Point processes in random environment and application to the study of longevity risk

Sarah Kaakaï, Le Mans Université

Cours Bachelier, 28/02/2020

Some application of point processes

- Renewal of interest in **point processes** in the past years.
- ▶ Flexibility allows for the modeling of a wide range of phenomena in:
 - Finance and Insurance (Dassios and Zho (2011), Giesecke and Kim (2011), Bacry et al. (2015), Jaisson and Rosembaum (2015), El Euch et. al. (2016)...)
 - Neurosciences (Reynaut Bouret et al. (2013), Chevallier et al. (2015), Galves and Löcherbach (2016)...)
 - Individual-based model in biology and ecology (Fournier and Méléard (2004), Champagnat et al. (2006), Méléard and Tran (2010), Billard et al (2016)...)
 - Chemical reactions (Andersen and Kurtz (2015))
 - Epidemiology, cyber risk...
- ► Human longevity?

Point processes and longevity

- Individual-based model for human populations (Bensusan (2010), Boumezoued and El Karoui (2016)).
- Issues:
 - Non-stationarity, influence of macro-environment (El Karoui et al. (2018)).
 - High heterogeneity: Structured population.
 - Interactions ⇒ non-linearity.
- Need for probabilistic tools to deal with this complexity.

Point processes

- ► General theory on point processes measures : 60-70's.
- Several viewpoint to define point processes:
 - Random counting measures (static).
 - Random sets (static).
 - In certain cases: Counting processes (multivariate, marked),

Dynamic viewpoint.

- Central concept: Intensity (measure).
 But not sufficient to defined point processes in general settings.
- Pathwise construction.

- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
 - Process with bounded intensity
 - General case
 - A first "converse result"
- 3 Strong comparison of point processes
 - Point processes with ordered intensities
 - General case
 - Converse result
- 4 Birth-Death-Swap process in random environment

Outline

- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
- 3 Strong comparison of point processes
- 4 Birth-Death-Swap process in random environment

Notations

- ▶ Filtered probability space $(\Omega, (\mathcal{G}_t), P)$.
- *E* Polish space and \mathcal{E} its Borel σ -algebra.
- $ightharpoonup \mathcal{P}(\mathcal{G}_t)$ σ -algebra of predictable processes generated by processes

$$C_t = H1_{]t_0,t_1]}(t), \quad t \geqslant 0, \ H \in \mathcal{G}_{t_0}.$$

Random counting measure

Definition (Random counting measure/Point process (simple))

A random counting measure is a random measure $M: \Omega \times \mathcal{E} \to \bar{\mathbb{N}}$ such that $M_{\omega}: A \in \mathcal{E} \mapsto M(\omega, A)$ is a purely atomic and its every atom has weight one, a.s.

- Equivalent viewpoint: M is a r.v taking values in the space of counting measures.
- ▶ Mean measure of *M*:

$$\mu(A) = \mathsf{E}[M(A)].$$

▶ For any nonnegative measurable function f ($f \in \mathcal{E}_+$),

$$M(f)(\omega) = \int_E f(x) M(\omega, \mathrm{d} x).$$

Some properties of random measures

- EXAMPLE M is a Poisson random measure with measure μ if:
 - $\forall A \in \mathcal{E}$, $M(A) \sim \mathcal{P}(\mu(A))$
 - ullet if A_1,\ldots,A_p are disjoints then $M(A_1),\ldots,M(A_p)$ are independent.

Some properties of random measures

- EXAMPLE M is a Poisson random measure with measure μ if:
 - $\forall A \in \mathcal{E}$, $M(A) \sim \mathcal{P}(\mu(A))$
 - if A_1, \ldots, A_p are disjoints then $M(A_1), \ldots, M(A_p)$ are independent.
- PROPOSITION 1 The probability law of a random (counting) measure M on (E, \mathcal{E}) is *uniquely* determined by its Laplace functional,

$$E[\exp(-M(f))], f \in \mathcal{E}_+.$$

Poisson measures: $\mathsf{E}[\exp(-M(f))] = \exp(-\int (1-e^f) \mathrm{d}\mu)$.

Some properties of random measures

- ▶ EXAMPLE M is a Poisson random measure with measure μ if:
 - $\forall A \in \mathcal{E}$, $M(A) \sim \mathcal{P}(\mu(A))$
 - if A_1, \ldots, A_p are disjoints then $M(A_1), \ldots, M(A_p)$ are independent.
- PROPOSITION 1 The probability law of a random (counting) measure M on (E, \mathcal{E}) is *uniquely* determined by its Laplace functional,

$$\mathsf{E}[\exp(-M(f))], \quad f \in \mathcal{E}_+.$$

Poisson measures: $E[\exp(-M(f))] = \exp(-\int (1 - e^f) d\mu)$.

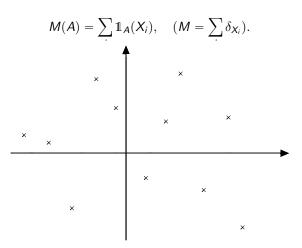
PROPOSITION 2 The probability law of a random counting measure M on (E, E) is uniquely determined by the set of avoidance probabilities:

$$P(M(A) = 0), A \in \mathcal{E}.$$

If $P(M(A) = 0) = e^{-\mu(A)}$ with μ sigma-finite, then M is a Poisson measure.

Point process viewpoint

▶ The point process associated with a sequence (X_i) of (E, \mathcal{E}) -random variables is defined for all $A \in \mathcal{E}$ by



▶ Random set viewpoint: $M(\omega) = \{x \in E; x = X_i(\omega) \text{ for some } i\}.$

Point process viewpoint

The point process associated with a sequence (X_i) of (E, \mathcal{E}) -random variables is defined for all $A \in \mathcal{E}$ by

$$M(A) = \sum_{i} \mathbb{1}_{A}(X_{i}), \quad (M = \sum_{i} \delta_{X_{i}}).$$

$$M(f) = \int_{E} f(x) M(\omega, dx) = \sum_{i} f(X_{i}).$$

Point process viewpoint

The point process associated with a sequence (X_i) of (E, \mathcal{E}) -random variables is defined for all $A \in \mathcal{E}$ by

$$M(A) = \sum_{i} \mathbb{1}_{A}(X_{i}), \quad (M = \sum_{i} \delta_{X_{i}}).$$

- $M(f) = \int_{F} f(x) M(\omega, dx) = \sum_{i} f(X_{i}).$
- ▶ Proposition: If M is a random counting measure and μ is σ -finite,

$$M=\sum_{i}\delta_{X_{i}},$$

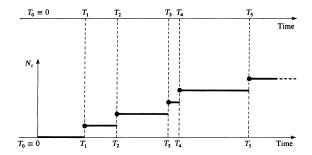
with (X_i) a sequence of r.v taking values on a enlargement $(\bar{E}, \bar{\mathcal{E}})$ of (E, \mathcal{E}) .

Point processes on the half line

Case $E = \mathbb{R}^+$.

- ▶ Atoms can be ordered: (X_i) → increasing sequence $(T_n)_{n \in \mathbb{N}}$.
- Associated counting process

$$N_t = N(]0,t]) = \sum_{n=1}^{\infty} \mathbb{1}_{\{T_n \leqslant t\}}.$$



(Source: Bremaud)

Point processes on the half line

Case $E = \mathbb{R}^+$: dynamic viewpoint.

