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Point of view

• Start from scratch

• Broad audience

• Overview

• Methodologies

• Application-oriented

• Channels: 1. Slides; 2. Speech; 3. Board
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Outline
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3. More
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Game Theory: Fundamentals and Application to Wireless

and Electricity Networks

0. Introduction
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Game Theory and

Game Theory and Optimization...
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Cambridge University, UK, winter 1979
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A couple of details about one of the experiments

• 33 ducks.

• Two observers/sites 20 m apart.

• Site 1: 12 items/min.

• Site 2: 24 items/min.
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Observations

8



Ducks become drivers
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Stuttgart, Germany, 1969 [Braess 1969]

Input flow = 6

f(x) = x+ 50, g(x) = 10x

h(x) = +∞ h(x) = x+ 10

83 min 92 min

(x1, x2) = (3, 3) (x′
1, x

′
2, x

′
3) = (4, 2, 2)
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Observing Braess-type instances

In the real life

• Stuttgart 1969: investments into the road network ⇒ traffic ց. Section
of newly-built road closed ⇒ traffic ր [Knödel 1969].

• NYC 1990: closing of 42nd street in New York City ⇒ amount of

congestion in the area ր [New York Times 1990].

• Seoul 2003: one of the three tunnels shut down to restore a river and a
park ⇒ traffic flow improved.

In many other situations: Wireless networks [Cohen and Kelly

1990][Perlaza et al 2009], energy networks [Baillieul et al 2015], ...
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About the paradox

Trivial inequality in standard optimization

max
x∈A

f(x) ≤ max
x∈B

f(x)

when A ⊆ B.

This inequality does not hold anymore ⇐ (partial control +

multiple utility functions)

x = (x1, ..., xK).
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Why only partial control?

Complexity issues. ① Smart grid example: charging instant

selection 48 time-slots and 16 vehicles 4816 > 3216 > 1021.
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Why only partial control?

Complexity issues. ② Wireless example: channel selection

with 16 channels and 16 users 1616 = 264 > 1018.
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Why multiple utility functions?

• Main function decomposition,

• several performance criteria,

• several decision-makers, ...
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Let’s recap. DO-GT-MOO

◮ Distributed optimization (DO): typically about partial control

with one DM.

◮ Multi-objective optimization (MOO): typically about one DM

with full control + several objectives [Björnson et al 2015].

◮ ”Non-cooperative” game theory (GT): typically about several

(virtual/real) DMs with partial control + several objectives.

What is the meaning of optimality then?
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Typical issues in scenarios with partial control and

multiple objectives

◮ Which solution concept to consider as a possible game

outcome?

◮ Does it exist for the game of interest? Is it unique?

◮ Is it efficient? How do we measure efficiency? How do we

improve it?

◮ NE: What is it? Existence? Uniqueness? Efficiency?

Existence of a convergent and implementable algorithm?
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What is a game exactly?

Main mathematical representations

• Strategic or normal form games.

• Extensive form games.

• Coalitional form games.
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Cheap map of the game theory jungle

Direct game 

theory

Strategic 

form

Coalition 

form

Approach:

Mathematical 

representation:

NE CE NBS Core
Shapley 

value

Solution 

concept:

Other forms (extensive form, 

state-space representation, etc.)

Reverse game theory 

(mechanism design)

Existence, uniqueness, characterization, efficiency, ...
Solution 

analysis:

BRD FP RL RM Consensus
Merge-and-

split

Algorithm 

design:

Sec. II Sec. IV

Sec. VSec. III

not addressed 

in this paper

[Bacci et al 2016]
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Game Theory: Fundamentals and Application to Wireless

and Electricity Networks

1. Strategic form games
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Strategic form

Game ≡ triplet:

G = (K, {Si}i∈K, {ui}i∈K) .

◮ K = {1, ...,K} is the set of players.

◮ Si is the set of strategies for player i.

◮ Player i’s payoff/utility function:

ui : S1 × ...× Si × ...× SK → R

(s1, ..., si, ...sK)︸ ︷︷ ︸
s : strategy profile

7→ ui(si, s−i) .
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Remark on the strategic form

∃ a more general form:

G = (K, {Si}i∈K,�i)
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Existence of a utility function (1/2)

Proposition (Debreu 1954): there exist no utility functions for lexicographic

ordering on R
2.

Proposition: there exists a utility function for every transitive and complete ordering on

any countable set:

• completeness: x � y or y � x or both;

• transitivity: “x � y and y � z” ⇒ x � z.

Proposition (Debreu 1954): there exists a utility function for every transitive, complete,

and continuous ordering on a continuous set X ⊂ R
N provided X is non-empty, closed,

and connected:

• continuity: B(x) = {y ∈ X : x � y} and W(x) = {y ∈ X : y � x} are closed.

Remark (connectedness): X is said to be disconnected if it is the union of two disjoint

nonempty open sets. Otherwise, X is said to be connected.
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Existence of a utility function (2/2)

Theorem (preferences over lotteries): the complete and transitive preference ordering

� over ∆(S) admits a utility function (expected utility) if and only if � meets the VNM

axioms of independence and continuity:

• VNM independence axiom: x ≻ y ⇒ (1 − µ)x + µz ≻ (1 − µ)y + µz, µ ∈]0, 1[;

• VNM continuity axiom: x ≻ y ≻ z ⇒∃µ ∈]0, 1[, (1−µ)x+µz ≻ y ≻ (1−µ)z+µx.

Remarks: the Allais paradox (1953), voting procedures.
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Prisoner’s dilemma under strategic form

Market power terminology [Singh 2009]:

◮ Players K = {G1,G2}.

◮ Strategies are merely actions S1 = S2 = {low,high}.

◮ Utility function for Player 1:

u1(s1, s2) =

∣∣∣∣∣∣∣∣∣

0 if (s1, s2) = (low,high)

1 if (s1, s2) = (high,high)

3 if (s1, s2) = (low, low)

4 if (s1, s2) = (high, low)

.
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Generator’s dilemma under matrix form

G1, G2 high price low price

high price (3, 3) (0, 4)

low price (4, 0) (1, 1)
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A fundamental solution concept: The Nash equilibrium

(NE)

Pure Nash equilibrium. Strategy vector/profile such that

∀i ∈ K, ∀si ∈ Si, ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i).

