trade that occurred, but this was not anticipated and
not reflected in the price of borrowing when the bank issued its
funding debt.

As the funding debt was fairly valued ignoring this, the value
FDA = E[(1− J)(P − CA)+] of the default funding cash flow F•
equals the cost FVA = γ(P − CA)+ of funding the position.
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But the FVA and the FDA do not impact the same economic agent,
namely the FVA hits bank shareholders whereas the FDA benefits
creditors.

Hence, the net effect of funding is not nil to shareholders, but reduces
to an FVA cost.
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In view of (3) and (5), observe that charging to the client a CA
add-on corresponding to expected counterparty default losses and
funding expenditures is equivalent to setting the add-on CA such
that, in expectation, the trading loss-and-profit of bank shareholders
is zero (EL = 0), as it would also be the case without the deal.

However, without the deal, the loss-and-profit of bank shareholders
would be zero not only in expectation, but deterministically.

35 / 244



Hence, to compensate shareholders for the risk on their equity
triggered by the deal, under our cost of capital approach, the bank
charges to its client an additional amount (risk margin)

KVA = hE, (7)

where h is some hurdle rate, e.g. 10%.
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Moreover, since E can be interpreted as capital at risk earmarked to
absorb the losses (C◦+F◦) of the bank above CA, it is natural to size
E by some risk measure of the bank shareholders loss-and-profit L.

The all-inclusive XVA add-on to the entry price for the deal, which we
call funds transfer price (FTP), is

FTP = CA︸︷︷︸
Expected costs

+ KVA︸ ︷︷ ︸
Risk premium

.
(8)
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Monetizing the Contra-Liabilities?

Let us now assume, for the sake of the argument, that the bank
would be able to hedge its own jump-to-default risk through a further
deal, whereby the bank would deliver a payment (C• + F•) at time 1
in exchange of an upfront fee fairly valued as

CL = EC•︸︷︷︸
DVA

+ EF•︸︷︷︸
FDA=γ(P−CA)+=FVA

.
(9)

DVA and FDA stand for debt valuation adjustment and funding debt
adjustment.
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Let CR denote the modified charge to be passed to the client when
the hedge is assumed.

Accouting for the hedging gain Hcl = CL− (C• + F•), the wealth of
the bank at time 1 is now given by (cf. (2))

w1 = (E− (C◦ + F◦ − CR)) + C• + F• +Hcl

= E− (C◦ + F◦ − CR) + CL. (10)
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By comparison with (2), the CL originating cash flow (C• + F•) is
hedged out and monetized as an amount CL received by the bank at
time 0.

The trading loss-and-profit of bank shareholders now appears as

L = w0 − w1 = E− w1 = C◦ + F◦ − CR− CL.
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The amount CR making L centered (and actually the same as before)
is

CR = E(C◦ + F◦)− CL

= (CVA + FVA)− (DVA + FDA) = CVA−DVA,
(11)

because FVA=FDA (cf. (9)).

Hence, if the bank was able to hedge its own jump-to-default risk, in
order to satisfy its shareholders in expectation, it would be enough for
the bank to charge to its client an add-on CR = CVA−DVA.
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The amount CR = CVA−DVA can be interpreted as the fair
valuation of counterparty risk when market completeness and no
trading restrictions are assumed (cf. Duffie and Huang (1996)).

However, under our approach, in the present setup, the bank would
still charge to its client a KVA add-on hE as risk compensation for
the non flat loss-and-profit L triggered by the deal (with E sized by
some risk measure of L).
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Wealth Transfer Interpretation

We see from (5) and (9) that CA can be viewed as the sum between
CL and the fair valuation CR = CVA−DVA of counterparty risk.

CL can be interpreted as an add-on that the bank needs to source
from the client, on top of the fair valuation of counterparty risk, in
order to compensate the loss of value to shareholders due to the
inability of the bank to hedge its own jump-to-default risk.
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Due to this market incompleteness (or trading restriction), the deal
triggers a wealth transfer from bank shareholders to creditors equal to
CL, which then needs be sourced by the bank from its client in order
to put shareholders back at value equilibrium in expected terms.
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Funds Transfer Price Decomposition

In conclusion, in a one-period setup, the FTP can be represented as

FTP = CVA + FVA︸ ︷︷ ︸
Expected costs CA

+ KVA︸ ︷︷ ︸
Risk premium

= CVA−DVA︸ ︷︷ ︸
Fair valuation CR

+ DVA + FDA︸ ︷︷ ︸
Wealth transfer CL

+ KVA︸ ︷︷ ︸
Risk premium

,
(12)

where the CVA an the FVA are detailed in (6) and where the random
variable L used to size the equity E in the KVA formula (7) is the
bank shareholders loss-and-profit L as per (3).
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Need

of a multi-period model, which involves rebalancing between various
banking accounts, for dealing with dynamic portfolios,
to cast the so-called contra-assets and contra-liabilities of the bank in a
balance sheet perspective, in order to obtain not only the (entry) prices
view on XVAs, but also the XVA accounting perspective

→ We introduce a capital structure model of a bank that shows the
different bank accounts involved.
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Balance Sheet of a Bank

Reserve capital (RC)

Shareholder capital at risk (SCR)

Risk Margin

yr1

ASSETS AND CONTRA-LIABILITIES

CONTRA-ASSETS AND LIABILITIES

yr39 yr40

Mark-to-market of the
financial derivatives

Contra-liabilities

yr1 yr39 yr40

Contra-assets (CA)

Accounting equity

Economic capital (EC)

(MtM)

CVA

Collateral received by the
clean desks

FVA

CL=DVA+FDA+CVA-CL+ FVA-CL

FVA desk

(Treasury)CA desks

Clean desks

KVA desk

(management)

CVA desk

RM=KVA

(clean margin CM)

Core equity tier I capital (CET1)
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A Bank With Three Floors

We consider a central “CA desk” of the bank, in charge of absorbing
counterparty default losses and funding expenditures.

But not of the KVA, which is treated separately.
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The “CA = CVA + FVA desk(s)” of the bank sells the corresponding
“contra-assets” to the clients of the bank

Puts the ensuing “reserve capital” in an RC account, which is then
used for absorbing the counterparty default losses and risky funding
expenditures of the bank
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After the contracts have thus been cleaned of their counterparty risk
and (other than risk-free) funding implications by the CA desk, the
other trading desks of the bank, which we call clean desks (or
“bottom floor”) of the bank, are left with the management of the
market risk of the contracts in their respective business lines, ignoring
counterparty risk.
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The top (third) floor is the management in charge of the KVA
payments, i.e. of the dividend distribution policy of the bank

Puts the “risk margin” sourced from the clients in an RM account,
which is then gradually released to shareholders as a remuneration for
their capital at risk

52 / 244



CA desk cash flows graph: contractually promised P , risky funding
F , and hedging H cash flows

CA desk

Clients

Clean desks

Financial markets

Bank creditors

F
P

P
H

C
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In fact, we deal with two portfolios, the client portfolio between the
clients of the bank and the CA desk and the cleaned portfolio
between the CA desk and the clean desks.

The corresponding (cumulative streams of) contractually promised
cash flows are the same, denoted by P. But, as intuitively clear and
detailed in the sequel, counterparty risk only really impacts the client
portfolio.
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Pricing, Accouting and Dividend Policies of the Bank

Another view on “mark-to-model”:

The RM account is continuously reset by the management of the
bank to its (to be determined) theoretical target KVA level.

(−dKVAt) amounts continuously flow from the RM account to the
shareholder dividend stream

The RC account is continuously reset by the CA desk to its (to be
detailed) theoretical target CA = CVA + FVA level

(−dCAt) amounts continuously flow from the RC account to the
shareholder dividend stream
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The CM account is continuously reset by the clean desks of the bank
to the MtM value of the portfolio (ignoring counterparty risk, which
they do not even “see” in their setup)

(−dMtMt) amounts continuously flow from the CM account to the
clean desks trading loss and profit process

→ Balance conditions

CM = MtM , RC = CA = CVA + FVA , RM = KVA (13)
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Assumption 3

The activity of each (clean or CA) trading desk, hence of the bank as a
whole, is self-financing.