Associated counting process

$$N_t = N(]0, t]) = \sum_{n=1}^{\infty} \mathbb{1}_{\{T_n \leqslant t\}}.$$

- ► The random measure is seen as a r.v taking values in the space A of counting functions.
- ▶ If *N* is adapted to a filtration (G_t) , for $C \in \mathcal{P}(G_t)$

$$\int_0^t C_s \mathrm{d}N_s = \sum_{n \geq 0} C_{T_n} \mathbb{1}_{\{T_n \leqslant t\}}$$

Poisson process

- ▶ DYNAMIC VIEWPOINT Let N be a counting process adapted to a filtration (\mathcal{G}_t) . Then N is a (\mathcal{G}_t) -Poisson process if:
 - (i) Independent increments:

$$N_{s+h} - N_s \perp \!\!\! \perp \mathcal{G}_s$$
.

(ii) Stationary increments:

$$N(]s, s+h]) = N_{s+h} - N_s \stackrel{d}{=} N_h(\sim \mathcal{P}(\lambda h)).$$

▶ Point process viewpoint

$$N = \sum_{n=1}^{\infty} \mathbb{1}_{\{T_n \leq t\}}, \quad (S_n)_{n \geqslant 1} = (T_n - T_{n-1})_{n \geqslant 1} \text{ i.i.d } \sim \mathcal{E}(\lambda).$$

▶ RANDOM MEASURE VIEWPOINT For any $f \in \mathcal{E}_+$,

$$\mathsf{E}[\mathsf{e}^{-\mathsf{N}(f)}] = \exp(-\int_{\mathbb{R}^+} (1 - \mathsf{e}^{-f(s)}) \nu(\mathrm{d}s)), \quad \nu = \lambda \; \mathrm{Leb}.$$

Intensity and martingale property

Let N be a (\mathcal{G}_t) Poisson process with intensity λ .

▶ Let $C_s = \mathbf{1}_H \mathbf{1}_{[t_0,t_1]}(s)$ with $H \in \mathcal{G}_{t_0}$. Then,

$$\mathsf{E}[\int_0^\infty C_s \mathrm{d} N_s] = \mathsf{E}[\mathbf{1}_H (N_{t_1} - N_{t_0})] = \mathsf{E}[\mathbf{1}_H] \lambda (t_1 - t_0) = \mathsf{E}[\int_0^\infty C_s \lambda \mathrm{d} s]$$

Intensity and martingale property

Let N be a (\mathcal{G}_t) Poisson process with intensity λ .

▶ Let $C_s = \mathbf{1}_H \mathbf{1}_{[t_0,t_1]}(s)$ with $H \in \mathcal{G}_{t_0}$. Then,

$$\mathsf{E}[\int_0^\infty C_s \mathrm{d} N_s] = \mathsf{E}[\mathbf{1}_H (N_{t_1} - N_{t_0})] = \mathsf{E}[\mathbf{1}_H] \lambda (t_1 - t_0) = \mathsf{E}[\int_0^\infty C_s \lambda \mathrm{d} s]$$

▶ Generalization to nonnegative **predictable processes** $C \in \mathcal{P}(\mathcal{G}_t)$:

$$\mathsf{E}\left[\int_0^\infty C_s \mathrm{d}N_s\right] = \mathsf{E}\left[\int_0^\infty C_s \lambda \mathrm{d}s\right]. \tag{1}$$

Equivalent property:

$$(N_t - \lambda t)$$
 is a (\mathcal{G}_t) -martingale.

▶ (1) can be generalized to define the intensity process of a counting process.

General case: stochastic intensity

Definition (Stochastic intensity (Bremaud))

Let N be an adapted counting process, and (λ_t) a nonnegative (\mathcal{G}_t) -process with

$$\forall t \geqslant 0, \quad \int_0^t \lambda_s \mathrm{d}s < \infty a.s..$$
 (2)

Then, N admits the (\mathcal{G}_t) -intensity (λ_t) if for all nonnegative predictable process C

$$\mathsf{E}\left[\int_0^\infty C_{\mathsf{s}} \mathrm{d} N_{\mathsf{s}}\right] = \mathsf{E}\left[\int_0^\infty C_{\mathsf{s}} \lambda_{\mathsf{s}} \mathrm{d} \mathsf{s}\right]. \tag{3}$$

General case: stochastic intensity

Definition (Stochastic intensity (Bremaud))

Let N be an adapted counting process, and (λ_t) a nonnegative (\mathcal{G}_t) -process with

$$\forall t \geqslant 0, \quad \int_0^t \lambda_s \mathrm{d}s < \infty a.s..$$
 (2)

Then, N admits the (\mathcal{G}_t) -intensity (λ_t) if for all nonnegative predictable process C

$$\mathsf{E}\left[\int_0^\infty C_{\mathsf{s}} \mathrm{d} N_{\mathsf{s}}\right] = \mathsf{E}\left[\int_0^\infty C_{\mathsf{s}} \lambda_{\mathsf{s}} \mathrm{d} \mathsf{s}\right]. \tag{3}$$

- ▶ (2) is a non-explosion condition.
- ▶ Equivalenty: $(N_t \int_0^t \lambda_s ds)$ is a (\mathcal{G}_t) local martingale.
- ▶ The existence of an intensity has to do with the absolute continuity of the predictable compensator A of N w.r.t Leb. If λ exists, $A_t = \int_0^t \lambda_s ds$.

Examples and uniqueness

- Non-Homogeneous Poisson processes (NHP) $(\lambda_t) = (f(t))$ is a deterministic function.
- ► Cox/Doubly stochastic Poisson processes

 (λ_t) is \mathcal{G}_0 -measurable.

 $(N_t - N_s \text{ is independent of } \mathcal{G}_s \text{ given } \mathcal{G}_0)$

▶ Uniqueness of intensity process In order to be unique, (λ_t) should be taken predictable.

Examples and uniqueness

- Non-Homogeneous Poisson processes (NHP) $(\lambda_t) = (f(t))$ is a deterministic function.
- ► Cox/Doubly stochastic Poisson processes

 (λ_t) is \mathcal{G}_0 -measurable.

 $(N_t - N_s \text{ is independent of } \mathcal{G}_s \text{ given } \mathcal{G}_0)$

- Uniqueness of intensity process In order to be unique, (λ_t) should be taken predictable.
- Does the intensity process characterizes the probability distribution of a counting process?

Martingale characterization

Let us come back to the example of the Poisson process:

Theorem (Martingale characterization of Poisson processes (Watanabe))

Let N be a counting process and f a locally integrable nonnegative function such that $N - \int_0^t f(s) \mathrm{d}s$ is (\mathcal{G}_t) -martingale.

Then N is a (G_t) -non homogeneous Poisson process of intensity function f.

- Extension The result still holds for Cox processes (Bremaud)
- ► Sketch of the proof:
 - Use (3) to show that $(Z_t) = (e^{iuN_t \int_0^t (e^{iu} 1)f(s) ds})$ is a (\mathcal{G}_t) -martingale.
 - Laplace functional characterization.

General case(I)

Does the intensity process characterizes the probability distribution of a counting process?

General case(I)

Does the intensity process characterizes the probability distribution of a counting process?

- → NO without further assumptions.
 - ▶ Intensity process is often a function of the counting process itself.

General case(I)

Does the intensity process characterizes the probability distribution of a counting process?