Mixed Nash equilibrium . . .
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Mixed strategies
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Mixed strategies
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Mixed strategies and mixed NE

◮ Mixed strategies πi ∈ ∆(Si) with

∆(Si) =



x ∈ R|Si| : xj ≥ 0,

∑

j

xj = 1





◮ Expected utility

ũi(π1, ..., πK) = Eπ1⊗...⊗πK
[ui(s1, ..., sK)] .

◮ Mixed Nash equilibrium

∀i ∈ K,∀πi ∈ ∆(Si), ũi(π
∗
i , π

∗
−i) ≥ ũi(πi, π

∗
−i).
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Three strengths of the Nash equilibrium

◮ Stability property (once you are there).

◮ Dynamical property (to get there).

◮ It “always” exists.
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Dynamical property: Special case

Best-response

BRi(s−i) = argmax
si∈Si

ui(si, s−i).
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Illustration for continuous sets [Cournot 1838]

 

 

BR  

BR  

= 0 

= 3 

= 2 

= 1 

= 4 
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The sequential best-response dynamics (1/3)

G1, G2 high low

high (3, 3) (0, 4)

low (4, 0) (1, 1)

34



The sequential best-response dynamics (2/3)

G1, G2 high low

high (3, 3) (0, 4)

low (4, 0) (1, 1)
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The sequential best-response dynamics (3/3)

G1, G2 high low

high (3, 3) (0, 4)

low (4, 0) (1, 1)
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Nash equilibrium characterization

A strategy profile s∗ is an NE of G iff:

s∗i ∈ BRi(s
∗
−i) ⇔ s∗ ∈ BR(s∗)

where

BR : S → S
s 7→ BR1(s−1)× BR2(s−2)× ...× BRK(s−K)
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Nash equilibrium existence (finite games)

Nash existence theorem [Nash 1950].

S = S1× ...×SK is finite. Then, there is a mixed NE.

Kuhn existence theorem [Kuhn 1953]. Every

finite game of perfect information has at least one

pure NE.
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Nash equilibrium existence (continuous strategy sets)

Glicksberg theorem [Glicksberg 1952]. Si

compact, ui continuous in s. Then, there is a mixed

NE.

Debreu-Fan-Glicksberg theorem [Debreu, Fan,

Glicksberg 1952]. Above assumptions & ui

quasiconcave in si. Then, there exists a pure NE.
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More about the existence of NE

[Lasaulce & Tembine 2011]
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Simplified methodology for studying NE

Static games Dynamic games

Existence Existence

Uniqueness Utility region characterization ; uniqueness

Efficiency Design of strategies
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Uniqueness (concave games)

Rosen theorem [Rosen 1965]

◮ Si compact convex.

◮ ui continuous in s.

◮ ui concave in si.

◮ Diagonally strict concavity:

∃r > 0, ∀s 6= s′, [s′ − s]
T
[γr(s)− γr(s

′)] > 0

where

γr(s) =

(
r1
∂u1

∂s1
(s), ..., rK

∂uK

∂sK
(s)

)
.

Then, there is a unique pure NE.
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Concave game example

Utility:

u1(A1,A2) = E log
∣∣∣I +X1A1X

H
1 +X2A2X

H
2

∣∣∣−E log
∣∣∣I +X2A2X

H
2

∣∣∣

Action space:

A1 =
{
A1 ≥ 0,AH

1 = A1,TrA1 ≤ a
}

1. DSC is met (trace inequality); 2. NE determination (random

matrix theory) [Belmega et al 2011]
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Uniqueness (standard games)

Definition (standard functions) A vector function

g : RK
+ → RK

+ is standard if we have:

◮ Monotonicity: ∀(x, x′) ∈ R2K
+ , x ≤ x′ ⇒ g(x) ≤ g(x′).

◮ Scalability: ∀α > 1, ∀x ∈ RK
+ , g(αx) < αg(x).

Theorem [Yates 1995] If BR = (BR1, ...,BRK) is standard,

then there is a unique pure NE.

Remark: BR intersection.
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More about the uniqueness of NE

Is there a

unique NE?

PG?

Apply
[MS96]

SG?

CG?

BRs?

Prove

Apply
[Yat95]

Not
treated

Apply
[Ros65]

aBRs

Yes

Yes

Yes

Yes

No

No

No

No

[Lasaulce & Tembine 2011]

45



Obviously the Nash equilibrium has also drawbacks

• Efficiency: typical consequence of partial control

• Correlation: mixed NE assume independent lotteries

• Strategic stability: only stable to single deviations

• Not fully adapted to QoS constraints

For more drawbacks see [Perlaza & Lasaulce 2014]
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Solution concepts for strategic/extensive form games

• Pure/mixed Nash equilibrium, Wardrop equilibrium,

• correlated equilibrium, coarse correlated equilibrium,

• N− strong equilibrium,

• Nash equilibrium refinements : trembling hand perfect

equilibrium, proper equilibrium,

• ǫ−Nash equilibrium,

• logit equilibrium,
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Solution concepts for strategic/extensive form games.

Continued

• maxmin strategy profiles,

• Bayesian equilibrium,

• evolutionary stable solution,

• satisfaction equilibrium, generalized Nash equilibrium,

• Stackelberg equilibrium,

• Pareto optimum, social optimum,

• bargaining solutions (Nash, egalitarian, Kalai-Smorodinsky,

etc.),...

48



How to measure efficiency: Pareto efficiency

Definition (Pareto-dominance): s Pareto-dominates s′ if:

∀i ∈ K, ui(s) ≥ ui(s
′),

with strict inequality for at least one player.

Definition (Pareto-optimum): s∗ is Pareto-optimal (-efficient)

if it is dominated by no other profile.
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Illustration of Pareto optimality
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How to measure efficiency : Social welfare

Definition (social welfare): the social welfare of a game is

defined as:

w =

K∑

i=1

ui.

Definition (social optimum): an SO is a strategy profile

which maximizes w.

Remark: An SO is a PO.
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How to measure efficiency : PoA and PoS

Definition (price of anarchy):

PoA =
max
s∈S

w(s)

min
s∗∈SNE

w(s∗)

where SNE is the set of NE of the game.

Definition (price of stability):

PoS =
max
s∈S

w(s)

max
s∗∈SNE

w(s∗)
.