At this stage this is only a broad axiom, already implicitly postulated
in the one-period setup (cf. (2)), by which we mean that the wealth
of a trading desk at a later time results from the development of its
wealth at an earlier time as the sole consequence of its pricing,
hedging, funding, and collateralization policy, and of the evolution of
the underlying risk factors, without any further creation or
annihilation of cash flows.
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Bank Default Model

Instead of viewing losses as money flowing away from the balance
sheet, we view them as money flowing into it as refill ,
i.e. replenishment of the different bank accounts at their theoretical
target level,
until the point of default where the payers cease willing to do so .
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When this happens is modeled as a totally unpredictable time τ

calibrated to the bank CDS spread , which we view as the most
reliable and informative credit data regarding anticipations of markets
participants about future recapitalization, government intervention
and other bank failure resolution policies.

59 / 244



Comparison with the Merton model

In a Merton mindset, the default of the bank in our setup would be
modeled as the first time when the core equity (CET1) of the bank
becomes negative, where CET1 depletions correspond to the bank
trading losses L

In the case of a bank, given recapitalisation and managerial resolution
schemes, CET1 is constantly “refilled” by the shareholders and it is
more realistic to model the default as a totally unpredictable (liquidity
or operational) event at some exogenous time τ with intensity γ
calibrated to the bank CDS spread.

cf. Duffie (2010)’s analysis of major bank defaults during the crisis
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Comparison with the Merton model (Cont’d)

The purpose of our capital structure model of the bank is not to
model the default of the bank as the point of negative equity, which
would be unrealistic (and in fact never occurs in our setup)

Instead, our aim is to put in a balance sheet perspective the
contra-assets and contra-liabilities of the bank, items which are not
present in the Merton model.
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Invariance Valuation Setup

The clean desks of the bank, who are immunized against counterparty
risk through the action of the CA desk, typically ignore the default of
the bank in their modeling.

They price and hedge in order to be non arbitrable ignoring the
default of the bank, using some reference filtration F such that τ is
not an F stopping time.
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But the bank is defaultable, hence the full model information used by
the CA desk, as well as by the management of the bank in charge of
the KVA payments, is a larger filtration G such that τ is a G stopping
time.

Assumption 4

Any G stopping time η admits an F stopping time η′ such that
η ∧ τ = η′ ∧ τ ; any G semimartingale Y admits a unique F semimartingale
Y ′, called the reduction of Y , that coincides with Y before τ .
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We denote by J = 1[0,τ) the survival indicator process of the bank.

For any left-limited process Y , we denote by

Y ◦ = Y τ− = JY + (1− J)Yτ−

the process Y stopped before time τ and we write Y • = Y ◦ − Y .

Accounting for the bank default time τ , the time horizon of the
model is τ̄ = τ ∧ T , where T is the final maturity of all claims in the
portfolio, (first) assumed held on a run-off basis.
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Definition 1

By trading loss Lcl of the clean desks, we mean the negative of their
wealth process Wcl , as the latter results from their trading by an
application of the self-financing assumption defined with respect to
the reference filtration F.
By trading loss Lca of the CA desk, we mean the negative of its wealth
process Wca, as the latter results from its trading by an application of
the self-financing assumption with respect to the filtration G, stopped
before τ for alignment with shareholder interest. That is,

Lca = −(Wca)◦. (14)
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Definition 1 (Cont’d)

By trading loss L of the bank as a whole, we mean

L = −(Wcl +Wca)◦ = (Lcl)◦ + Lca. (15)
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Consistency of valuation across the perspectives of the different desks
of the bank is granted by the following:

Assumption 5

Clean desks and CA desks generate trading losses that are martingales
with respect to their respective pricing bases (F,P) and (G,Q),

where the latter are such that (F,P) local martingales stopped before
τ are (G,Q) local martingales,

whereas the reductions of (G,Q) local martingales stopped before τ
are (F,P) local martingales.
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i.e. τ is an invariance time as per Crépey and Song (2017a).

Standard (but by no means limitative) situation: immersion setup
where (F,Q) local martingales are (G,Q) local martingales without
jump at τ , in which case τ is an invariance time with P = Q.
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As an immediate consequence of Assumption 5:

Corollary 1

The trading loss Lcl of the clean desks is an (F,P) local martingale.
The trading losses Lca and L = Lca + (Lcl)◦ of the CA desk and of the
bank as a whole are (G,Q) local martingales without jump at time τ , their
reductions are (F,P) local martingales.
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Assumption 6

The bank cannot hedge its own jump-to-default exposure, hence H = H◦.
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Given Y representing a process of cumulative cash flows or trading or
hedging losses, respectively an XVA process, we denote by Ỹ the
corresponding process of cumulative OIS discounted cash flows or trading
or hedging losses, respectively the corresponding OIS discounted XVA
process.

Example 1

L̃ =
∫ ·

0 βtdLt , C̃VA = βCVA.
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Corollary 2

In the case of a cumulative cash flow or loss process Y , the process Y is a
local martingale if and only if Ỹ is a localmartingale.
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Loss and Dividend Processes

Lemma 1

The trading loss processes Lca of the CA desk and L of the bank as a
whole, both risk neutral local martingales by application of Corollaries 1
and 2, are given by

L̃ca = C̃A
◦

+ C̃◦ + F̃◦ + H̃

L̃ = C̃A
◦

+ C̃◦ + F̃◦ + H̃+ (L̃cl)◦,
(16)
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Lemma 2

Shareholder cumulative discounted dividends are given by

−L̃− K̃VA
◦
. (17)

We emphasize that, in our model, negative dividends are possible. They
are interpreted as recapitalisation, i.e. equity dilution.
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All our XVA processes are sought for in a suitable Hilbert space S2 of
square integrable G adapted processes containing the null process,
defined until time τ̄

(G,Q) valuation is never needed beyond that point.

We denote by S◦2 the corresponding subspace of processes Y without
jump at τ and such that YT = 0 on {T < τ}.
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Clean valuation and mark-to-market of the portfolio

Definition 2

Given an F adapted cumulative cash flow stream D, the OIS
discounted (F,P) value process of D is the (F,P) conditional
expectation process of the future OIS discounted cash flows in D.

By clean valuation of a contract (or portfolio) with F adapted
contractually promised cash flow stream D, we mean the (F,P) value
process of D.
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Proposition 1

Clean valuation is additive over contracts, i.e. the mark-to-market of
a portfolio of contracts is the sum of the mark-to-markets of the
individual contracts.

Clean valuation is also intrinsic to the contracts themselves. In
particular, it is independent of the involved parties and of their
collateralization, funding and hedging policies.

Proof. The promised cash flows of a portfolio are the sum of the
promised cash flows of the contracts. Hence the result follows by linearity
of the cash flow (F,P) valuation rule of Definition 2.
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Consistently with the (F,P) local martingale condition on the trading loss
process of the clean desks:

Definition 3

By mark-to-market MtM of the (cleaned or client) portfolio, we mean the
clean valuation of the contracts not yet liquidated in the portfolio (i.e.
ignoring counteparty risk for the future).
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Valuation of the Funding and Hedging Assets

Definition 4

Given a G adapted cumulative cash flow stream D, the OIS discounted
(G,Q) value process of D is the (G,Q) conditional expectation process of
the future OIS discounted cash flows in D.
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Assumption 7

The funding costs of the CA desk are of the form

(−OIS accrual of the RC account) + F , (18)

for some (G,Q) martingale F starting from 0 with nondecreasing F◦ and
F• components.
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The first term in (18) is the funding benefit to which funding would
boil down if risk-free funding was available to the bank.

The rationale underlying Assumption 7 is that funding is implemented
in practice as the stochastic integral of predictable hedging ratios
against traded funding assets.
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Under the cash flow (G,Q) valuation rule of Definition 4, the value
process of each of these assets is a martingale modulo risk-free
accrual.

Therefore the funding costs of the bank accumulate into a (G,Q)
martingale F , coming on top of a risk-free accrual (actual benefit,
i.e. negative cost) of the RC cash account of the CA desk.
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The assumption that F◦ is nondecreasing rules out models where the
bank can invest (not only borrow) at his unsecured borrowing spread
over OIS, because, as a consequence on F• through the martingale
condition on the process F as a whole, this would imply that the
bank can hedge its own jump-to-default exposure.