- → NO without further assumptions.
- ▶ Intensity process is often a function of the counting process itself.
- Examples
 - PURE BIRTH PROCESS WITH IMMIGRATION: $\lambda_s = a + bN_s$. Such a process is a Continuous Time Markov Chain (CTMC). $T_1, T_2 T_1, T_3 T_2, \ldots$ are independent and $T_{k+1} T_k \sim \mathcal{E}(a + kb)$.
 - (LINEAR) HAWKES PROCESS:

$$\lambda_s = \frac{a}{s} + \int_0^s h(s-r) \mathrm{d}N_r.$$

$$\lambda_s = f([N]_{s^-}), \text{ with } [N]_s = (N_{t \wedge s})_{t \geqslant 0} \text{ and } f: n \in \mathcal{A} \mapsto (a + \int_0^s h(s-r) dn(r)).$$
 In particular, if $(f([N]_{t^-}))$ is the (\mathcal{G}_t) -intensity of N then $(f([N]_{t^-}))$ is also its (\mathcal{F}_t^N) intensity.

General case(II)

Theorem (Jacod 75 (partial))

Let $\lambda: \Omega \times \mathbb{R}^+ \times \mathcal{A} \to \mathbb{R}^+$ a (\mathcal{G}_t) -predictable functional such that for all counting path $n \in \mathcal{A}$ and $t \geqslant 0$, $\lambda(\omega, t, [n]) \in \mathcal{G}_0$. Then if two counting processes N and N' have respective (\mathcal{G}_t) intensities $(\lambda(\omega, t, [N]_{t^-}))$ and $(\lambda(\omega, t, [N']_{t^-}))$, then N and N' have the same distribution.

▶ Also weak existence result (under additional assumptions).

General case(II)

Theorem (Jacod 75 (partial))

Let $\lambda: \Omega \times \mathbb{R}^+ \times \mathcal{A} \to \mathbb{R}^+$ a (\mathcal{G}_t) -predictable functional such that for all counting path $n \in \mathcal{A}$ and $t \geqslant 0$, $\lambda(\omega, t, [n]) \in \mathcal{G}_0$. Then if two counting processes N and N' have respective (\mathcal{G}_t) intensities $(\lambda(\omega, t, [N]_{t^-}))$ and $(\lambda(\omega, t, [N']_{t^-}))$, then N and N' have the same distribution.

Also weak existence result (under additional assumptions).

BUT

Random environment/external noise is \mathcal{G}_0 -measurable "known at time 0".

→ Stochastic intensity not sufficient to introduce a counting process.

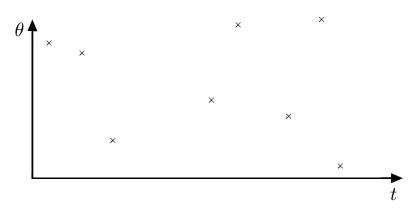
Space-time point process

Result originally stated for Marked point processes.

Space-time point process

Result originally stated for Marked point processes.

- ► Space-time point process
 - Random counting measure N on $\mathbb{R}^+ \times E$.
 - Defined relatively to (\mathcal{G}_t) if for all $A \in \mathcal{E}$, $N([0, t] \times A) \in \mathcal{G}_t$



Marked point process

- ► Space-time point process
 - Random counting measure N on $\mathbb{R}^+ \times E$.
 - Defined relatively to (\mathcal{G}_t) if for all $A \in \mathcal{E}$, $\mathcal{N}([0, t] \times A) \in \mathcal{G}_t$
- Marked Point Process on $(\mathbb{R}^+ \times E, \mathcal{B}_{\mathbb{R}^+} \times \mathcal{E})$.

0

$$N_t(A) = N([0,t] \times A) = \sum_n \mathbb{1}_{\{T_n \leqslant t\}} \mathbb{1}_A(X_n),$$

with (T_n) increasing sequence and $(X_n)_{n\geqslant 0}$ sequence of r.v taking values in the **mark space** E.

- In particular, $(N_t(E))$ is a counting process.
- ▶ All space-time point processes are not Marked point processes!

Examples (Marked Point processes)

• Multivariate counting process $E = \{x_1, \dots, x_p\}$

$$N_t^i = N_t(\{i\}) = \sum_n \mathbb{1}_{\{T_n \leqslant t\}} \mathbb{1}_{\{X_n = x_i\}}, \quad i = 1, ..., p.$$

- Pure birth marked by discrete frailty variables, interacting Hawkes processes...
- Usual hypothesis: components of $(N^1,...,N^p)$ have no jumps in common.
- ▶ COMPOUND POISSON PROCESS (T_n) are jump times of a Poisson process, marks (X_i) are i.i.d $\sim \pi$ and \bot of (T_n) .

A compound Poisson process is a Poisson random measure of mean measure $\lambda \mathrm{d} s \otimes \pi$.

(\mathcal{G}_t) Poisson measures (I)

Let γ be a sigma-finite measure on (E, \mathcal{E}) .

Definition (Space-time (G_t) Poisson measure)

 $Q(\mathrm{d}t,\mathrm{d}x)$ is a (\mathcal{G}_t) -Poisson measure on $\mathbb{R}^+ \times E$ of mean measure $\mathrm{d}t \otimes \gamma(\mathrm{d}x)$ iff $\forall A_1,...,A_n$ disjoint sets with $\gamma(A_i) < \infty$, the counting processes $Q_t(A_i)$ defined for i=1..p by

$$Q_t(A_i) = Q([0, t] \times A_i), \quad \forall t \geqslant 0$$

are independent \mathcal{G}_t -Poisson processes of intensity $\gamma(A_i)$.

- ▶ If $E = \{x\}$, Q is a (\mathcal{G}_t) -Poisson process of intensity $\gamma(\{x\})$.
- ▶ When γ is finite, $Q = \{(T_n, X_n)\}$ is a compound Poisson process. It particular, its jump times can be enumerated increasingly.

It is not the case when γ is only sigma-finite.

(\mathcal{G}_t) Poisson measures (II)

Definition (Space-time (G_t) Poisson measure)

 $Q(\mathrm{d}t,\mathrm{d}x)$ is a (\mathcal{G}_t) -Poisson measure on $\mathbb{R}^+ \times E$ of mean measure $\mathrm{Leb}(\mathrm{d}t)\gamma(\mathrm{d}x)$ iff $\forall A_1,...,A_n$ disjoint sets with $\gamma(A_i)<\infty$, the counting processes $Q_t(A_i)$ defined for i=1..p by

$$Q_t(A_i) = Q([0, t] \times A_i), \quad \forall t \geqslant 0$$

are independent \mathcal{G}_t -Poisson processes of intensity $\gamma(A_i)$.

$$\begin{split} \mathsf{E}[Q_t(A)] &= t\gamma(A) \quad \Leftrightarrow \\ \mathsf{E}[\int_{\mathbb{R}^+ \times E} \mathbb{1}_{[0,t] \times A}(s,x) Q(\mathrm{d}s,\mathrm{d}x)] &= \mathsf{E}[\int_{\mathbb{R}^+ \times E} \mathbb{1}_{[0,t] \times A}(s,x) \gamma(\mathrm{d}x) \mathrm{d}s]. \end{split}$$

▶ **Generalization** to predictable processes $(G(s,x)) \in \mathcal{P}(\mathcal{G}_t) \otimes \mathcal{E}$

$$\mathsf{E}[\int_{\mathbb{R}^+\times E} G(s,x)Q(\mathrm{d} s,\mathrm{d} x)] = \mathsf{E}[\int_{\mathbb{R}^+\times E} G(s,x)\gamma(\mathrm{d} x)\mathrm{d} s].$$

Stochastic intensity

Stochastic intensity of space-time point process N

Predictable random measure $\lambda(\omega, s, dx)$ such that for all $G \in \mathcal{P}(\mathcal{G}_t) \otimes \mathcal{E}$

$$\mathsf{E}[\int_{\mathbb{R}^+ \times E} G(s, z) N(\mathrm{d}s, \mathrm{d}z)] = \mathsf{E}[\int_{\mathbb{R}^+ \times E} G(s, z) \lambda(s, \mathrm{d}x) \mathrm{d}s]. \tag{4}$$

Equivalently,

The counting process $(N_t(A))$ has the (\mathcal{G}_t) intensity $(\lambda_t(A)) = (\int_A \lambda(t, dx))$.