[Papadimitriou 2001] [Anshelevich et al 2004].
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Example: PoA in non-atomic routing games

The network cost is defined by:

C(x) =
∑

r∈R

cr(xr)xr

Theorem. For polynomials costs of maximum degree d, the

PoA is bounded as:

degree 1 2 3 4 ... d

PoA 4
3 1.626 1.896 2.151 ... Ω( d

ln(d))

[Correa et al 2005].
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How to improve efficiency

Possible approaches (non-exhaustive list)

◮ Introduce pricing.

◮ Introduce hierarchy.

◮ Introduce coordination (e.g., correlated equilibrium).

◮ Introduce cooperation (bargaining, cooperation plan in

dynamic games, agreement/contract in coalitional games, ...).
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How to improve efficiency (pricing). Example

Scenario

BS1 
BS2 

S 

MS1 

K >> 1 
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Example (utilities)

Utility of player k when connecting to base station s

υk,s(x) = log

[
1 +

1

as + bxs

]
,

as > 0, b > 0.
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Example (illustration)

Social welfare for S = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Fraction of users connected to base station 1

S
oc

ia
l w

el
fa

re

Social optimum

Nash equilibrium

PoA = 1.23
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Example (pricing and modified game)

Let nk be the data volume to be transferred:

τk,s(x) =
nk

υk,s(x)
.

Cost function of the new game:

ck,s(x) = p(τk,s(x)) + βs.

Parameter adjustment → desired solution.
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How to improve efficiency: introduce coordination

through correlated equilibria

Definition (correlated equilibrium) Let σk : Ak → Ak be a

mapping. Then qCE is a CE if

∀k,∀σk,∑

a∈A

qCE(ak, a−k)uk(ak, a−k) ≥
∑

a∈A

qCE(ak, a−k)uk(σk(ak), a−k),

Example (CR coordination game)

Low High

High (5 , 1 ) (0, 0)

Low (4, 4 ) (1 , 5 )
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Set of correlated equilibria

60



Nash bargaining solution

Definition The NBS is the unique solution of

max
(u1,u2) ∈ U

(u1 − λ1)(u2 − λ2)

subject to u1 ≥ λ1, u2 ≥ λ2

where U is the game feasible utility set.
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Illustration of the NBS
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Game Theory: Fundamentals and Application to Wireless

and Electricity Networks

2. Dynamic games
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Dynamic games

Typical ingredients

◮ Several stages.

◮ Notions of game history, action plans.

◮ Average/long-term utility.

◮ The stage utility is state-dependent (ui(a, x)).

Informal definition. A game in which at least one player can

use a strategy depending on previously played actions. No

universal definition, only special classes.
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Important classes of dynamic games

◮ Repeated games (∅).

◮ Stochastic games (MDP).

◮ Differential/difference games (OC).

◮ Mean-field games.

◮ Evolutionary games.
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Repeated games with perfect monitoring

Definition (game history): ∀t ≥ 1,

ht = (a(1), ..., a(t − 1)) ∈ Ht where Ht = At−1.

Definition (pure strategy): A pure strategy for player i ∈ K is

a sequence (τi,t)t≥1 with

τi,t : Ht → Ai

ht 7→ ai(t)

Definition (behavior strategy): A behavior strategy for player

i ∈ K is a sequence (τ̃i,t)t≥1 with

τ̃i,t : Ht → ∆(Ai)

ht 7→ πi(t).
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Repeated games utilities

Finitely repeated games. Let τ = (τ1, ..., τK) and T ≥ 1:

vTi (τ) =
1

T

T∑

t=1

ui(a(t)).

Infinitely repeated games:

v∞i (τ) = lim
T→+∞

1

T

T∑

t=1

ui(a(t)).

Discounted repeated games. Let 0 < λ < 1 be the discount
factor:

vλi (τ) =
+∞∑

t=1

λ(1− λ)t−1ui(a(t)).
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Equilibria in repeated games

Definition (equilibrium strategies). A joint strategy τ∗

supports an equilibrium of the repeated game(
K, {Ti}i∈K, {v

y
i }i∈K

)
, y ∈ {T,∞, λ}, if:

∀i ∈ K,∀τ ′i , v
y
i (τ

∗) ≥ v
y
i (τ

′
i , τ

∗
−i).

Remark (equilibrium analysis): Existence for finite games,

compact games, static games with a Nash equilibrium. In

contrast with static games, there can be many equilibria.
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Equilibrium characterization for discounted repeated

games with perfect monitoring

Folk theorem. The set of equilibrium utilities when λ → 0 is

given by

E0 = IR(G) ∩ co (U(G))

where:

• IR(G) = {u ∈ RK,∀i ∈ K, ui ≥ min
π−i

max
πi

ũi(π)};

• U(G) = {u′ ∈ RK : ∃a, u(a) = u′}.
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Illustration

Repeated prisoner’s dilemma
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Relaxing the perfect monitoring assumption:

2−connected graphs

Definition (strongly connected graph) A graph Γ is said to

be strongly connected if for each pair of vertices (i, j), there is

a directed path from i to j.

Definition (2−connected graph) The graph Γ is 2−

connected if, for any vertex i, Γ\{i} is strongly connected.

Theorem The following two assertions are equivalent:

(i) the observation graph of the infinitely repeated games is

2−connected;

(ii) E∞ = IR(G) ∩ co (U(G)).

[Renault and Tomala 1998]
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Case study #1: Wireless power control

◮ Static game formulation.

◮ A repeated game formulation.
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Near far effect
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A wireless power control scenario
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Modeling the problem as a static game [Goodman &

Mandayam 2000]

Time slots

g(1)

a(1)

g(2)

a(2)

g(3)

a(3)

...

...

75



Modeling the problem as a static game. Continued

◮ Set of players : K = {1, ...,K}.

◮ Set of actions : Ai = [0, Amax].

◮ Utilities : energy-efficiency;

ui(ai, a−i) =
benefit

cost
=

f(βi)

ai

where

βi =
giai

1 +
∑

j 6=i

gjaj
.
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Properties assumed for f

• f non-negative, continuous, and non-decreasing.

• f sigmoidal.

• lim
x→0

f(x)

x
= 0, lim

x→+∞
f(x) = const ≤ 1, 0 ≤ f(x) ≤ 1.
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Nash equilibrium analysis (1/3)

Existence
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Nash equilibrium analysis (1/3)

Existence

• Ai = [0, Amax
i ]: compact, convex.