That is, we assume only windfall at bank own default, no shortfall

cf. the detailed discussion of BK papers later in these slides.
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In view of Assumption 6, this also insures some kind of orthogonality
between the risky funding and hedging loss martingales F and H, so
that F and H are nonsubstituable to each other (and the bank
cannot manipulate by using one for the other).
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Example 2

Let

dBt = rtBtdt

dDt = (rt + λt)Dtdt + (1− R)Dt−dJt = rtDtdt + Dt−
(
λtdt + (1− R)dJt

)
represent the risk-free OIS deposit asset and a risky bond issued by
the bank for its investing and unsecured borrowing purposes.

λ represents the unsecured funding spread of the bank and R is the
corresponding recovery coefficient, taken as an exogenous constant.
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Example 2 (Cont’d)

The risk-neutral martingale condition that applies to (βD) under our
standing valuation framework implies that λ = (1− R)γ, hence

λtdt + (1− R) dJt = (1− R)dµt ,

where dµt = γdt + dJt is the (G,Q) compensated jump-to-default
martingale of the bank
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Example 2 (Cont’d)

We assume all re-hypothecable collateral and we denote by Q the
amount of collateral posted by the CA desk to the clean desks net of
the amount received by the CA desk from the clients.
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Example 2 (Cont’d)

The funding policy of the CA desk is represented by a splitting of the
amount CAt on the RC account of the bank as

CAt = Qt︸︷︷︸
Collateral remunerated OIS

+ (CAt − Qt)
+︸ ︷︷ ︸

Cash in excess invested at the risk-free rate

− (CAt − Qt)
−︸ ︷︷ ︸

Cash needed unsecurely funded

=
(
Qt + (CAt − Qt)

+
)︸ ︷︷ ︸

Invested at the risk-free rate as νtBt

− (CAt − Qt)
−︸ ︷︷ ︸

Unsecurely funded as ηtDt

.

(19)
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Example 2 (Cont’d)

A standard continuous-time self-financing equation expressing the
conservation of cash flows at the level of the bank as a whole yields

d (νtBt − ηtDt) = νtdBt − ηt−dDt

= νtrtBtdt − ηt(rt + λt)Dtdt − (1− R)ητ−Dτ−dJt

= rtCAtdt − (1− R)ηt−Dt−dµt , 0 ≤ t ≤ τ̄
(20)

A left-limit in time is required in η because D jumps at time τ, so that
the process η, which is defined implicitly through (CA− Q)−/D in
(19), is not predictable.
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Example 2 (Cont’d)

Equivalently viewed in terms of costs, i.e. flipping signs in the above,
we obtain

− d (νtBt − ηtDt) = −rtCAtdt + dFt ,

where dFt = (1− R)(Qt− − CAt−)+dµt , which is in line with
Assumption 7
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Regarding now hedging losses:

Assumption 8

The hedging loss H = H◦ of the CA desk, including the cost of setting the
hedge, is a (G,Q) local martingale starting from 0.
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The rationale here is that hedging gains or losses arise in practice as
the stochastic integral of predictable hedging ratios against wealth
processes of traded hedging assets.

Note that we are considering wealth processes inclusive of the
associated funding costs here, which corresponds to the most
common situation of hedges that are either swapped or traded
through a repo market, without upfront payment.
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Under the cash flow (G,Q) valuation rule of Definition 4, each
hedging asset is valued as risk-free discounted expectation of its
future cash flows.

Hence the wealth processes related to long positions in any of the
hedging assets are (G,Q) local martingales, as are stochastic integrals
against them.
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Example 3

Assuming the CA hedge implemented through a repo market on a
Black-Scholes stock S with volatility σ, then, supposing no dividends and
no repo basis on S :

dHt = −ζt
(
dS − rStdt

)
= −ζtσStdWt , (21)

where W is the (G,Q) Brownian motion driving S and ζ is the hedging
ratio used in S .

The instantaneous cost of funding the hedge is (ζtrStdt), which is
included in (21).
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Remark 2

The valuation impact of a theoretical (but impractical) hedge by the bank
of its contra-liabilities will be considered separately in Proposition 3.

As immediate consequences of Assumptions 7 and 8 :

Corollary 3

The processes F and H = H◦ are (G,Q) martingales with zero (G,Q)
value.
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Contra-assets

Proposition 2

CA, CVA, and FVA are the solutions to the following fixed-point
problems, assumed well-posed in S◦2 : For t ≤ τ̄ ,

C̃At = Et

(
C̃◦τ̄ + F̃◦τ̄ − C̃◦t − F̃◦t + 1{τ<T}C̃A

◦
τ

)
= Et

(
C̃◦τ̄ + F̃◦τ̄ − C̃◦t − F̃◦t + 1{τ<T}R̃C

◦
τ

)
,

(22)

by (13), and

C̃VAt = Et

(
C̃◦τ̄ − C̃◦t + 1{τ<T}C̃VA

◦
τ

)
, (23)

F̃VAt = Et

(
F̃◦τ̄ − F̃◦t + 1{τ<T}F̃VA

◦
τ

)
. (24)
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Proof. By application of the (G,Q) martingale condition on L̃ca as per
(16), combined with Corollary 3.
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Remark 3

The industry terminology tends to distinguish an FVA, in the
technical sense of the cost of funding cash collateral for variation
margin, from an MVA, defined as the cost of funding segregated
collateral posted as initial margin (see Albanese et al. (2017)).

The academic literature, as in these slides, tends to merge the two in
an overall FVA meant in the broad sense of the cost of funding the
derivative trading strategy of the bank.

99 / 244



Contra-liabilities

Definition 2 (Cont’d)

By contra-liabilities value process CL, we mean

CL = DVA + FDA + CVACL + FVACL, (25)

where:

The DVA (debt valuation adjustment) is the (G,Q) value of C•,
The FDA (funding debt adjustment) is the (G,Q) value of F•, and

CVACL and FVACL are the (G,Q) values of terminal cash flows
1{τ<T}CVA

◦
τ and 1{τ<T}FVA

◦
τ at time τ̄ .
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Financial interpretation

The DVA is the value that the bank clients lose due to the possible
default of the bank in the future.

The FDA is the value of the amount of its funding debt that the bank
fails to reimburse if it defaults.

CVACL and FVACL are contra-liability components of the CVA and
the FVA, valuing the residual amounts 1{τ<T}CVA

◦
τ and

1{τ<T}FVA
◦
τ , summing up to 1{τ<T}CA

◦
τ = 1{τ<T}RC

◦
τ (cf. (13)),

which are transferred from the RC account to bank creditors at time
τ .
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Wealth Transfer Analysis

Let us now assume, for the sake of the argument, that the bank
would be able to hedge its own jump-to-default risk by selling on the
financial markets a contract paying CLτ at time τ (e.g. through
repurchasing of its own bond as contemplated in Burgard and Kjaer
(2011a, 2011c)).

Let CR denote the modified charge to be passed to the client for
making the trading loss and profit of the bank a (G,Q) martingale,
assuming this hedge in place.

102 / 244



Proposition 3

We have

CR = CA− CL, (26)

which is also the (G,Q) value of C (or of (C + F +H)).

Corollary 4

CL is interpreted as the wealth transfer triggered by the deals from
shareholders to creditors, due to the inability of the bank to hedge its own
jump-to-default exposure.
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Not only a bank cannot hedge its own jump-to-default: It cannot
replicate its counterparty default losses either.

An XVA add-on defined by CA = CVA + FVA ensures that the
trading loss L of the bank is zero in expectation.

But the impossibility of replicating counterparty default losses implies
that the trading of the bank generates a non-vanishing loss-and-profit
process L.

Then the regulator comes and requires that capital be set at risk by
the shareholders, which therefore require a risk premium.
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Valuation is risk-neutral with respect to the stochastic bases (F,P) or
(G,Q).

Economic capital and KVA assess risk and its cost, which refer to the
historical probability measure.
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In our setup, the duality of perspective of the clean vs. CA desks, on
pricing as reflected by Assumption 5, also applies to risk
measurement.

Capital calculations are always made “on a going concern”,
i.e. assuming that the bank is alive, and therefore with respect to the
reference filtration F.
Instead, cost of capital calculations are made by the management of
the bank using the filtration G including the default of the bank.
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However, in the context of XVA computations entailing projections
over decades, the main source of information is market prices of liquid
instruments, which allow the bank to calibrate the pricing measure,
and there is little of relevance that can be said about the historical
probability measure.
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Hence, in our model:

Assumption 9

The estimates of the historical probability measure respectively used in
economic capital and cost of capital computations coincide with the
pricing measures P and Q.