- (\mathcal{G}_t) intensity of Poisson random measure : $\lambda(s, dx) = \gamma(dx)$.
- The (\mathcal{G}_t) multivariate intensity of a multivariate counting process $\mathbf{N} = (N^1,...,N^p)$ is the vector $\boldsymbol{\lambda} = (\lambda^1,...,\lambda^p)$ of the components (\mathcal{G}_t) -intensity processes.

Characterization of space-time point processes

- A Poisson measure is uniquely characterized by its intensity.
- ▶ If $\mathcal{G}_t = \mathcal{G}_0 \vee \sigma(N_s(B) : s \leq t, B \in \mathcal{E})$, then two marked point processes with (\mathcal{G}_t) intensity $(\lambda(t, dx))$ have the same distribution.

But

- Poor structure random environment/external noise which is \mathcal{G}_0 -measurable.
- Existence results in distribution, no pathwise construction.

Outline

- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
 - Process with bounded intensity
 - General case
 - A first "converse result"
- 3 Strong comparison of point processes
- 4 Birth-Death-Swap process in random environment

Pathwise representation of point processes

Two main approaches:

- Multiple random time changes (Kurtz (1980), Garcia (1995), Garcia and Kurtz (2008)).
- ► Thinning and projection of Poisson measures
 - Population dynamics (Fournier and Méléard (2004), Garcia and Kurtz (2006), Méléard and Tran (2009), El Karoui and Boumezoued (2016)), interacting Hawkes processes (Chevallier et. al (2015), Delattre et al (2016),..), PDP (Lemaire et al. (2018)...)
 - General construction in the spirit of Massoulié (1998): Point processes described by an intensity process+ Poisson measure.

Pathwise representation of point processes

Two main approaches:

- Multiple random time changes (Kurtz (1980), Garcia (1995), Garcia and Kurtz (2008)).
- Thinning and projection of Poisson measures
 - General construction in the spirit of Massoulié (1998): Point processes described by an intensity process+ Poisson measure.

First step: How to simulate a counting process with bounded intensity $\lambda_t \leqslant \bar{\lambda}$?

▶ Naive idea: take $N_t^{\lambda} = \int_0^t \frac{\lambda_s}{\overline{\lambda}} dN_s$ with N Poisson process of intensity $\overline{\lambda}$. $(N_t^{\lambda} - \int_0^t \lambda_s ds)_{t \geqslant 0}$ is a local martingale.

Pathwise representation of point processes

Two main approaches:

- Multiple random time changes (Kurtz (1980), Garcia (1995), Garcia and Kurtz (2008)).
- Thinning and projection of Poisson measures
 - General construction in the spirit of Massoulié (1998): Point processes described by an intensity process+ Poisson measure.

First step: How to simulate a counting process with bounded intensity $\lambda_t \leqslant \bar{\lambda}$?

▶ Naive idea: take $N_t^{\lambda} = \int_0^t \frac{\lambda_s}{\overline{\lambda}} dN_s$ with N Poisson process of intensity $\overline{\lambda}$. $(N_t^{\lambda} - \int_0^t \lambda_s ds)_{t \geq 0}$ is a local martingale.

But N^{λ} is **not a counting process**.

Solution: Increase space dimension and represent space-time point processes as strong solutions of SDEs driven by Poisson measures.

Outline

- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
 - Process with bounded intensity
 - General case
 - A first "converse result"
- 3 Strong comparison of point processes
 - Point processes with ordered intensities
 - General case
 - Converse result
- 4 Birth-Death-Swap process in random environment

Thinning with bounded intensity

Simulation of counting process N with given (stochastic) bounded intensity $\lambda_t \leqslant \bar{\lambda}$ (Lewis and Shedler (1979)):

Thinning with bounded intensity

Simulation of counting process N with given (stochastic) bounded intensity $\lambda_t \leqslant \bar{\lambda}$ (Lewis and Shedler (1979)):

■ Take Q Marked Poisson measure on $\mathbb{R}^+ \times [0,1]$ with intensity $\bar{\lambda} ds \otimes du$:

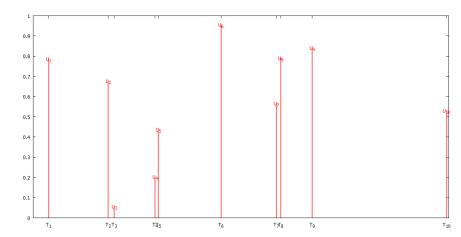
$$Q(ds,du) = \sum_{n\geqslant 1} \delta_{T_n}(s)\delta_{U_n}(u)$$

with

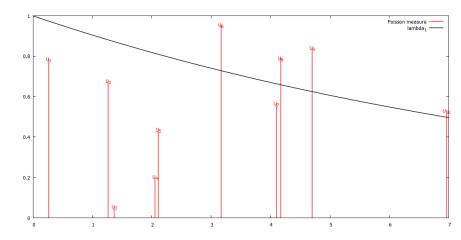
- $(T_n)_{n\geqslant 1}$ jump times of Poisson process of intensity $\bar{\lambda}$.
- $(U_n)_{n\geqslant 1}$ i.i.d variables on [0,1].
- 2 Accept T_n as jump time of N if

$$U_n \leqslant \frac{\lambda_{T_n}}{\bar{\lambda}}.$$

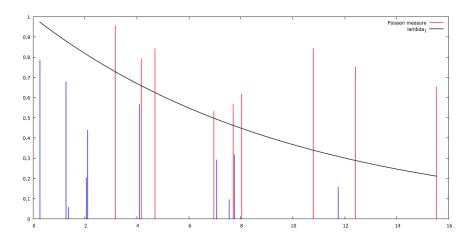
Step 1: Simulation of $\{(T_n, U_n)_{n\geqslant 0}\}.$



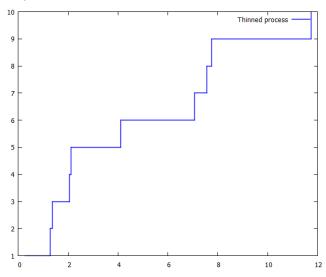
Step 2: $U_n \leqslant \frac{\lambda_{T_n}}{\bar{\lambda}}$.



Step 2: $U_n \leqslant \frac{\lambda_{T_n}}{\overline{\lambda}}$.