• ui is continuous w.r.t. a = (a1, ..., aK).

• ui is quasi-concave w.r.t. ai (f(x) sigmoidal ⇒ f(x)
x

is quasi-

concave).
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Nash equilibrium analysis (2/3)

Uniqueness
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Nash equilibrium analysis (2/3)

Uniqueness

The best response is a function and

∀i ∈ K, BRi(a−i) =
β

gi


1 +

∑

j 6=i

gjaj




with β⋆f ′(β) = f(β).

The game is standard:

• Monotonicity: a′ ≤ a ⇒ BR(a′) ≤ BR(a).

• Scalability: ∀α > 1, BR(αa) < αBR(a).
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Nash equilibrium analysis (3/3)

Determination (interior point)

Solve the system of equations ∂ui
∂ai

(a) = 0, which leads to:

∀i ∈ {1, ...,K}, a⋆i =
1

gi

β

1− (K − 1)β
.

Problem Generally inefficient solution. How to improve

efficiency?
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Introduce pricing

Main points

◮ New utility:

ũi(a) = ui(a)− αai, α ≥ 0.

◮ Good news. The new NE profile Pareto-dominates a⋆.

◮ Bad news. Uniqueness not guaranteed, convergence under

some specific assumption. Global state information is

required.

[Saraydar et al 2002].
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Repeated game formulation

Strategic form

Gm = (K, {Ti}i , {v
m
i }i) with m ∈ {T, λ}.

If m = T :

vTi =
1

T

T∑

t=1

ui(a(t)).

If m = λ ∈ (0, 1]:

vλi =
+∞∑

t=1

λ(1− λ)t−1ui(a(t)).

[Le Treust and Lasaulce 2010]

84



Observation

Public signal choice

ω(t) , 1 +
K∑

i=1

giai(t) = ai(t)gi ×
βi(t) + 1

βi(t)
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Strategic form. Continued

Pure strategies

τi,t : (Ai × Ω)
t−1 → [0, Amax

i ]

(at−1
i , ωt−1) 7→ ai(t)

where

• at−1
i = (ai(1), ai(2), ..., ai(t− 1));

• ωt−1 = (ω(1), ω(2), ..., ω(t − 1));

• Ω =

[
1, 1 +

K∑

i=1

gmax
i Amax

i

]
.
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An interesting Nash equilibrium of Gm, m = T

Proposed equilibrium point

τ∗i,t =

∣∣∣∣∣∣∣

aOP
i if t ∈ {1, 2, . . . , T − t0} and ω(t) = 1−γ

1−(K−1)γ

a⋆i if t ∈ {T − t0 + 1, . . . , T} and ω(t) = 1−γ
1−(K−1)γ

Amax
i if ω(t) 6= 1−γ

1−(K−1)γ

where γ[1− (K − 1)γ]f ′(γ)− f(γ) = 0 and

∀i ∈ K, pOP
i =

1

gi

γ

1− (K − 1)γ
.
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Comments

◮ To obtain OP, impose gjaj = const.

◮ t0 comes from the equilibrium condition:

Let t0 =




f(α)
α

− f(β)[1−(K−1)β]
β

f(α)[1−(K−1)α]
α

− f(α)

α
(
1+

∑
j 6=i gjP

max
j

)




◮ Local knowledge. Pareto domination of the NE of G. Good

in terms of social welfare.
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Time-varying parameter case

◮ Repeated game methodology holds (worst-case scenario).

For instance, t0 becomes:

t0 =




gmax
i

gmin
i

f(α)
α

− f(β)[1−(K−1)β]
β

f(α)[1−(K−1)α]
α

−

gmax
i

gmin
i

f(α)

α
(∑

j 6=iP
max
j

gmin
j

+1
)




.

◮ Stochastic game formulation: i.i.d. state, vTi = Eg

[
vTi (.)

]

• good: better performance;

• bad: more information is needed (parameter distribution).
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Illustration (fixed parameter)

90



Illustration (time-varying parameter)

[Mériaux et al 2011]
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Observations

◮ Stochastic game case = most general case + most efficient

policies.

◮ Importance of characterizing equilibrium points.
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Reminders
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Feasible set characterization for stochastic games with

i.i.d. common state

◮ Stage utilities: ui(a0, a1, ..., aK); ai ∈ Ai, |Ai| < ∞

◮ Observation/signal structure: k(si|a0), Γ(yi|a0, a1, ..., aK);

|Si| < ∞, |Yi| < ∞

◮ Long-term utilities:

v∞i (τ1, ..., τK) = lim
T→+∞

1

T

T∑

t=1

E [ui(A0(t), A1(t), ..., AK(t))]

References: [Larrousse and Lasaulce 2013][Larrousse et al

2015][Larrousse et al 2018]
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Stage game description (example)

◮ Decision-makers: {1, 2}; 0 ≡ nature.

◮ Action sets: A0 = A1 = A2 = {0, 1}.

◮ Stage utility function:

u(a0, a1, a2) =

∣∣∣∣
1 if a0 = a1 = a2
0 otherwise

.
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Observation structure

◮ Stages: t ∈ {1, 2, ..., T}, T ≥ 2.

◮ DM 1 knows aT0 = (a0(1), a0(2), ..., a0(T )) and has perfect

recall.

◮ ∀t ≥ 2, DM 2 knows at0 = (a0(1), ..., a0(t− 1)), perfectly

monitors DM 1’s actions at1 = (a1(1), ..., a1(t− 1)), and has

perfect recall.

Question: To what extent can they coordinate?