Any discrepancy between the historical and risk-neutral measures is
left to model risk, meant to be included in an AVA (additional
valuation adjustment) in an FRTB terminology.
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Economic Capital

The economic capital (EC) of the bank is its resource devoted to
cope with losses beyond their expected levels that are already taken
care of by reserve capital (RC).

Basel II Pillar II defines economic capital as the 99% value-at-risk of
the negative of the variation over a one-year period of core equity tier
I capital (CET1), the regulatory metric that represents the wealth of
the shareholders within the bank.
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Recently, the FRTB required a shift from 99% value-at-risk to 97.5%
expected shortfall.

In our setup, capital depletions correspond to the trading loss process
L.
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Accordingly, also accounting for discounting (and recalling that L′ is
the F reduction of L):

Definition 5

Our reference definition for the (discounted) economic capital of the bank
at time t is the (Ft ,P) conditional 97.5% expected shortfall of

(L̃′t+1 − L̃′t), which we denote by ẼSt(L).

Solvency II introduces a further modification of economic capital,
which is required to be in excess of the risk margin (RM), i.e. of the
KVA (cf. (13)). This modification is considered later.
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For the purpose of economic capital and cost of capital computations,
the trading loss process L of the bank can be considered as an
exogenous process ((G,Q) martingale without jump at τ , by Lemma
1).

Accordingly we just write ẼSt for ẼSt(L), and ESt for ESt(L), the

undiscounted version of ẼSt(L).

Lemma 3

ES is nonnegative.
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KVA as a Risk Premium

Counterparty default losses, as also funding payments, are
materialities for default if not paid, hence the CVA and the FVA are
liabilities (or “contra-assets”) to shareholders.

In contrast, KVA payments are at the discretion of the bank
management and released to bank shareholders themselves.

Accordingly:

Assumption 10

The risk margin is loss-absorbing, hence part of economic capital.
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Corollary 5

Shareholder capital at risk (SCR) is the difference between the economic
capital (EC) of the bank and its risk margin (RM), i.e.

SCR = EC− RM. (27)

Assumption 11

An exogenous and constant hurdle rate h prevails, in the sense that bank
shareholders are constantly maintained by the KVA payments on an
“efficient frontier” such that, at any time t

“Shareholder instantaneous average returnt = h × SCRt .” (28)
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In practice the level of compensation required by shareholders on their
capital at risk is driven by market considerations. Typically, investors
in banks expect a hurdle rate h of about 10% to 12%.

We assume a constant h for simplicity.

An endogenous and stochastic hurdle rate would arise in a model of
competitive equilibrium, where different banks compete for clients.

As opposed to our setup where only one bank is considered.
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In view of Lemma 2 and Corollary 5, where RM = KVA holds at all
times by (13), and since L̃ is a (G,Q) martingale by Lemma 1, the
informal statement (28) is formulated in mathematical terms by the
requirement that

(−K̃VA
◦
) has a (G,Q) drift given as

the time-integrated process h (ẼC− K̃VA),
(29)

assumed to define a unique KVA process in S◦2
This includes that the KVA process is defined until τ̄ and without jump
at τ .
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However, the KVA equation (29) is only preliminary if EC there is
just meant as ES, which would then be forgetful of a consistency
condition SCR ≥ 0.

This is fixed in the next section by pushing EC above ES until the
constraint is satisfied.
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The KVA Constrained Optimization Problem

Assume that, for any tentative economic capital process C in a
suitable Hilbert space L2 of square integrable processes containing S2

and the process ES, the equation (cf. (29))

(−K̃ ◦) has a (G,Q) drift given as the time-integrated process h(C̃ − K̃ )(30)

defines a unique process K = K (C ) in S◦2 .
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Definition 6

The set of admissible economic capital processes is defined as

C = {C ∈ L2;C ≥ max
(
K (C ),ES

)
}, (31)

where (b) C ≥ ES is the risk acceptability condition and (a) C ≥ K (C ) is
the self-consistency condition.

120 / 244



The KVA Constrained Optimization Problem

In view of (30) and (31), the natural guess for the smallest and
cheapest admissible economic capital process is then

EC = max(ES,KVA), (32)

for a process KVA in S◦2 such that

(−K̃VA
◦
) has a (G,Q) drift given as the

time-integrated process h
(

max(ẼS, K̃VA)− K̃VA
)
.

(33)

→ The discounted KVA is a (G,Q) supermartingale.
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Remark 4

In the case of perfect clean and CA hedges where the process L (hence L′)
is constant, then ES vanishes and KVA = 0 obviously solves (33) in S◦2 .
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Given the actual (incremental) derivative porfolio of a bank, the
above can be applied to the version of the portfolio that would be
run-off by the bank from time 0 onward until its final maturity T .

The ensuing XVA numbers are interpreted as the amounts
CA = CVA + FVA to maintain on the reserve capital (RC) account
and KVA to maintain on the risk margin (RM) account, which would
allow the bank to go into run-off in line with shareholder interest.
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Such a “soft landing option” is key from a regulator point of view, as
it guarantees that the bank should not be tempted to go into
snowball or Ponzi kind of schemes where always more trades are
entered for the sole purpose of funding previously entered ones.

Moreover, since we rely on a dynamic analysis, this possibility, for a
bank respecting the balance conditions (13) for CVA, FVA, and KVA
as per (23), (24), and (33), of going run-off in line with shareholder
interest, is granted not only from time 0 onward, but from any future
time onward, as long as no new deals occur to the bank.
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A new trade has two impacts: it triggers a wealth transfer from
shareholders to bondholders and alters the risk profile of the portfolio.

This is reflected by a jump “∆·” of the balance sheet, from the
balance sheet related to the endowment (pre-trade portfolio) at the
time t where the new deal is considered, to the balance sheet related
to the portfolio including the new deal at time t (both portfolios
being assumed held on a run-off basis).
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Hence the balance conditions (13) and the associated soft landing
option of the bank are impaired, unless the missing RC and RM
amounts are sourced from the client of the deal in order to restore
them.

→ Assumption 1 implies

∆RC = ∆CA,∆RM = ∆KVA,

for ∆XVAs computed on an incremental run-off basis based on (22)
and (33).
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→ The all-inclusive XVA add-on to the entry price for a new deal, called
fund transfer pricing (FTP), is

FTP = ∆CA + ∆KVA = ∆CVA + ∆FVA + ∆KVA. (34)

Obviously, the endowment has a key impact on the FTP of a new
trade. For instance, it can happen that a new deal is risk-reducing with
respect to the pre-existing portfolio, in which case FTP < 0.
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The preservation of the balance conditions in between and throughout
deals yields a sustainable strategy for profits retention, which is
already the key principle behind the Eurozone Solvency II insurance
regulation.
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From this “soft landing” perspective it is natural to perform the XVA
computations under the following assumption, in line with a run-off
procedure where market risk is first hedged out, but we conservatively
assume no XVA hedge, and the portfolio is then let to amortize until
its final maturity T :

Assumption 12

We assume a perfect clean hedge by the clean traders, i.e. L = Lca, and no
CA hedge, i.e. H = 0.
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As it then immediately follows from Lemma 1:

Corollary 6

We have

L̃ = L̃ca = C̃A + C̃◦ + F̃◦. (35)

→ The process L that is used as input to capital and KVA computations
is the output of the CA computations, making the XVA problem as a
whole self-contained.

cf. Definition 5 and (33), where ES = ES(L)
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“Recursive” (G,Q) XVA equations as per Duffie and Singleton (1999)
or Collin-Dufresne, Goldstein, and Hugonnier (2004)

Solved by reduction to (F,P), in the present invariance time
framework for τ
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Spaces

Assuming that the pre-intensity γ of τ is F predictable (without loss of
generality by reduction), we denote by:

S2, the space of càdlàg G adapted processes Y over [0, τ̄ ] such that

E
[
Y 2

0 +

∫ T

0
e
∫ s

0 γudu1{s<τ}d(Y ∗s )2
]
<∞, (36)

where Y ∗t = sups∈[0,t] |Ys |;
S◦2 , the subspace of the processes Y in S2 such that Y is without
jump at τ on {τ < T} and YT = 0 on {T < τ};
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S•2 , the subspace of the processes Y in S2 such that Yτ̄ = 0;

S ′2, the space of càdlàg F adapted processes Y ′ over [0,T ] such that

E′
[

sup
t∈[0,T ]

(Y ′t )2
]
<∞ (37)

and Y ′T = 0;
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L2, the space of G progressively measurable processes X over [0,T ]
such that

E
[ ∫ T

0
e
∫ s

0 γudu1{s<τ}X
2
s ds
]
< +∞; (38)

L′2, the space of F progressively measurable processes X ′ over [0,T ]
such that

E′
[ ∫ T

0
(X ′t)2dt

]
< +∞. (39)
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KVA in the Case of a Default-Free Bank

Note that the primary reason for the KVA to exist is the default of
the bank clients, as opposed to the default of the bank itself

which on the other hand is the key of the contra-liabilities related
wealth transfer issue.