Step 3: Projection on \mathbb{R}^+



Thinning equation: bounded case (I)

$$\textit{N}_t = \sum_{n \geqslant 1} \mathbb{1}_{\left\{\textit{T}_n \leqslant t\right\}} \mathbb{1}_{\left\{\textit{U}_n \leqslant \frac{\lambda_{\textit{T}_n}}{\lambda}\right\}} = \sum_{n \geqslant 1} \mathbb{1}_{\left\{\textit{T}_n \leqslant t\right\}} \mathbb{1}_{\textit{D}^{\lambda}} (\textit{T}_n, \textit{U}_n),$$

with D^{λ} the predictable set:

$$D^{\lambda} = \{(s, u); u \leqslant \frac{\lambda_s}{\overline{\lambda}}\}.$$

Thinning equation: bounded case (I)

$$N_t = \sum_{n\geqslant 1} \mathbb{1}_{\{T_n\leqslant t\}} \mathbb{1}_{\{U_n\leqslant \frac{\lambda_{T_n}}{\lambda}\}} = \sum_{n\geqslant 1} \mathbb{1}_{\{T_n\leqslant t\}} \mathbb{1}_{D^{\lambda}}(T_n, U_n),$$

with D^{λ} the predictable set:

$$D^{\lambda} = \{(s, u); u \leqslant \frac{\lambda_s}{\overline{\lambda}}\}.$$

Thinning equation associated with simulation

Step 2 Projection of Q on D^{λ} :

$$Q^D(ds,du) = \mathbb{1}_{D^\lambda}(s,u)Q(ds,du) = \sum_{n>1} \mathbb{1}_{D^\lambda}(T_n,U_n)\delta_{T_n}(s)\delta_{U_n}(u).$$

Step 3 Projection on \mathbb{R}^+ :

$$N_t^{\lambda} = \int_0^t \int_{[0,1]} Q^D(ds,du) = \int_0^t \int_{[0,1]} \mathbb{1}_{\{u \leqslant rac{\lambda_s}{\lambda}\}} Q(ds,du).$$

Thinning equation: bounded case (II)

▶ Stochastic intensity: Let $C \in \mathcal{P}(\mathcal{G}_t)$

$$\mathsf{E}[\int_0^t C_s \mathrm{d} N_s^\lambda] = \mathsf{E}[\int_0^t \int_{[0,1]} C_s \mathbb{1}_{\{u \leqslant \frac{\lambda_s}{\lambda}\}} Q(ds,du)]$$

Thinning equation: bounded case (II)

▶ Stochastic intensity: Let $C \in \mathcal{P}(\mathcal{G}_t)$

$$\begin{split} & \mathsf{E} \big[\int_0^t C_s \mathrm{d} N_s^{\lambda} \big] = \mathsf{E} \big[\int_0^t \int_{[0,1]} C_s \mathbb{1}_{\left\{ u \leqslant \frac{\lambda_s}{\lambda} \right\}} Q(ds, du) \big] \\ & = \mathsf{E} \big[\int_0^t \int_{[0,1]} C_s \mathbb{1}_{\left\{ u \leqslant \frac{\lambda_s}{\lambda} \right\}} \bar{\lambda} \mathrm{d} u \mathrm{d} s \big] \end{split}$$

Thinning equation: bounded case (II)

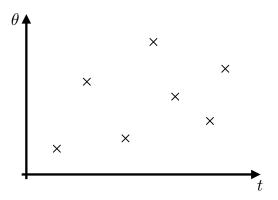
▶ Stochastic intensity: Let $C \in \mathcal{P}(\mathcal{G}_t)$

$$\begin{split} & \mathsf{E} \big[\int_0^t C_s \mathrm{d} N_s^{\lambda} \big] = \mathsf{E} \big[\int_0^t \int_{[0,1]} C_s \mathbb{1}_{\left\{ u \leqslant \frac{\lambda_s}{\lambda} \right\}} Q(ds, du) \big] \\ & = \mathsf{E} \big[\int_0^t \int_{[0,1]} C_s \mathbb{1}_{\left\{ u \leqslant \frac{\lambda_s}{\lambda} \right\}} \bar{\lambda} \mathrm{d} u \mathrm{d} s \big] \\ & = \mathsf{E} \big[\int_0^t \mathrm{d} s \left(C_s \bar{\lambda} \int_0^{\frac{\lambda_s}{\lambda}} \mathrm{d} u \right) \big] = \mathsf{E} \big[\int_0^t C_s \lambda_s \mathrm{d} s \big] \end{split}$$

Outline

- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
 - Process with bounded intensity
 - General case
 - A first "converse result"
- 3 Strong comparison of point processes
 - Point processes with ordered intensities
 - General case
 - Converse result
- 4 Birth-Death-Swap process in random environment

Thinning equation: General case

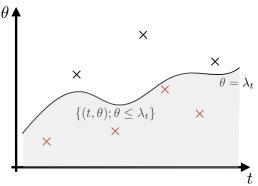


Space-time (\mathcal{G}_t) Poisson measure Q on $\mathbb{R}^+ \times \mathbb{R}^+$ of mean measure $\mathrm{d}t \otimes \mathrm{d}\theta$.

No increasing enumeration of jumps times.

Thinning equation: General case

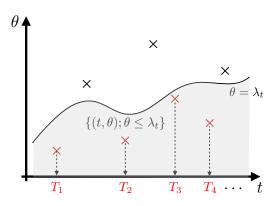
Given a predictable process $(\lambda_t)_{t\geqslant 0}$ with $\int_0^t \lambda_s \mathrm{d}s < +\infty$ a.s. $\forall t\geqslant 0$ (nonexplosion condition)



Restriction to predictable subset:

$$\{(s,\theta);\ \theta\leqslant\lambda_s(\omega),\ s\leqslant t\}$$

Thinning equation: General case



"Theoretical" Thinning

 $N_t^{\lambda} = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\{\theta \leqslant \lambda_s\}} Q(\mathrm{d} s, \mathrm{d} \theta)$ is a counting process of (\mathcal{G}_t) -intensity λ_t .

Some remarks

- ► **General case**: Thinning does not give a simulation procedure.
- ▶ **Bounded case**: Q can replaced by $\mathbb{1}_{\{u \leqslant \bar{\lambda}\}} Q$ Poisson measure of intensity $\mathrm{d} s \otimes \mathbb{1}_{\{u \leqslant \bar{\lambda}\}} du$.
- \sim Compound Poisson process of mean measure $\bar{\lambda} ds \otimes \frac{1}{\bar{\lambda}} \mathbb{1}_{\{u \leqslant \bar{\lambda}\}} du$.
- (λ_s) does not characterizes the distribution of N.

$$N_t^{\lambda} = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\{u \leqslant \lambda_s\}} \frac{Q}{Q} (\mathrm{d}s, \mathrm{d}u). \tag{5}$$

Some remarks

- ► **General case**: Thinning does not give a simulation procedure.
- ▶ **Bounded case**: Q can replaced by $\mathbb{1}_{\{u \leqslant \bar{\lambda}\}} Q$ Poisson measure of intensity $\mathrm{d} s \otimes \mathbb{1}_{\{u \leqslant \bar{\lambda}\}} du$.
- \sim Compound Poisson process of mean measure $\bar{\lambda} ds \otimes \frac{1}{\bar{\lambda}} \mathbb{1}_{\{u \leqslant \bar{\lambda}\}} du$.
- (λ_s) does not characterizes the distribution of N.

$$N_t^{\lambda} = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\{u \leqslant \lambda_s\}} \frac{Q}{Q} (\mathrm{d}s, \mathrm{d}u). \tag{5}$$

▶ Space-time point processes of (\mathcal{G}_t) intensity $\lambda(s, dx) = \mu(s, x)\gamma(dx)$:

$$N^{\lambda}(\mathrm{d}t,\mathrm{d}x) = \int_0^t \int_{\mathbb{R}^+ \times E} \mathbb{1}_{\{u \leq \mu(s,x)\}} Q(\mathrm{d}s,\mathrm{d}u,\mathrm{d}x).$$

with $Q(\mathcal{G}_t)$ space-time Poisson measure on $\mathbb{R}^+ \times \mathbb{R}^+ \times \mathcal{E}$ of mean measure $\mathrm{d} s \otimes \mathrm{d} \theta \otimes \gamma(\mathrm{d} x)$.