E

[
1

T

T∑

t=1

u(A0(t), A1(t), A2(t))

]
= E

[
1

T

T∑

t=1

ut

]
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Trivial upper bound

Centralized case

E

[
1

T

T∑

t=1

ut

]
≤ E

[
1

T

T∑

t=1

max
(a1,a2)

u(a0(t), a1, a2)

]
= 1.
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Average utility

◮ Scheme 1:

| | | | | |a2

| | | | | |a1

| | | | | |a0
0 0 1 0 1 1 · · ·

Match nature0 0 1 0 1 1 · · ·

1 1 1 1 1 1 · · ·

◮ Average utility

E

[
1

T

T∑

t=1

ut

]
→

1

2
= 0.5. for A0 ∼ B

(
1

2

)
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Average utility

◮ Scheme 2:

| | |x2

| | |x1

| | |x0
0 0 1 0 1 1 · · ·

0 0 0 0 1 1 · · ·

0 0 0 0 0 1 · · ·

◮ Average utility:

E

[
1

T

T∑

t=1

ut

]
→

5

8
= 0.625.
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Maximal average utility

E

[
1

T

T∑

t=1

ut

]
→ γ⋆ ≃ 0.81

where

γ⋆ is the solution of
h(x)− 1

x− 1
= log2 3

and h(x) = −x log2 x− (1− x) log2(1− x).
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Strategies

◮ Causal case:

τi,t : St
i × Yt−1

i → Ai

(si(1), ..., si(t), yi(1), ..., yi(t− 1)) 7→ ai(t)

◮ Noncausal case:

τi,t : ST
i × Yt−1

i → Ai

(si(1), ..., si(T ), yi(1), ..., yi(t− 1)) 7→ ai(t)
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Important observation
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Important observation

v∞i (τ1, ..., τK)

= lim
T→+∞

1

T

T∑

t=1

E [ui(A0(t), A1(t), ..., AK(t))]

= lim
T→+∞

1

T

T∑

t=1

∑

a0,...,aK

PA0(t),...,AK(t)(a0, ..., aK)ui(a0, ...aK)

=
∑

a0,...,aK

ui(a0, ...aK) lim
T→+∞

1

T

T∑

t=1

PA0(t),...,AK(t)(a0, ..., aK)
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Implementable coordination

Definition Q(a0, a1, ..., aK) is implementable if ∃ (τ1, ..., τK) s.t.

1

T

T∑

t=1

PA0(t),...,AK(t)(a0, ..., aK) → Q(a0, a1, ..., aK)
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Characterization of implementable distributions

(noncausal case)

Theorem 1

− (A0(t))t≥1 i.i.d; A0 ∼ ρ0
− K = 2

− A1(t) = τ1,t(A0(1), ..., A0(T ))

− A2(t) = τ2,t(A1(1), ..., A1(t− 1))

◮ Then Q(a0, a1, a2) is implementable iff its marginal w.r.t

(a1, a2) is ρ0 and

HQ(A0, A1, A2) ≥ HQ(A0) +HQ(A2).
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Performance characterization (Theorem 1)

minimize −
∑

a0,a1,a2

Q(a0, a1, a2)w(a0, a1, a2)

subject to HQ(A0) +HQ(A2)−HQ(A0, A1, A2) ≤ 0

−Q(a0, a1, a2) ≤ 0

−1 +
∑

a0,a1,a2

Q(a0, a1, a2) = 0

−ρ0(a0) +
∑

a1,a2

Q(a0, a1, a2) = 0
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Technical challenges

◮ General case [Larrousse et al ITW 2015]

IQ(S1;A2) ≤ IQ(V ;Y2|A2) + IQ(V ;S1|A2)

where auxiliary variables are used.
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Characterization of implementable distributions (causal

case)

Theorem 2

− (A0(t))t≥1 i.i.d. + memoryless O.S.

− K ≥ 2

− Ai(t) = τ1,t(Si(1), ..., Si(t), Yi(1), ..., Yi(t− 1))

◮ Then Q(a0, ..., aK) is implementable iff it factorizes as

Q(a0, ..., aK) =
∑

z,s1,...,sk

ρ0(a0)k(s1, ..., sk|a0)PZ(z)
K∏

k=1

PAk|Sk,Z
(ak|sk, z)

[Larrousse et al 2015][Gossner et al 2006]
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Extensions

• Security aspect

• Continuous case

• Controlled state
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Stochastic games

Definition (Stochastic games with individual states): a stochastic game with individual

states is a 6−uplet G =
(
K, {Ai}i, {Xi}i, {Ãi}i, {αi}i, q, {ui}i

)
where

• Ωi is the set of individual states of player i;

• Ãi(xi) is the set of feasible actions for the state xi ∈ Xi;

• αi : Xi → 2Ai is the correspondence determining the feasible actions at a given state

of the game;

• under the Markov game assumption, the transition probability of the states is given by:

q :

∣∣∣∣
X ×

⊗K
i=1 2

Ai → ∆(X )

(x, a) 7→ q(x′|x, a).

with X = X1 × ... × XK.
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Equilibrium analysis for stochastic games

• Common state with perfect monitoring and recall + finite action and state spaces: there

exists an equilibrium in the finitely/discounted repeated games (see Shapley 1953 for

2−player zero-sum games and Takahashi 1962 Fink 1964 for non-zero-sum games).

• Individual states with perfect monitoring and recall: there exists an equilibrium in the

finitely/discounted repeated games (see Vrieze 2007).

• Common state + perfect monitoring + irreducible stochastic games: there is a Folk

theorem for infinitely repeated games (Dutta 1991).

• Common state + public signal + irreducible stochastic games: there is a Folk theorem

for infinitely repeated games (Hörner etal 2009, Fudenberg and Yamamoto 2009).

• ...
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Differential games (linear-quadratic + common state +

finite horizon)

• Control functions: ui : t 7→ ui(t), i ∈ {1, ...,K}

• State law:

dx

dt
(t) = A(t)x(t) +

K∑

i=1

Bi(t)ui(t)

• Cumulative utility:

Ji(u1, ..., uK) =

∫

t∈[0,T ]

xT(t)Qix(t)dt+
∑

j = 1K
∫

t∈[0,T ]

uT
j (t)Rijuj(t)dt+qi(xT )
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More general differential games

• More general control law:

ui(t, yi(t))

• More general state law:

dx

dt
(t) = f(t, x(t), u1(t, y1(t)), . . . , uK(t, yK(t)))

• More general observation structures. Closed-loop perfect state example:

yi(t) = {x(t′) : 0 ≤ t′ ≤ t}. Memoryless perfect state example: yi(t) =
{x(0), x(t)}.