In this part we suppose the bank default free, i.e.

τ = +∞ , (F,P) = (G,Q) and γ = 0.

This is then extended to the case of a defaultable bank in the next part.
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At that stage in this part we use the “·′” notation, not in the sense of
reduction (as F = G), but simply in order to distinguish the equations
in this part, where F = G, from the ones in the next part, where
F 6= G

The data of this subsection will then be interpreted a posteriori as the
reductions of the corresponding data in the next subsection.
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Given C ′ ≥ ES representing a putative economic capital process for the
bank, consider the following BSDEs (cf. (30) and (33) when τ = +∞):

K ′t = E′t
∫ T

t

(
hC ′s − (rs + h)K ′s

)
ds , t ∈ [0,T ], (40)

KVA′t = E′t
∫ T

t

(
hmax(ESs ,KVA′s)− (rs + h)KVA′s

)
ds , t ∈ [0,T ](41)

to be solved for respective processes K ′ and KVA′.
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Lemma 4

Assuming that r is bounded from below and that r , C ′, and ES are in L′2,
then the BSDEs (40) and (41) are well posed in S ′2, where well-posedness
includes existence, uniqueness and comparison. We have, for t ∈ [0,T ],

KVA′t = hE′t
∫ T

t
e−

∫ s
t (ru+h)du max(ESs ,KVA′s)ds. (42)

Proof. By application of monotonic coefficient BSDE results (see
e.g. Kruse and Popier (2016, Sect. 4)).
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Proposition 4

Assuming that r is bounded from below and that r and ES are in L′2, we
have:
(i) EC′ = min C′,KVA′ = minC ′∈C′ K

′(C ′);
(ii) The process KVA′ is nonnegative and it is nondecreasing in h.

Proof. By applications of BSDE comparison theorems (see e.g. Kruse and
Popier (2016, Proposition 4)).
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KVA in the Case of a Defaultable Bank

In the case of a defaultable bank, “·′” now denoting reduction, then, by
the results of Crépey and Song (2017b):

For any C ∈ L2, we have C ′ ∈ L′2 and the (G,Q) BSDE (30) in S◦2 is
equivalent to the (F,P) BSDE (40) in S ′2 through the correspondence
K = (K ′)τ− on [0, τ̄ ];

Assuming ES in L′2, the (G,Q) KVA BSDE (33) in S◦2 is equivalent
to the (F,P) KVA′ BSDE (41) in S ′2 through the correspondence
KVA = (KVA′)τ− on [0, τ̄ ].
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Hence, by application of Lemma 4 and Proposition 4 through the above
correspondences:

Lemma 5

Assuming that r is bounded from below and that r , C ′, and ES are in L′2,
then the (G,Q) linear BSDEs (30) for K = K (C ) and the (G,Q) KVA
BSDE (33) are well posed in S2, where well-posedness includes existence,
uniqueness and comparison.
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Theorem 1

Assuming that r is bounded from below and that r and ES are in L′2:
(i) EC = min C,KVA = minC∈C K (C );
(ii) The process KVA is nonnegative and it is nondecreasing in h.
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Contra-assets and Contra-liabilities

The counterparty exposure and funding cumulative cash flow streams
Y = C and F (recall Assumption 12 set H = 0) are given as G finite
variation processes.

C◦ and F◦ can be assumed to be F finite variation processes, without
loss of generality by reduction.
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Regarding the funding cash flows, we assume more specifically:

dF◦t = ft(FVAt)dt until τ, (43)

for some predictable coefficient (random function) f .

A structure (43) for F is a slight departure from our abstract setup,
where, for simplicity of presentation in a first stage, F was introduced
as an exogenous process.
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But, as already found in the one-period setup or in the
continuous-time example 2, the dependence of F on the FVA is only
semi-linear (i.e. f in (43) is Lipschitz or monotonous) in practice.

Provided the corresponding FVA fixed-point problem is well-posed,
one can readily check, by revisiting all the above, that such
dependence does not affect any of the qualitative conclusions in the
above.
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Lemma 6

For C and F thus specialized, the CVA and FVA equations (23) and (24)
in S◦2 are equivalent to the following equations in S ′2:

CVA′t = E′t
∫ T

t
β−1
t βsdC◦s , t ∈ [0,T ], (44)

FVA′t = E′t
∫ T

t
β−1
t βs fs(FVA′s)ds , t ∈ [0,T ], (45)

equivalent through the following correspondence:

CVA = (CVA′)τ− and FVA = (FVA′)τ− on [0, τ̄ ]. (46)

Proof. By application of the results of Crépey and Song (2017b)
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Example 4

In the setup of Example 2, we have, for 0 ≤ t ≤ τ̄ :

dF◦t = λt(Qt − CAt)
+dt

dF•t = (1− R)(Qt− − CAt−)+(−dJt).
(47)

Hence F◦ is of the form (43), for ft(y) = λt(Qt − CVAt − y)+, and

dLt = dLcat = dCAt − rtCAtdt + dC◦t + λt(Qt − CAt)
+dt. (48)
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Example 4 (Cont’d)

Assume further that the bank portfolio involves a single client with
default time denoted by τ1, that Q(τ1 = τ) = 0, that the liquidation
of a defaulted party is instantaneous and that no derivative cash flows
are due at the exact times τ and τ1.

Let J and J1, respectively R and R1, denote the survival indicator
processes and the recovery rates of the bank and its client.
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Example 4 (Cont’d)

Then Q is of the form J1Q1, where Q1 is the difference between the
mark-to-market P of the variation margin provided by the CA desk to
the clean desks and the mark-to-market of the variation margin
provided to the CA desk by the client.

Moreover, for 0 ≤ t ≤ τ̄ ,

dC◦t = (1− R1)(Q1
τ1

)+(−dJ1
t )

dC•t = 1{τ≤τ1}(1− R)(Q1
τ )−(−dJt).

(49)
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Proposition 5

In the setup of Example 4, assuming that r is bounded from below and
that the processes r , λ, and λ(J1Q1 − CVA′)+ are in L′2, and that CVA′

in (51) is in S ′2, then the CVA and FVA equations (23) and (24) are
well-posed in S◦2 and we have, for 0 ≤ t ≤ τ̄ :

CVAt = (CVA′)τ−t and FVAt = (FVA′)τ−t , where for 0 ≤ t ≤ T : (50)

CVA′t = E′t
[
1{t<τ1<T}β

−1
t βτ1(1− R1)(Q1

τ1
)+
]
; (51)

FVA′t = E′t
∫ T

t
β−1
t βsλs(J1

s Q
1
s − CVA′s − FVA′s)+ds, (52)

dLt = dCAt − rtCAtdt + (1− R1)(Q1
τ1

)+(−dJ1
t ) + λt(J

1
t Q

1
t − CAt)

+dt.(53)
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Proposition 5 (Cont’d)

CLt = Et

[
1{τ≤τ1∧T}β

−1
t βτ1(1− R)(Q1

τ )−
]︸ ︷︷ ︸

FTDDVAt

(54)

+Et

[
βτ/βt1{t<τ<T}(J

1
τ−Q

1
τ− − CAτ−)+

]︸ ︷︷ ︸
FDAt

(55)

+Et

[
β−1
t βτ1{t<τ<T}CVA

′
τ−
]︸ ︷︷ ︸

CVACL
t

+Et

[
β−1
t βτ1{t<τ<T}FVA

′
τ−
]︸ ︷︷ ︸

FVACL
t

(56)
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Proposition 5 (Cont’d)

CRt = Et

[
1{t<τ1≤τ∧T}β

−1
t βτ1(1− R1)(Q1

τ1
)+
]︸ ︷︷ ︸

FTDCVAt

(57)

−Et

[
1{t<τ≤τ1∧T}βτ1/βt(1− R)(Q1

τ )−
]︸ ︷︷ ︸

FTDDVAt

.
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Proof. Under the assumptions of the proposition, the (F,P) FVA′ BSDE
(45) is a monotonous coefficient BSDE well-posed in S ′2, based on the
results of Kruse and Popier (2016, Sect. 4). In view of Lemma 6, this
proves the CVA and FVA related statements.
The dynamics (53) for L are obtained by plugging into (48) the first line in
(49).
The CL and CR formulas (56) and (57) readily follow from (25), (47) and
(49) for CL and Definition 2 and (49) for CR.
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Proposition 5 is easily extended to bilateral trade portfolios with
several counterparties.

cf. Albanese, Caenazzo, and Crépey (2017) and (64)-(65) below
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Proposition 5 is derived in a pure valuation perspective.