SDE driven by Poisson measure

▶ When $\lambda_t = \alpha(\omega, t, [N]_{t^-})$ is a functional of N, (5) \Rightarrow SDE driven by Q:

$$N_t^{\alpha} = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\{\theta \leqslant \alpha(s, [N^{\alpha}]_{s^-})\}} Q(\mathrm{d}s, \mathrm{d}\theta), \quad dN_t^{\alpha} = Q(\mathrm{d}t,]0, \alpha(t, [N^{\alpha}]_{t^-})])$$

► Existence of a well-defined (non-exploding) solution?

SDE driven by Poisson measure

▶ When $\lambda_t = \alpha(\omega, t, [N]_{t^-})$ is a functional of N, (5) \Rightarrow SDE driven by Q:

$$N_t^\alpha = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\{\theta \leqslant \alpha(s, [N^\alpha]_{s^-})\}} Q(\mathrm{d}s, \mathrm{d}\theta), \quad dN_t^\alpha = Q(\mathrm{d}t,]0, \alpha(t, [N^\alpha]_{t^-})])$$

- Existence of a well-defined (non-exploding) solution?
 - If α is uniformly bounded by a constant $\bar{\lambda}$: same as in bounded case (recursive procedure).
 - Even in simpler case α is not uniformly bounded. Example: Linear birth process, $\lambda_t = bN_{t-}$.
- ► In the following: Existence, uniqueness and nonexplosion by strong domination.

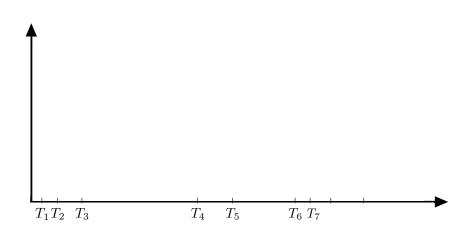
Outline

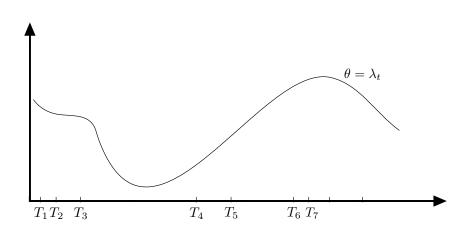
- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
 - Process with bounded intensity
 - General case
 - A first "converse result"
- 3 Strong comparison of point processes
 - Point processes with ordered intensities
 - General case
 - Converse result
- 4 Birth-Death-Swap process in random environment

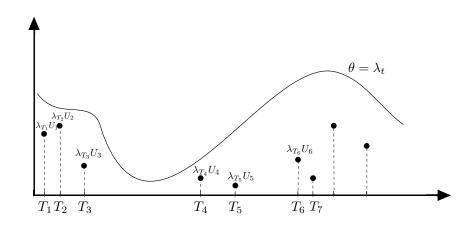
If a counting process N^{λ} admits a (\mathcal{G}_t) -intensity (λ_t) , is there a representation of N^{λ} in terms of stochastic integral with respect to some Poisson process?

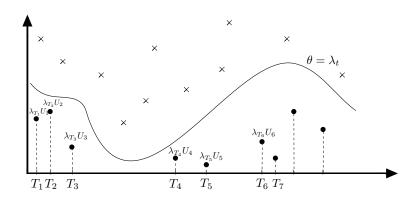
If a counting process N^{λ} admits a (\mathcal{G}_t) -intensity (λ_t) , is there a representation of N^{λ} in terms of stochastic integral with respect to some Poisson process?

- ► **YES**: see e.g. Grigelionis (1971), Jacod (1980), Massoulié (1998).
- Ingredients:
 - A space-time Poisson measure $\hat{Q}(\mathrm{d} s,\mathrm{d} \theta)$ of intensity $\mathrm{d} s\otimes \mathrm{d} \theta$ and independent of \mathcal{G}_{∞} .
 - A sequence of i.i.d variables $(U_n)_{n\geqslant 0}$ uniform on [0,1] and independent of \mathcal{G}_{∞} .









Sketch of the proof

$$\text{ Let } Q(\mathrm{d} s, \mathrm{d} \theta) = \sum_{n \geqslant 1} \delta_{T_n}(s) \delta_{(\lambda_{T_n} U_n)}(\theta) + \int_{\mathbb{R}^+ \times \mathbb{R}^+} \mathbb{1}_{\{\theta \geqslant \lambda_s\}} \hat{Q}(\mathrm{d} s, \mathrm{d} \theta).$$

- $\text{ Show that } N_t^{\lambda} = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\{\theta \leqslant \lambda_s\}} Q(\mathrm{d} s, \mathrm{d} \theta).$
- 3 Show that Q is a space time Poisson measure of mean measure $\mathrm{d} s \otimes \mathrm{d} \theta.$

Outline

- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
- 3 Strong comparison of point processes
 - Point processes with ordered intensities
 - General case
 - Converse result
- 4 Birth-Death-Swap process in random environment

A standard nonexplosion criterion

Existence of non-exploding solution to:

$$N_t^{\alpha} = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\{\theta \leqslant \alpha(s, [N^{\alpha}]_{s^-})\}} Q(\mathrm{d}s, \mathrm{d}\theta), \quad dN_t^{\alpha} = Q(\mathrm{d}t,]0, \alpha(t, [N^{\alpha}]_{t^-})])?$$

A standard assumption

Sublinear growth:

$$\alpha(\omega, s, \lceil n \rceil) \leq c + bn(s)$$

- ▶ Example: Linear Hawkes process $(\alpha(s, [n]) = b + \int_0^s h(s r) dn(s))$ with bounded h.
- Under this assumption:

$$\mathsf{E}[N_t^\alpha] = \mathsf{E}[\int_s^t \alpha(s, [N^\alpha]_{s^-}) \mathrm{d}s] \leqslant \mathsf{E}[\int_s^t (c + b N_{s^-}^\alpha) \mathrm{d}s] = ct + \int_s^t b \mathsf{E}[N_{s^-}^\alpha] \mathrm{d}s.$$

Gronwall lemma:
$$E[N_t^{\alpha}] \leq ce^{bt}$$
.

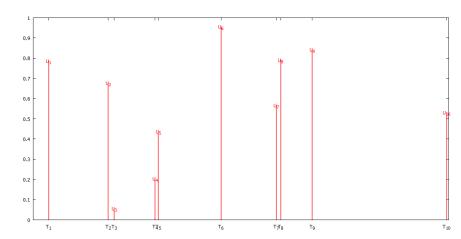
Strong comparison of point processes

- Issue: domination by deterministic function, linear assumption can be relaxed (Markov case).
- Existence, uniqueness and nonexplosion by strong domination.
- Comparison of counting processes with ordered intensity processes: Preston (1975), Bhaskaran (1986), Rolski and Szekli (1991), Bezborodov (2015)).
- Pathwise representation: well-adapted to study this problem, simplifies proofs significantly, "strong" pathwise comparison.