• Remark (stochastic differential game):

dx(t) = f(t, x(t), u1(t, y1(t)), . . . , uK(t, yK(t)))dt+ dw(t)

→ One path to mean field games.
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Game Theory: Fundamentals and Application to Wireless

and Electricity Networks

3. Learning algorithms and

strategic-form games

115



Algorithm 1: The best-response dynamics (BRD)

Updating rule (asynchronous BRD) K = 2. Action

sequence: a1(0), a2(1) ∈ BR2[a1(0)], a1(2) ∈ BR1[a2(1)], etc.

More generally:

ai(t+ 1) ∈ BRi [a1(t+ 1), ..., ai−1(t+ 1), ai+1(t), ..., aK(t)] .

Updating rule (synchronous BRD):

ai(t+ 1) ∈ BRi [a−i(t)] .

[Cournot 1838]
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Comments on Algorithm 1

Main features

◮ Fast convergence.

◮ Steady state: NE.

◮ Required knowledge: Action profile and individual utility

function (in general).
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The iterative water-filling algorithm [Yu et al 2002]

◮ Actions: ai = pi = (pi,1, ..., pi,S) with
∑

s

pi,s ≤ Pmax and

pi,s ≥ 0

◮ BRD:

pi(t+ 1) ∈ argmax
pi

S∑

s=1

log

(
1 +

gii,spi,s

σ2 +
∑

j 6=i

gji,spj,s(t)

)

◮ The water-filling solution writes as

pi,s(t+ 1) =

[
1

λi

−
pi(t)

SINRi(t)

]+
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Algorithm 2: Fictitious play (FP)

Updating rule (synchronous FP):

ai(t+ 1) ∈ arg max
ai∈Ai

∑

a−i

f−i,t(a−i)ui(ai, a−i).

Recursive structure

fi,t+1(ai) = 1
t+1

t+1∑

t′=1

1l{ai,t′=ai}

= 1
t+1

∑t
t′=1 1l{aj,t′=aj} +

1
t+11l{aj,t+1=ai}

= t
t+1fi,t(ai) +

1
t+11l{aj,t+1=ai}

= fi,t(ai) +
1

t+1

[
1l{aj,t+1=ai} − fi,t(ai)

]

= fi,t(ai) + λi(t)
[
1l{aj,t+1=ai} − fi,t(ai)

]

where 1l is the indicator function [Brown 1951].
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Algorithm 3: Reinforcement learning

A reinforcement learning algorithm. |Ai| < +∞,

∀i ∈ K,∀n ∈ {1, ..., |Ai|},

πn
i (t+ 1) = πn

i (t) + λi(t)ui(t)
[
1l{ai(t)=ani }

− πn
i (t)

]
,

0 < λi(t) < 1.

[Bush and Mosteller 1955][Sastry et al 1994].
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Main features of Algorithm 3

◮ Required knowledge: individual utility realizations.

◮ Slow convergence.

◮ Steady state: NE/boundary points/limit cycle.
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Convergence issue

◮ Convergence depends on: the updating rule + the

associated game.

◮ For algorithms 1, 2, and 3, it is sufficient that the game be:

� dominance solvable, or

� potential, or

� supermodular.
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An important class of games: Potential games

Exact potential games [Monderer and Shapley 1996].

∃Φ,∀i,∀s,∀s′i,

ui(s)− ui(s
′
i, s−i) = Φ(s)− Φ(s′i, s−i).

Characterization (special case). Si = Ii ⊂ R. A game is an

exact PG iff:

∀(i, j) ∈ K2,
∂2 (ui − uj)

∂si∂sj
= 0.
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Potential games. Continued

Properties

◮ Convergence of important dynamics. X

◮ Existence of a pure NE. X

Examples. Team games, dummy games, self-motivated

games, congestion games.
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A simple example of potential game

!
"# !
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A simple example of potential game [Perlaza et al 2009]

ui(p1, ..., pK) =

S∑

s=1

log


1 +

gi,spi,s

σ2 +
∑

j 6=i

gj,spj,s




=

S∑

s=1

log




σ2 +
∑

j

gj,spj,s

σ2 +
∑

j 6=i

gj,spj,s




= log


σ2 +

∑

j

gj,spj,s


− log


σ2 +

∑

j 6=i

gj,spj,s




= Φ(p1, ..., pK)− log


σ2 +

∑

j 6=i

gj,spj,s
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Another important special class of games: Supermodular

games

Definition (supermodularity): Si compact subset of R, ui

upper semi-continuous in s, ∀s−i ≥ s′−i, ui(s)− ui(si, s
′
−i) is

non-decreasing in si.

Characterization:

∀i 6= j,
∂2ui

∂si∂sj
≥ 0.
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Supermodular games. Continued

Properties

◮ Convergence of important dynamics. X

◮ Existence of a pure NE. X

Examples. Queueing problems [Yao 1995], power control

problems [Saraydar et al 2002].
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A simple example of supermodular game [Mochaourab &

Jorswieck 2009]

!"#$%&$%'()*+'( ,-*"%'()*+'(
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Algorithm 4: Regret Matching

Definition (regret) [Hart & Mas-Collel 2000]

∀n, rk,ak,n(t+1) =
1

t

t∑

t′=1

uk(ak,n, a−k(t
′))−uk(ak(t

′), a−k(t
′))

Updating rule

πk,ak,n(t+ 1) =

[
rk,ak,n(t+ 1)

]+

Nk∑

n′=1

[
rk,ak,n′(t+ 1)

]+
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Main features of Algorithm 4

◮ Required knowledge: action profile

◮ Convergence: unconditional convergence +

intermediate speed

◮ Steady state: CCE

Remark: ”pure NE ⊆ mixed NE ⊆ CE ⊆ CCE”
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Coarse correlated equilibrium

Definition

∀k,∀a′k,

∑

a∈A

qCCE(a)uk(a) ≥
∑

a∈A

qCCE(a)uk(a
′
k, a−k)
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Algorithms to reach a given solution concepts (strategic

case)

• Asynchronous/synchronous best response dynamics,

fictitious play, a type of reinforcement algorithm, regret

matching,

• Boltzmann-Gibbs learning,

• coupled dynamics learning,

• trial-and-error learning,

• conditional no-regret learning,

• Bayesian learning,...
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Game Theory: Fundamentals and Application to Wireless

and Electricity Networks

4. Case study #2:

Power consumption scheduling
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Case study #2: Power consumption scheduling

◮ Static game formulation.