In most other former XVA references in the literature, XVA equations
are based on hedging arguments.

Most previous XVA works were not considering KVA yet.
Under our approach, the KVA is the risk premium for the market
incompleteness related to contra-assets.
Hence, for consistency, our KVA treatment requires a pure valuation
(as opposed to hedging) view on contra-assets.
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Formula (57) is symmetrical, i.e. consistent with the law of one price,
in the sense that (FTDCVA− FTDDVA) corresponds to the
negative of the analogous quantity considered from the point of view
of the counterparty.
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It only involves the first-to-default CVAs and DVAs, where the default
losses are only considered until the first occurrence of a default of the
bank or its counterparty in the deal.

This is consistent with the fact that later cash flows will not be paid in
principle.
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Since the presence of collateral has a direct reducing impact on
FTDCVA/DVA, this formula may give the impression that
collateralization achieves a reduction in counterparty risk at no cost
to either the bank or the clients.
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However, in the present incomplete market setup, the value CR from
the point of view of the bank as a whole ignores the misalignement of
interest between the shareholders and the creditors of a bank.
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Proposition 5 analyses the cost of counterparty risk to shareholders
(CA) and the wealth transfer (CL) triggered from the shareholders to
the creditors by the impossibility for the bank to hedge its own
jump-to-default exposure.
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Due to the latter and to the impossibility for the bank to replicate
counterparty default losses, these contra-liabilities (CL) as well as the
cost of capital (KVA) are material to shareholders and need to be
reflected in entry prices on top of the fair valuation (CR) of
counterparty risk.
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Only the fluctuations of L matter in economic capital calculations,
hence the (unknown) value of L0 is immaterial in all XVA
computations.
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Even though our setup includes the default of the bank itself, which is
the essence of the contra-liabilities related wealth transfer issue, we
end up with unilateral CVA, FVA and KVA formulas such as (51),
(52) and (41) pricing the related cash flows until the end of times T
(as opposed to τ̄ = τ ∧ T ).

And these equations only involve the original discount factor β, without
any credit spread.
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This is indeed what follows from a careful analysis of the wealth
transfers involved.

However this also makes the ensuing XVAs more expensive than the
bilateral XVAs that appear in most of the related literature.
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A unilateral CVA is actually required for being in line with the
regulatory requirement that reserve capital should not diminish as an
effect of the sole deterioration of the bank credit spread.
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But a bilateral FVA already satisfies the regulatory monotonicity
requirement

Essentially, as, when the bank credit spread deteriorates, the shortest
duration of a bilateral FVA is compensated by the higher funding
spread.

169 / 244



And the KVA is not concerned by this requirement.

Actually, a unilateral KVA might arguably be unjustified, with regard to
the fact that bank insolvency means depletion of the whole economic
capital of the bank, which includes the risk margin. Hence the notion
of transfer of the residual risk margin to creditors at bank default
would be pointless.
However, the default of a bank does not mean insolvency, but illiquidity
mainly.
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From Unilateral to Bilateral KVA

Assuming all the risk margin already gone at time τ̄ through an additional
model feature, such as an operational loss that would occur at τ and
trigger instantaneous depletion of economic capital, would result in the
following modified KVA equation in S•2 :

(−K̃VA
◦
) has a (G,Q) drift given as the

time-integrated process h
(

max(ẼS, K̃VA)− K̃VA
)
,

(58)
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i.e., in the continuous time setup,

KVAt = hEt

∫ τ̄

t
e−

∫ s
t (ru+h)du max(ESs ,KVAs)ds, t ∈ [0, τ̄ ], (59)

or, in an an equivalent (F,P) formulation, KVA = (KVA′)τ on [0, τ̄ ],
where (compare with (42), noting in particular the “+γu” in the discount
factor in (60))

KVA′t = hE′t
∫ T

t
e−

∫ s
t (ru+h+γu)du max(ESs ,KVA′s)ds, t ∈ [0,T ]. (60)
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From Unilateral to Bilateral FVA

A bilateral FVA, which already satisfies the regulatory monotonicity
requirement on the related reserve capital, might be advocated as
follows.

Assume for the sake of the argument that the portfolio of the
defaulted bank with clients is unwounded with risk-free
counterparties, called novators.
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The residual amount of CVA reserve capital is required by the
novators to deal with the residual counteparty risk on the deals.

But the residual amount of FVA reserve capital is useless to the
novators.
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In view of this one could decide that, upon bank default, the residual
FVA capital reserve flows back into equity capital and not to creditors.

For formalizing this mathematically, one needs disentangle the CA
desk into a CVA desk and an FVA desk, each endowed with their own
reserve capital account (and hedge).
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This would result in an FVA equation stated in S•2 as

F̃VAt = Et

(
F̃◦τ̄ − F̃◦t

)
, t ≤ τ̄ , (61)

instead of the FVA equation (24) in S◦2 .
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That is, in the continuous-time setup: (compare with (45))

FVAt = Et

∫ τ̄

t
β−1
t βs fs(FVAs)ds, t ∈ [0, τ̄ ], (62)

or, equivalently, FVA = (FVA′)τ on [0, τ̄ ], where

FVA′t = E′t
∫ T

t
e−

∫ s
t (ru+γu)dufs(FVA′s)ds, t ∈ [0,T ]. (63)

Note again the blended discount factor in (63), as opposed to the
risk-free discount factor β in (45).
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Next we account for the additional FVA reduction provided by the
possibility for a bank to post economic capital, on top of reserve
capital already included in the above, as variation margin.

Note that, in principle, uninvested capital (UC) could be used for VM
as well, but since UC is not known and could as well be zero in the
future, capital is conservatively taken here as (RC+EC).
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Accounting for the use of EC as VM, the VM funding needs are
reduced from (Q − CA)+ to (Q − EC(L)− CA)+.

As a consequence, instead of an exogenous CA value process feeding
the dynamics for L (cf. e.g. (53)), one obtains a FBSDE system
made of a forward SDE for L coupled with a backward SDE for the
CA value process.
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So, assuming n counterparties with survival indicator processes J i , hence
Q =

∑
J iQ i , using here unilateral CVA vs. bilateral FVA and KVA as a

practical trade-off:

L0 = z and, for t ∈ (0, τ̄ ],

dLt = dCAt +
∑
i

(1− Ri )(Q i
τi

)+(−dJ it)

+
(
λt
(∑

i

J itQ
i
t − ECt(L)− CAt

)+ − rtCAt

)
dt,

(64)
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where

CAt = Et

∑
t<τi<T

β−1
t βτi (1− Ri )(Q i

τi
)+

︸ ︷︷ ︸
CVAt

+ Et

∫ τ̄

t
β−1
t βsλs

(∑
i

J isQ
i
s − ECs(L)− CAs

)+
ds︸ ︷︷ ︸

FVAt

, 0 ≤ t ≤ τ̄ .
(65)
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Unless λ = 0, nonstandard coupling between L and CA through the
term ECt(L), which entails the conditional law of the one-year-ahead
increments of L.

Crépey, Élie, Sabbagh, and Song (2017) show that:

This FBSDE for L and CA can be decoupled into an anticipated BSDE
(“McKean” ABSDE) for the underlying FVA process;
Our previous results are still valid provided one replaces (Q − CA)+ by
(Q − EC(L)− CA)+ everywhere.
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The above XVA approach can be implemented by means of nested
Monte Carlo simulations for approximating the loss process L required
as input data in the KVA computations. Contra-assets (and
contra-liabilities if wished) are computed at the same time.