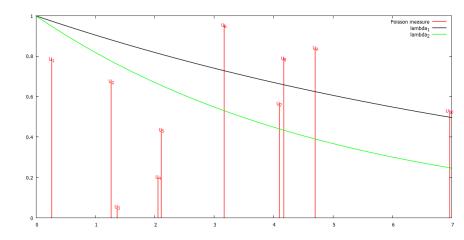
Outline

- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
 - Process with bounded intensity
 - General case
 - A first "converse result"
- 3 Strong comparison of point processes
 - Point processes with ordered intensities
 - General case
 - Converse result
- 4 Birth-Death-Swap process in random environment

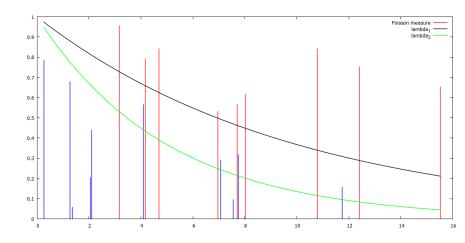
$$\lambda^{2}(t) = e^{-0.2t} \le \lambda^{1}(t) = e^{-0.1t}.$$



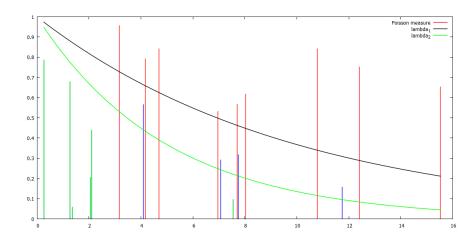
$$\lambda^{2}(t) = e^{-0.2t} \le \lambda^{1}(t) = e^{-0.1t}.$$



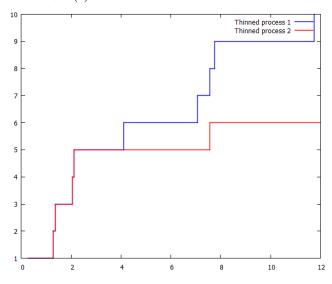
$$\lambda^{2}(t) = e^{-0.2t} \le \lambda^{1}(t) = e^{-0.1t}.$$



$$\lambda^{2}(t) = e^{-0.2t} \le \lambda^{1}(t) = e^{-0.1t}.$$



$$\lambda^{2}(t) = e^{-0.2t} \le \lambda^{1}(t) = e^{-0.1t}.$$



Counting processes with ordered intensity

Let N^1 and N^2 two counting processes with ordered (\mathcal{G}_t) -intensities:

$$\lambda_t^2 \leqslant \lambda_t^1 \quad t \geqslant 0$$
,

and defined by:

$$N_t^i = \int_0^t \int_{\mathbb{R}^+} \mathbf{1}_{\{u \leqslant \lambda_s^i\}} Q(\mathrm{d}s, d\theta), \quad i = 1, 2.$$

$$\qquad \qquad \quad \ \ \, \{u\leqslant \lambda_s^2\} \subset \{u\leqslant \lambda_s^1\} \text{ so that } N_t^2\leqslant N_t^1, \quad \forall t\geqslant 0.$$

Counting processes with ordered intensity

Let N^1 and N^2 two counting processes with ordered (\mathcal{G}_t) -intensities:

$$\lambda_t^2 \leqslant \lambda_t^1 \quad t \geqslant 0,$$

and defined by:

$$N_t^i = \int_0^t \int_{\mathbb{R}^+} \mathbf{1}_{\{u \leqslant \lambda_s^i\}} Q(\mathrm{d}s, d\theta), \quad i = 1, 2.$$

Stronger result

Let
$$Q^1(\mathrm{d} s,d\theta)=\mathbf{1}_{\{u\leqslant\lambda_s^1\}}Q(ds,d\theta)=\sum_{n\geqslant 1}\delta_{\mathcal{T}_n^1}(s)\delta_{\theta_n}(\theta),$$

$$N_t^1 = \int_0^t \int_{\mathbb{R}^+} Q^1(\mathrm{d}s, d\theta), \quad N_t^2 = \int_0^t \int_{\mathbb{R}^+} \mathbf{1}_{\{u \leqslant \lambda_s^2\}} Q^1(\mathrm{d}s, d\theta).$$

$$N_t^2=\sum_{n\geqslant 1}\mathbb{1}_{\{T_n^1\leqslant t\}}\mathbb{1}_{\{ heta_n\leqslant \lambda_{T_n}^2\}}$$
 All jumps of N^2 are jumps of N^1

Strong domination of space-time point processes

• A space-time point process N^2 is **strongly dominated** by space-time point process N^1 , $N^2 < N^1$ if

 $N^1 - N^2$ is a space-time point process.

$$N^2 < N^1 \Leftrightarrow \text{all jumps of } N^2 \text{ are jumps of } N^1.$$

▶ Property If two counting processes N^1 and N^2 have ordered intensities and are generated with the same Poisson measure, then $N^2 < N^1$.

Difficulty:

▶ When $\lambda_t = \alpha(\omega, t, [N]_{t^-})$: natural order of random intensity functionals does not necessary imply an order on intensities processes.

Outline

- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
 - Process with bounded intensity
 - General case
 - A first "converse result"
- 3 Strong comparison of point processes
 - Point processes with ordered intensities
 - General case
 - Converse result
- 4 Birth-Death-Swap process in random environment

Strong order of intensity functionals

▶ Let $\alpha, \beta : \Omega \times \mathbb{R}^+ \times \mathcal{A} \to \mathbb{R}^+$ two (\mathcal{G}_t) -predictable functionals. α is **strongly majorized** by β , $\alpha \leqslant_s \beta$ if

$$\forall t \ge 0, \sup_{[m] < [n]} \alpha(t, [m]) \le \beta(t, [n]) \text{ a.s.}$$
 (6)

► EXAMPLE
$$\alpha(t, [n]) = \lambda_t + \int_0^t h_1(t-s) dn(s)$$
 and $\alpha(t, [n]) = \lambda_t + \int_0^t h_2(t-s) dn(s)$ with $0 \le h_1 \le h_2$.

Construction by strong domination (1D case)

Proposition (El Karoui, K.)

Assume that there exists a unique well-defined solution N^{β} of:

$$\mathrm{d}N_t^{\beta} = Q(\mathrm{d}t,]0, \beta(t, [N^{\beta}]_{t-})]).$$

(i) Then, for all $\alpha \leq_s \beta$, there exists a unique solution of the SDE

$$dN_t^{\alpha} = Q(dt,]0, \alpha(t, [N^{\alpha}]_{t-})]). \tag{7}$$

(ii) Furthermore, N^{α} is strongly dominated by N^{β} ($N^{\alpha} < N^{\beta}$), i.e.

 $N^{\beta} - N^{\alpha}$ is a counting process (jump times of $N^{\alpha} = \text{jump times of } N^{\beta}$).

Application to nonexplosion criteria (I)

$$\alpha \leqslant_{\mathsf{s}} \beta \Rightarrow$$

$$N_t^\alpha = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\theta \leqslant \alpha(t, [N^\alpha]_{t-})} Q(\mathrm{d}s, \mathrm{d}\theta) < N_t^\beta = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\theta \leqslant \beta(t, [N^\beta]_{t-})} Q(\mathrm{d}s, \mathrm{d}\theta)$$

▶ Pathwise comparison result: $N_t^{\alpha} \leq N_t^{\beta}$, for f nonnegative function

$$\int_0^t f(s) \mathrm{d} N_s^\alpha \leq \int_0^t f(s) \mathrm{d} N_s^\beta, \dots$$

Application to nonexplosion criteria (I)

$$\alpha \leqslant_{s} \beta \Rightarrow$$

$$N_t^\alpha = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\theta \leqslant \alpha(t, [N^\alpha]_{t-})} Q(\mathrm{d} s, \mathrm{d} \theta) < N_t^\beta = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\theta \leqslant \beta(t, [N^\beta]_{t-})} Q(\mathrm{d} s, \mathrm{d} \theta)$$

▶ Pathwise comparison result: $N_t^{\alpha} \leq N_t^{\beta}$, for f nonnegative function

$$\int_0^t f(s) \mathrm{d} N_s^\alpha \leq \int_0^t f(s) \mathrm{d} N_s^\beta, \dots$$

- A FIRST APPLICATION: case $\beta(t, [n]) = c + bn(t)$
 - N^{β} is a Markov birth process of (\mathcal{G}_t) -intensity $(c + bN_t^{\beta})$. Its distribution does not depends on Q.
 - $\alpha \leqslant_{s} \beta$ corresponds to Sublinear growth condition.

$$\Rightarrow N_t^{\alpha} \leq N_t^{\beta} < \infty$$
, for all $t \geq 0$.