◮ A dynamic approach.
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Application example. Continued

0 h 4 h 8 h 12 h 16 h 19 h 24 h
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Modeling the problem as a static game

◮ Set of players : I = {1, ..., I}.

◮ Set of actions : si ∈ Si = {1, ..., T}

◮ Action profile : s = (s1, ..., sI)

◮ Total load : ℓt(s) = ℓexot +
∑

i ℓ
EV
i,t (s)

◮ Utilities : ui(s) =
∑

t∈{si,...,si+Di−1}

ft (ℓ1(s), ..., ℓt(s)) + gi(si)
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Nash equilibrium analysis (1/6)

Existence
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Nash equilibrium analysis: Existence (2/6)

Exact potentiality [Monderer Shapley 1996]

∃Φ, ∀i, ∀s, ∀s′i :

ui(s)− ui(s
′
i, s−i) = Φ(s)− Φ(s′i, s−i)

Ordinal potentiality

ui(s)− ui(s
′
i, s−i) ≥ 0 ⇔ Φ(s)− Φ(s′i, s−i) ≥ 0

Result [Beaude et al TSG 2016]: OP available for

memoryless utilities.
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Nash equilibrium analysis (3/6)

Uniqueness No
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Nash equilibrium analysis: Determination (4/6)
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Nash equilibrium analysis: BRD convergence (5/6)
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Obtained with the data from [37]

Obtained with 104 draws from
a Gaussian random vector

δ = 0, M = 100
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Nash equilibrium analysis: Efficiency (6/6)

PoA: PoA → 1 when I → ∞ and under symmetry

assumptions. Otherwise, losses may be non-negligible.

→ Continuous actions

References: [Beaude et al Netgcoop 2012][Beaude et al TSG

2016][Paccagnan et al L-CSS 2018]
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Why moving to a dynamical formulation?
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Why moving to a dynamical formulation?
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Objectives for the new formulation: Recap

◮ Existence of an individual constraint on the state

◮ More efficiency: discrete actions → continuous actions;

exploit the dynamical structure

◮ Directly consider the global cost/utility function
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Optimal control formulation

minimize g(v, x) =
T∑

t=1

eαxt + J

(
ℓexot +

I∑

i=1

vi,t

)
s.t. :

∀i,
T∑

t=1

vi,t ≥ Ci

∀(i, t), 0 ≤ vi,t ≤ Vmax

∀t xt = axt−1 + b1 ×

(
ℓexot +

I∑

i=1

vi,t

)2

+b2 ×

(
ℓexot−1 +

I∑

i=1

vi,t−1

)2

+ ct

∀t, xt ≤ xmax
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Optimal control formulation

minimize g(v, x) =
T∑

t=1

eαxt + J

(
ℓexot +

I∑

i=1

vi,t

)
s.t. :

∀i,
T∑

t=1

vi,t ≥ Ci

∀(i, t), 0 ≤ vi,t ≤ Vmax

∀t xt = axt−1 + b1 ×

(
ℓexot +

I∑

i=1

vi,t

)p

+b2 ×

(
ℓexot−1 +

I∑

i=1

vi,t−1

)q

+ ct

∀t, xt ≤ xmax ,
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Optimal control formulation

minimize g(v, x) =
T∑

t=1

eαxt + J

(
ℓexot +

I∑

i=1

vi,t

)
s.t. :

∀i,
T∑

t=1

vi,t ≥ Ci

∀(i, t), 0 ≤ vi,t ≤ Vmax

∀t xt = axt−1 + b1 ×

(
ℓexot +

I∑

i=1

vi,t

)p

+b2 ×

(
ℓexot−1 +

I∑

i=1

vi,t−1

)q

+ ct

∀t, xt ≤ xmax ,
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Optimal control formulation

minimize g(v, x) =
T∑

t=1

eαxt + J

(
ℓexot +

I∑

i=1

vi,t

)
s.t. :

∀i,
T∑

t=1

vi,t ≥ Ci

∀(i, t), 0 ≤ vi,t ≤ Vmax

∀t xt = axt−1 + b1 ×

(
ℓexot +

I∑

i=1

vi,t

)p

+b2 ×

(
ℓexot−1 +

I∑

i=1

vi,t−1

)q

+ ct

∀t, xt ≤ xmax ,
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Optimal control formulation

minimize J(v, x) =
T∑

t=1

eαxt + γ

(
ℓexot +

I∑

i=1

vi,t

)
s.t. :

∀i,
T∑

t=1

vi,t ≥ Ci

∀(i, t), 0 ≤ vi,t ≤ Vmax

∀t xt = axt−1 + b1 ×

(
ℓexot +

I∑

i=1

vi,t

)p

+b2 ×

(
ℓexot−1 +

I∑

i=1

vi,t−1

)q

+ ct

∀t, xt ≤ xmax ,
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Proposed methodology to solve the problem

◮ Substitution technique for xt

◮ Operate in a convex regime (e.g., ab1 + b2 ≥ 0)

◮ Apply the best response dynamics with vi = (vi,1, ..., vi,T )

[Beaude et al ECC 2015]
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Stochastic aspects

◮ Noisy forecast: ℓ̃exot = ℓexot + zt

◮ Randomness in the state evolution: c̃t = ct + z′t

◮ Discretization + apply the best response dynamics with

dynamical programming

[Gonzalez et al Gretsi 2017][Gonzalez et al TSG 2018]
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Illustration 1
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Illustration 2
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Illustration 3
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Game Theory: Fundamentals and Application to Wireless

and Electricity Networks

4. Coalitional form games
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Moving from strategic-form games to coalition form

games

◮ Cooperation is sought/allowed

◮ Explicit communication is allowed

◮ Beyond NBS
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The bankruptcy problem (Talmud’s version)

Claim

100 200 300

100 100
3

100
3

100
3

Estate 200 50 75 75

300 50 100 150
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Physical interpretation of the (game-theoretic) solution

[Aumann and Maschler 1985].
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Messages

Coalition games can be a very powerful tool.

Two important issues in coalition games:

◮ utility allocation/division;

◮ coalition formation.
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Classification of coalition-form games

NTU: noTU: yes

PF: noCF: yes

Distribution of utility:
Can the value of any coalition be 
divided arbitrarily among its members?

Coalition value type:
Does the value function of a coalition 
depend on its own members only? not addressed 

in this paper
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Coalition form games with characteristic functions

Definition. Game ≡ pair:

G = (K, v) .