Since one of our goals in the numerics is to emphasize the impact on
the FVA of the funding sources provided by reserve capital and
economic capital, we consider the FBSDE (64)–(65) which accounts
for the use of EC (on top of RC) as VM.
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Let

FVA
(0)
t = Et

∫ τ̄

t
β−1
t βsλs(

∑
i

J isQ
i
s)+ds,

which corresponds to the FVA accounting only for the
re-hypothecation of the variation margin received on hedges, but
ignores the FVA deductions reflecting the possible use of reserve and
economical capital as VM.
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Picard iteration

L(0) = z , FVA(0) as above, CA(0) = CVA + FVA(0) and, for k ≥ 1,

L
(k)
0 = z and, for t ∈ (0, τ̄ ],

dL
(k)
t = dCA

(k−1)
t − rtCA

(k−1)
t dt +

∑
i

(1− Ri )(Q i
τi

)+(−dJ it)

+ λt

(∑
i

J itQ
i
t −max

(
ESt(L

(k−1)),KVA
(k−1)
t

)
− CA

(k−1)
t

)+
dt,

(66)
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CA
(k)
t = CVAt + FVA

(k)
t where FVA

(k)
t =

Et

∫ τ̄

t
β−1
t βsλs

(∑
i

J isQ
i
s −max

(
ESs(L(k)),KVA

(k−1)
s

)
− CA

(k−1)
s

)+
ds

KVA
(k)
t = hEt

∫ τ̄

t
e−

∫ s
t (ru+h)du max

(
ESs(L(k)),KVA

(k−1)
s

)
ds.

(67)
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Numerically, one iterates (66)–(67) as many times as is required to
reach a fixed point within a preset accuracy.

In the case studies we considered, one iteration (k = 1) was found
sufficient.
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A second iteration did not bring significant change as

In (64)-(65) the FVA feeds into economic capital only through FVA
volatility and the economic capital feeds into FVA through a capital
term which is typically not FVA dominated
In (59), in most cases we have that EC = ES. The inequality only
stops holding when the hurdle rate h is very high and the term
structure of EC starts very low and has a sharp peak in a few years,
which is quite unusual for a portfolio held on a run-off basis, as
considered in XVA computations, which tends to amortize in time.
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Economic capital projections

However, going even once through (66)–(67) necessitates the
conditional risk measure simulation of ECt(L).

On realistically large portfolios, some approximation is required for the
sake of tractability.
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The simulated paths of L(1) are used for inferring a deterministic term
structure

ES(1)(t) ≈ ESt(L
(1)) (68)

of economic capital, obtained by projecting in time instead of
conditioning with respect to Gt in ES.
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Discussion of the economic capital term structure approximation

If a corporate holds a bank payable, it typically has a desire to close
it, receive cash, and restructure the hedge with a par contract (the
bank would agree to close the deal as a market maker, charging fees
for the new trade).

Because of this natural selection, a bank is mostly in the receivables
in its derivative business with corporates.
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Discussion (Cont’d)

Hence, the tail-fluctuations of its loss process L are mostly driven by
the counterparty default events rather than by the volatility of the
underlying market exposure.

Thus, working with a deterministic term structure approximation
ES(1)(t) of economic capital is acceptable.
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Discussion (Cont’d)

If, by exception, the derivative portfolio of a bank is mostly in the
payables, then all XVA numbers are small and matter much less
anyway
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Symmetric FVA

A similar argument is sometimes used to defend a symmetric FVA (or
SFVA) approach, such as, instead of FVA in (65):

SFVAt = Et

∫ τ̄

t
β−1
t βs λ̃s

(∑
i

J isP
i
s

)
ds , 0 ≤ t ≤ τ̄ , (69)

for some VM blended funding spread λ̃t
cf. Piterbarg (2010), Burgard and Kjaer (2013b), and the discussion in
Andersen, Duffie, and Song (2017).

From the FCA/FBA accounting and funds transfer pricing industry

standard to an FVA/FDA accounting and pricing framework.
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This corresponds to an FCA/FBA pricing policy, as opposed to our
FVA/FDA approach.

The explicit, linear SFVA formula can be implemented by standard
(non-nested) Monte Carlo simulations.
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For a suitably chosen blended spread λ̃t , the equation yields
reasonable results in the case of a typical bank portfolio dominated by
unsecured receivables.

However, in the case of a portfolio dominated by unsecured payables,
this equation could yield a negative FVA, i.e. an FVA benefit,
proportional to the own credit spread of the bank, which is not
acceptable from a regulatory point of view.

198 / 244



Asymmetric FVA is more rigorous and has been considered in
Albanese and Andersen (2014), Albanese, Andersen, and Iabichino
(2015), Crépey (2015), Crépey and Song (2016), Brigo and
Pallavicini (2014), Bielecki and Rutkowski (2015), and Bichuch,
Capponi, and Sturm (2017).

In this work, we improve upon such asymmetric FVA models by
accounting for the funding source provided by economic capital
(cf. (65)).
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We present two XVA case studies on fixed-income and
foreign-exchange portfolios. Toward this end we use the market and
credit portfolio models of Albanese, Bellaj, Gimonet, and Pietronero
(2011) calibrated to the relevant market data.

We use nested simulation with primary scenarios and secondary
scenarios generated under the risk neutral measure calibrated to
derivative data using broker datasets for derivative market data.
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All the computations are run using a 4-socket server for Monte Carlo
simulations, Nvidia GPUs for algebraic calculations and Global
Valuation Esther as simulation software. Using this super-computer
and GPU technology the whole calculation takes a few minutes for
building the models, followed by a nested simulation time in the order
of about an hour for processing a billion scenarios on a real-life bank
portfolio.
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Toy Portfolio

We first consider a portfolio of ten USD currency fixed-income swaps on
the date of 11 January 2016 (without initial margins, i.e. for IM = 0).
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Toy portfolio of swaps (the nominal of
each swap is $104)

Mat. Receiver Rate Payer Rate i

10y Par 6M LIBOR 3M 3

10y LIBOR 3M Par 6M 2

5y Par 6M LIBOR 3M 2

5y LIBOR 3M Par 6M 3

30y Par 6M LIBOR 3M 2

30y LIBOR 3M Par 6M 1

2y Par 6M LIBOR 3M 1

2y LIBOR 3M Par 6M 4

15y Par 6M LIBOR 3M 1

15y LIBOR 3M Par 6M 4

Credit curves of the bank and
its four conterparties
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Introducing financial contracts one after the other in one or the reverse
order in a portfolio at time 0 results in the same aggregated incremental
FTP amounts for the bank, equal to the “time 0 portfolio FTP”, but in
different FTPs for each given contract and counterparty.
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Toy portfolio. Left: XVA values and standard relative errors (SE).
Right: Respective impacts when Swaps 5 and 9 are added last in the
portfolio.

$Value SE

UCVA0 471.23 0.46%

FVA
(0)
0 73.87 1.06%

FVA0 3.87 4.3%

KVA0 668.83 N/A

FTDCVA0 372.22 0.46%

FTDDVA0 335.94 0.51%

Swap 5 Swap 9

∆UCVA0 155.46 -27.17

∆FVA
(0)
0 -85.28 -8.81

∆FVA0 -80.13 -5.80

∆KVA0 127.54 -52.85

∆FTDCVA0 98.49 -23.83

∆FTDDVA0 122.91 -80.13
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Representative Portfolio

We now consider a representative portfolio with about 2,000
counterparties, 100,000 fixed income trades including swaps, swaptions,
FX options, inflation swaps and CDS trades (IM = 0).

XVA $Value

UCVA0 242 M

FVA
(0)
0 126 M

FVA0 62 M

KVA0 275 M

FTDCVA 194 M

FTDDVA 166 M
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Left: FVA blended funding curve computed from the ground up based
on capital projections.
Right: Term structure of economic capital compared with the term
structure of KVA.