Application to nonexplosion criteria (II)

Goal Define a class of dominating intensity functionals β associated with nonexploding processes.

- ▶ Preceding proof does not rely on the linearity of $\beta(t, \lceil n \rceil) = c + bn(t)$.
- ► EXTENSION TO NONLINEAR DOMINATING INTENSITIES
 - Markov birth processes (β(t, [n]) = g(n(t)))): n.s.c for nonexplosion

$$\sum_{j=0}^{\infty} \frac{1}{g(j)} = \infty. \tag{8}$$

- If $\alpha \leqslant_s g$ with g verifying (8), unique nonexploding solution N^{α} of (7).
- Sometimes known as the Jacobsen condition (proof without pathwise representation much harder!).

Application to nonexplosion criteria (III)

Goal Define a class of dominating intensity functionals β associated with nonexploding processes.

▶ A SECOND APPLICATION: if $\alpha \leqslant_s (\lambda_t)$ with $\int_0^t \lambda_s \mathrm{d}s < \infty$, then unique nonexploding solution N^{α} of (7).

Application to nonexplosion criteria (III)

Goal Define a class of dominating intensity functionals β associated with nonexploding processes.

- A SECOND APPLICATION: if $\alpha \leqslant_s (\lambda_t)$ with $\int_0^t \lambda_s \mathrm{d}s < \infty$, then unique nonexploding solution N^{α} of (7).
- Corollary of the proposition

If $\alpha \leqslant_s \beta$ with $\beta(t, [n]) = k_t g(n(t))$, (k_t) predictable locally bounded process and g verifying $\sum \frac{1}{g(j)}$, then (7) admits a unique well-defined solution N^{α} .

Other following results

- ▶ Corollary 2: $\forall \alpha \leqslant_s \beta$, the sequence of jump times of N^β is a localizing sequence of the local martingales $N_t^\alpha \int_0^t \alpha(s, N_s^\alpha) ds$.
- ▶ Corollary 3: Let $(\alpha^i)_{i \in I}$ be a family of intensity functionals with $\alpha^i \leq_s \beta$ and:

$$\mathrm{d}N_t^i = Q(\mathrm{d}t,]0, \alpha^i(t, [N]_{t^-})])$$

Then $(N^i)_{i \in I}$ is tight.

Straigthforward extension to strong comparison for space-time point processes.

Sketch of the proof

$$\alpha \leqslant_{\mathfrak{s}} \beta = N^{\beta},$$

$$dN_{t}^{\alpha} = Q(\mathrm{d}t, [0, \alpha(\omega, t, N_{t-}^{\alpha})]) ? \tag{9}$$

▶ **Step 1**: replace Q by

$$Q^{\beta}(\mathrm{d}t,\mathrm{d}\theta)=\mathbbm{1}_{\{\theta\leqslant\beta(t,[N^{\beta}]_{t^{-}})\}}Q(\mathrm{d}t,\mathrm{d}\theta)=\sum_{n\geqslant1}\delta_{T_{n}^{\beta}}(\mathrm{d}t)\delta_{\theta_{n}}(\mathrm{d}s)$$

$$d\tilde{N}_{t}^{\alpha} = Q^{\beta}(\mathrm{d}t,]0, \alpha(\omega, t, \tilde{N}_{t-}^{\alpha})]). \tag{10}$$

Jumps times of Q^g can be enumerated increasingly \Rightarrow (10).

▶ Step 2: show equality between (9) and (10).

Remark The proof also gives a simulation algorithm.

Outline

- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
 - Process with bounded intensity
 - General case
 - A first "converse result"
- 3 Strong comparison of point processes
 - Point processes with ordered intensities
 - General case
 - Converse result
- 4 Birth-Death-Swap process in random environment

Converse result (I)

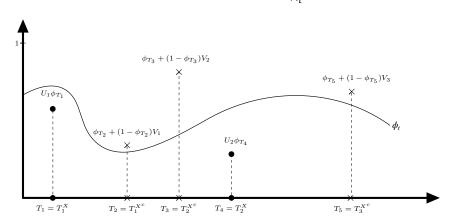
Let N^{λ} with (\mathcal{G}_t) - intensity (λ_t) and such that $N^{\alpha} < N^{\beta}$. Is there a representation of N^{λ} in terms of stochastic integral with respect to a marked process with same jumps than N^{β} ?

- YES
- Ingredients:
 - A sequence of i.i.d variables $(U_n)_{n\geqslant 0}$ uniform on [0,1] and independent of \mathcal{G}_{∞} .
 - A sequence of i.i.d variables $(V_n)_{n\geqslant 0}$ uniform on [0,1] and independent of \mathcal{G}_{∞} .
- ► See also Rolski and Szekli (1991) (distributional viewpoint)

Converse result (II)

Notations:

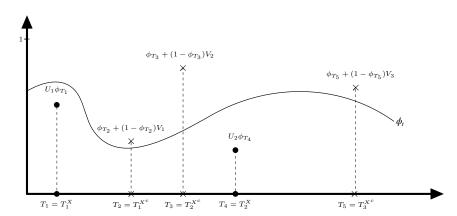
$$X = N^{\alpha}, \quad X^{c} = N^{\beta} - N^{\alpha}, \quad \phi_{t} = \frac{\lambda_{t}}{\lambda_{t}^{\beta}} \leqslant 1.$$



Converse result (II)

Notations:

$$X = N^{\alpha}, \quad X^{c} = N^{\beta} - N^{\alpha}, \quad \phi_{t} = \frac{\lambda_{t}}{\lambda_{t}^{\beta}} \leqslant 1.$$



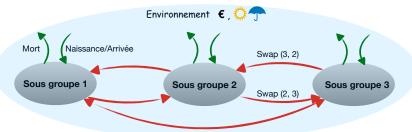
Corollary Two counting processes with the same intensity functional and strongly dominated by the same process have the same distribution. 61/66

Outline

- 1 Some generalities on point processes
- 2 Pathwise representation of point processes in random environment
- 3 Strong comparison of point processes
- 4 Birth-Death-Swap process in random environment

Birth Death Swap (BDS) systems

An example of BDS system



► The variability of the environment is taken into account ⇒ stochastic intensities:

P(ev of type
$$\gamma \in]t, t + dt]|\mathcal{G}_t) \simeq \mu^{\gamma}(\omega, t, Z_t)dt$$
.

References

Some additional references (I)

- [1] Brémaud, Pierre. Point processes and queues: martingale dynamics. Vol. 50. New York: Springer-Verlag, 1981.
- [2] Cinlar, Erhan. Probability and stochastics. Springer Science & Business Media, 2011.
- [3] Daley, Daryl J., and David Vere-Jones. An introduction to the theory of point processes. Springer Science & Business Media, 2007.
- [4] Garcia, Nancy L., and Kurtz, Thomas G. Spatial point processes and the projection method, In and Out of Equilibrium 2. Birkhäuser Basel, 2008. 271-298.

Some additional references (II)

- [6] Kaakaï, S. and El Karoui, Nicole. Birth Death Swap population in random environment and aggregation with two timescales, arXiv:1803.00790, 2020.
- [7] Kallenberg, Olav. Random measures, theory and applications. Springer International Publishing, 2017.
- [8] Massoulié, Laurent. Stability results for a general class of interacting point processes dynamics, and applications, Stochastic processes and their applications 75.1 (1998): 1-30.