Notation (power set). Ex:

if K = {1, 2}, 2K =
{
∅, {1}, {2}, {1, 2}

}
.

Transferable utility (TU) games:

v : 2K → R

C 7→ v(C)
.
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Coalition form games with characteristic functions

Non transferable utility (NTU) games:

v : 2K → RK

C 7→ v(C) = {(v1(C), ..., vK(C))}
.
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Ice-cream game example (TU game) → investors...

Chris: $4,             Marvin: $3,             Terry: $3

                  w = 500                       w = 750

                  p = $7                          p = $9

• v(Ø) = v({C}) = v({M}) = v({T}) = 0

• v({C, M}) = 500, v({C, T}) = 500, v({M, T}) = 0

• v({C, M, T}) = 750

165



Ice-cream game example. General solution concept.

Utility division: x = (xC, xM, xT).

• x = (200, 200, 350) not stable (v ({C,M}) > xC + xM).

• x′ = (250, 250, 250) stable.

• x′′ = (750, 0, 0) stable.

Notion of core (TU superadditive games):

core(G) =

{
x ∈ R

K :
∑

i∈K

xi = v(K), ∀C ⊆ K,
∑

i∈C

xi ≥ v(C)

}
.
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Ice-cream game core





x1 + x2 + x3 = ???

x1 ≥ ???

x2 ≥ ???

x3 ≥ ???

x1 + x2 ≥ ???

x1 + x3 ≥ ???

x2 + x3 ≥ ???

x1 + x2 + x3 ≥ ???
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Ice-cream game core





x1 + x2 + x3 = 750

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

x1 + x2 ≥ 500

x1 + x3 ≥ 500

x2 + x3 ≥ 0

x1 + x2 + x3 ≥ 750
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Core existence: theorems

Theorem (Bondareva-Shapley) Not treated here.

See e.g., [Bacci et al 2016].

Definition (convex TU game)

∀C1, C2 ⊆ K, v(C1) + v(C2) ≤ v(C1 ∪ C2) + v(C1 ∩ C2)

Theorem Convex TU game ⇒ non-empty core.
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The nucleolus

Core

core(G) =
{
x ∈ R

K :
∑

i∈K

xi = v(K), ∀C ⊆ K, v(C)−
∑

i∈C

xi

︸ ︷︷ ︸
e(C,x)

≤ 0
}
.

Excess: e(x) = (e(C1, x), ..., e(C2K , x)) (with

e(C1, x) ≥ e(C2, x) ≥ ... ).

Nucleolus (relative to X ⊆ RK)

nucleolus(G;X ) =
{
x ∈ X : e(x) �L e(x′), ∀x′ ∈ X

}
.
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The Shapley value

Motivation Stability → fairness

Definition Utility division:

xi =
∑

C⊆K\{i}

|C|!(|K| − |C| − 1)!

|K|!
[v(C ∪ {i})− v(C)] .
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Axiomatic characterization

◮ Efficiency:
∑

i∈K

xi = v(K)

◮ Additivity: xi(G1 ⊕ G2) = xi(G1) + xi(G2

(⊕ ≡ v = v1 + v2)

◮ Dummy: ∀C ′, v(C ′) = v(C ′ ∪ {i}) (C does not

contain i)

◮ Symmetry: ∀C ′′, v(C ′′ ∪ {i}) = v(C ′′ ∪ {j}) (C
does neither contain i nor j)

172



Coalitional form (NTU)

◮ Players: secondary transmitters K = {1, ...,K}.

◮ Characteristic function:

v(C) = 1− Pm(C)− J(Pf(C))

with

J(Pf(C)) =

∣∣∣∣∣∣
−q2 log

[
1−

(
Pf(C)

q

)2]
if 0 ≤ Pf(C) < q

+∞ if q ≤ Pf(C) ≤ 1
.
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Coalition formation

Utility division. Not relevant.

Coalition formation. Merge and split coalitions by performing

Pareto comparisons.

Results. Converging algorithm. Distributed solution:

implementable, good performance in terms of miss and false

alarm probabilities [Saad et al 2011].
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Solution concepts for coalition form games

• core, nucleolus,

• ǫ− core,

• least core,

• kernel,

• bargaining set,

• Shapley value, Harsanyi value, Banzhaf index,...
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5. Extensive form games
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Extensive form games

Definition: A standard extensive form game is a 6−uplet

G = (K,V , vroot, π, {Vi}i∈K, {ui}i∈K)

where:

◮ K = {1, ...,K} is the set of players;

◮ (V , vroot, π) is a tree;

◮ {Vi}i∈K is a partition of V .

Remark: ∀v ∈ V , ∃n ≥ 1, π(n) = π ◦ ... ◦ π = vroot.
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Representing the prisoner’s dilemma under extensive

form

!"#$

!"#$
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Extensive form with imperfect information

Definition: It is a 9−uplet

G =
(
K,V , vroot, π,V0, {q

j
0}j∈V0, {Vi}i∈K, {W

k
i }k∈{1,...,ki}, {ui}i∈K

)

where:

◮ player 0 is nature;

◮ ∀j ∈ V0 q
0
j is the transition probability used by player 0 to

choose a successor to j;

◮ W k
i corresponds to the partition of Vi which defines the

information structure for i.

Remark: Games with perfect information W k
i = {wk

i }.
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Strategic form and extensive form

• Extensive form more complete than strategic form.

• Extensive form usually less convenient for mathematical

analysis.

• Continuous/discrete action sets.

• Extensive form sometimes more intuitive.

• The tree structure of the extensive form can be useful for

computer-based analyses.
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On the difference between static and dynamic games

Transforming the prisoner’s dilemma into a dynamic game

!"#$
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6. Conclusion
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Summarizing

◮ Direct game theory – mechanism design.

◮ 3 dominant mathematical representations:

strategic form, extensive form, coalition form.

◮ Focus on the Nash equilibrium.
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Summarizing

◮ Static games - dynamic games.

◮ Relationship between static games and learning.
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Challenges

◮ Tradeoff between efficiency – weak information assumption.

◮ Bridge the gap between learning and dynamic games.

◮ Dynamic games with arbitrary observation graphs.

◮ Mechanism design.
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Mechanism design, Nobel prizes,...
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