Return to FVA Return to KVA Return to SCR
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CVA and FVA: Comparison with the BK Approach

Burgard and Kjaer (2011b, 2013a, 2017) repeatedly (and rightfully) say
that only pre-default cash-flows matter to shareholders. For instance,
quoting the first paragraph in the second reference:

“Some authors have considered cases where the post-default cash
flows on the funding leg are disregarded but not the ones on the
derivative. But it is not clear why some post default cashflows
should be disregarded but not others”,

to
which we subscribe fully.
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The introduction of their now classical “(funding) strategy I :
semi-replication with no shortfall at own default” (see e.g. (Burgard
and Kjaer 2013a, Section 3.2)) seems to be in line with the idea,
which we also agree with (see Assumption 7 and the comment
following it), that a shortfall of the bank at its own default does not
make much sense and should be excluded from a model.
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However:

Being rigorous with the first principle above implies that the valuation
jump of the portfolio at the own default of the bank should be
disregarded in the shareholder cash flow stream. But their
computations do not exclude this cash flow;

We would not say that they really exclude shortfall at bank own
default.
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Reviewing the funding strategies in Burgard and Kjaer (2017, Section
4), considering for simplicity the special case with sB = 0 there, i.e. a
pure CVA setup:

Their strategy III, claimed to imply a unilateral CVA as per Albanese
and Andersen (2014) (i.e. (50)–(51) as made more precise here),
does in fact not.

Duly accounting for the transfer of the residual reserve capital from
shareholders to creditors at the bank default time τ (cf. (22)), the
funding strategy that does so is simply funding and investing at r = 0
(having assumed sB = 0).
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Reviewing the funding strategies in Burgard and Kjaer (2017, Section
4) (Cont’d):

Their respective strategies I and II not only do not imply the claimed
XVA formulas.

Besides, they do not satisfy the second part in Assumption 7.

Unless in their notation V ≥ 0, respectively V̂ ≥ 0, i.e. in our notation
MtM ≥ 0, respectively MtM− CVA ≥ 0.
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KVA: Comparison with the GK Approach

In Green et al. (2014) and as also discussed in some theoretical
actuarial literature (see Salzmann and Wüthrich (2010, Section 4.4)),
the KVA is treated as a liability.
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Viewing the KVA as a liability, hence non loss-absorbing, results in
EC = SCR = ES (as opposed to (27) in our setup), and therefore

hẼS instead of h(ẼC− K̃VA) in the KVA equation (29).

This implies r instead of (r + h) as discount rate in the KVA formula
(42) (where KVA′ and KVA coincide before τ) or its bilateral analog
(59).
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Moreover, if the KVA is viewed as a liability, forward starting
one-year-ahead fluctuations of the KVA must be simulated for
economic capital calculation. This makes it intractable numerically,
unless one switches from economic capital to regulatory capital in the
KVA equation.

Using regulatory instead of economic capital is then motivated by
practical considerations but is less self-consistent. It loses the
connection, established from shareholder-optimization principles in
the above, whereby the correct KVA input is the CA desk loss process
L = Lca as per (35).
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It also leads to unachievement of the corresponding XVA theory:
Viewing the KVA as a liability means that KVA payments contribute
to the trading profit-and-loss of the bank. But dividends are meant to
remunerate risk, i.e. unhedged losses. Hence the XVA loop does not
close.
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In addition, Green et al. (2014) derive their KVA equation in a
replication framework, whereas the main motivation for capital
requirements, such as CVA reserve capital to be held against
counterparty default losses, is that credit markets are incomplete and
hedging is not possible.

A KVA equation similar to the one in Green et al. (2014) is derived in
an expectation setup in Elouerkhaoui (2016).
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Counterparty Risk,

with its funding and capital implications, is at the origin of all XVAs:

CVA Credit valuation adjustment

The value you lose due to the defaultability of your
counterparties

DVA Debit valuation adjustment

The value your counterparties lose due to your own
defaultability
The symmetric companion of the CVA
The value you gain due to your own defaultability?
(2011 DVA debate)
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FVA Funding valuation adjustment

Cost of funding variation and initial margin: MVA
merged with FVA in these slides to spare one “VA”
But what about the Modigliani-Miller theorem??
(2013 FVA debate )

DVA2 Funding windfall benefit at own default

KVA Cost of capital

The price for the bank of having to reserve capital at
risk (ongoing KVA debate )
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CVA−DVA+FVA−DVA2 [+KVA]: The XVA debates

FVA and DVA2 cash flows NPV-match each other

→ CVA-DVA yields the fair, symmetrical adjustment between two
counterparties of equal bargaining power

But “Contra-liabilities” DVA and DVA2 are only a benefit to the
creditors of the bank, whereas only the interest of shareholders
matters in bank managerial decisions

→ DVA and DVA2 should be ignored in entry prices

→ CVA+FVA
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KVA and Funds Transfer Price

Moreover, counterparty default losses cannot be replicated and a bank
must reserve shareholder capital to cope with residual risk

Shareholders that put capital at risk deserve a remuneration at a
hurdle rate, which corresponds to the KVA

→ FTP=CVA+FVA+KVA
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Connection with the Modigliani and Miller (1958) Theorem

The Modigliani-Miller theorem includes two key assumptions.

One is that, as a consequence of trading, total wealth is conserved.
The second assumption is that markets are complete.

In our setup we keep the wealth conservation hypothesis but we lift
the completeness.

Hence the conclusion of the theorem, according to which the fair
valuation of counterparty risk to the bank as a whole should not
depend on its funding policy, is preserved.
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However, due to the incompleteness of counterparty risk, derivatives
trigger wealths transfers from bank shareholders to creditors

The interests of bank shareholders and creditors are not aligned with
each other

Which, in the case of a market maker such as a bank, can only be
compensated by add-on to entry prices

226 / 244



More precisely, quoting Villamil (2008):

In fact what is currently understood as the Modigliani-Miller
Proposition comprises four distinct results from a series of
papers (1958, 1961, 1963). The first proposition establishes
that under certain conditions, a firms debt-equity ratio does
not affect its market value. The second proposition establishes
that a firms leverage has no effect on its weighted average
cost of capital (i.e., the cost of equity capital is a linear
function of the debt-equity ratio). The third proposition estab-
lishes that firm market value is independent of its dividend policy.
The fourth proposition establishes that equity-holders are indifferent

about the firms financial policy.
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The proof of the fourth proposition is based on the ability of
shareholders to redeem all debt of the bank in order to prevent wealth
transfers to creditors.
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However:

Redeeming the debt means hedging its own default, which is not
possible for a bank.

Banks are special firms in that they are intrinsically leveraged and
cannot be transformed into a pure equity entity.
This is also related to an argument of scale.

Banks liabilities are overwhelming with respect to all other wealth
numbers.
It has been estimated that if all European banks were to be required to
have capital equal to a third of liabilities, the total capitalization of
banks would be greater than the total capitalization of the entire equity
market as we know it today.

229 / 244



Hence:

Shareholders cannot redeem all debt of the bank.

The assumption of the fourth proposition of the Modigliani-Miller

theorem does not apply to a bank.
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Quoting the conclusion of Modigliani and Miller (1958)

“These and other drastic simplifications have
been necessary in order to come to grips
with the problem at all. Having served their

purpose they can now be relaxed in the direction of greater realism

and relevance, a task in which we hope others interested in this
area will wish to share.”
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And Miller (1988) in The Modigliani-Miller Proposition after Thirty
Years

“Showing what doesn’t matter can also show, by implication,

what does. ”
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XVAs represent a switch of paradigm in derivative
management

From hedging to balance-sheet optimization

Derivative portfolio optimization for a market maker

Fixes prices, not quantities!
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Theoretical Issues

Derivative portfolio optimization for a market maker

Endogenizing the hurdle rate h by introducing competition between
banks

CCP auction price discovery process

XVA model risk / uncertainty quantification issue

“Prudent valuation” through “Additional valuation adjustment” (AVA)
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Algorithmic and computational challenges

Heavy computations at the portfolio level

Yet needs accuracy so that incremental XVA computations are not in
the numerical noise of the machinery

Using GPU programming and nested Monte Carlo for portfolio-wide
conditional risk measure computations

Using machine learning techniques for solving the resulting
high-dimensional non-convex XVA optimization problems

Multi-level MC, parareal methods, quasi-regression schemes,..

236 / 244



Albanese, C. and L. Andersen (2014).
Accounting for OTC derivatives: Funding adjustments and the

re-hypothecation option.
Working paper available at

https://papers.ssrn.com/sol3/papers.cfm?abstract id=2482955.

Albanese, C., L. Andersen, and S. Iabichino (2015).
FVA: Accounting and risk management.
Risk Magazine, February 64–68.

Albanese, C., T. Bellaj, G. Gimonet, and G. Pietronero (2011).
Coherent global market simulations and securitization measures for

counterparty credit risk.
Quantitative Finance 11(1), 1–20.

Albanese, C., S. Caenazzo, and S. Crépey (2017).
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