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Some application of point processes

» Renewal of interest in point processes in the past years.
> Flexibility allows for the modeling of a wide range of phenomena in:

e Finance and Insurance (Dassios and Zho (2011), Giesecke and Kim
(2011), Bacry et al. (2015), Jaisson and Rosembaum (2015), El
Euch et. al. (2016)...)

o Neurosciences (Reynaut Bouret et al. (2013), Chevallier et al.
(2015), Galves and Lécherbach (2016)...)

o Individual-based model in biology and ecology (Fournier and Méléard
(2004), Champagnat et al. (2006), Méléard and Tran (2010), Billard
et al (2016)...)

o Chemical reactions (Andersen and Kurtz (2015))
o Epidemiology, cyber risk...

» Human longevity?

2/66



Point processes and longevity

> Observed data: population data (birth, death count).
L longevity indicators (life expectancy, death rates,...) are a
by-product of the population dynamics.

» Individual-based model for human populations (Bensusan (2010),
Boumezoued and El Karoui (2016)).

> lIssues:

o Non-stationarity, influence of macro-environment (EI Karoui et al.
(2018)).

o High heterogeneity: Structured population.

o Interactions = non-linearity.

v

Need for probabilistic tools to deal with this complexity.
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Point processes

> General theory on point processes measures : 60-70's.

> Several viewpoint to define point processes:
e Random counting measures (static).
o Random sets (static).
o In certain cases: Counting processes (multivariate, marked),

Dynamic viewpoint.

» Central concept: Intensity (measure).

But not sufficient to defined point processes in general settings.

> Pathwise construction.
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Some generalities on point processes

Pathwise representation of point processes in random environment
m Process with bounded intensity
m General case

m A first “converse result”

Strong comparison of point processes
m Point processes with ordered intensities
m General case

m Converse result

B Birth-Death-Swap process in random environment
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Some generalities on point processes
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» Filtered probability space (2, (G:), P).
» E Polish space and & its Borel o-algebra.

» P(G:) o-algebra of predictable processes generated by processes

Ce = Hljy ¢(t), t=0, He Gy,
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Random counting measure

Definition (Random counting measure/Point process (simple))

A random counting measure is a random measure M : Q x £ — N such
that M, : Ae £ — M(w, A) is a purely atomic and its every atom has

weight one, a.s.

» Equivalent viewpoint: M is a r.v taking values in the space of
counting measures.

» Mean measure of M:

» For any nonnegative measurable function f (f € £,),
M(f)(w) = J f(x)M(w,dx).
E
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Some properties of random measures

» EXAMPLE M is a Poisson random measure with measure p if:
o VAeE, M(A) ~ P(u(A))
o if Ai,..., Ap are disjoints then M(A;),..., M(A,) are independent.
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Some properties of random measures

» EXAMPLE M is a Poisson random measure with measure p if:
o VAEE, M(A) ~ P(u(A))
o if Ai,..., Ap are disjoints then M(A;),..., M(A,) are independent.
» PROPOSITION 1 The probability law of a random (counting)
measure M on (E, &) is uniquely determined by its Laplace
functional,
E[exp(—M(f))], feé&;.
Poisson measures: E[exp(—M(f))] = exp(— §(1 — e")dp).
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Some properties of random measures

» EXAMPLE M is a Poisson random measure with measure p if:
o VAeE, M(A) ~ P(u(A))
o if Ai,..., Ap are disjoints then M(A;),..., M(A,) are independent.

» PROPOSITION 1 The probability law of a random (counting)
measure M on (E, &) is uniquely determined by its Laplace
functional,

E[exp(—M(f))], feé&;.
Poisson measures: E[exp(—M(f))] = exp(— §(1 — e")dp).

» PROPOSITION 2 The probability law of a random counting measure
M on (E,E) is uniquely determined by the set of avoidance
probabilities:

P(M(A)=0), Aecé.

If P(M(A) = 0) = e #A with u sigma-finite, then M is a Poisson

measure.
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Point process viewpoint

» The point process associated with a sequence (X;) of (E, £)-random

variables is defined for all A€ & by

M(A) = ZﬂA(Xi)v (M= Z5X;)-
4

A

X

v

» Random set viewpoint: M(w) = {x € E; x = X;(w) for some i}. 10/66



Point process viewpoint

The point process associated with a sequence (X;) of (E,)-random

variables is defined for all A€ & by

M(A) = ZI[AO(/)a (M= Z(SX,»)-

> M(F) = § F(x)M(w,dx) = 3, F(X0).
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Point process viewpoint

The point process associated with a sequence (X;) of (E,)-random

variables is defined for all A€ & by

M(A) = ZHA(X,')’ (M= Z(SX,»)-

> M(F) = § F(x)M(w,dx) = 3, F(X0).

» PROPOSITION: If M is a random counting measure and p is o-finite,
M=>"6x,
i

with (X;) a sequence of r.v taking values on a enlargement (E,&) of
(E,&).
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Point processes on the half line

Case E = R,
» Atoms can be ordered: (X;) — increasing sequence (T),)nen-

» Associated counting process

0
Ny = N(]0, t]) = Z Lir,<e-
n=1
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(Source: Bremaud) 12/66



Point processes on the half line

Case E = R™: dynamic viewpoint.

» Associated counting process
0
Ny = N(]0, t]) = Z Lir,<ey-
n=1

» The random measure is seen as a r.v taking values in the space A of

counting functions.

> If N is adapted to a filtration (G;), for C € P(G;)

t
f CedNs = > Cr, 17,2y
0

n=0
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Poisson process

» DYNAMIC VIEWPOINT Let N be a counting process adapted to a
filtration (G;). Then N is a (G;)-Poisson process if:
(i) Independent increments:
Nsiph— Ns 1L Gs.
(ii) Stationary increments:
N(]s,s + h]) = Nosp — Ng £ Ny(~ P(A\h)).

» POINT PROCESS VIEWPOINT
[oe]
N=> Tir<yg (Sanz1 = (To— Too1)z1 iid ~E(N).
n=1

» RANDOM MEASURE VIEWPOINT For any f € £,

Ele ) —exp(~ | (1 (ds)), v =ALeb.
R+
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Intensity and martingale property

Let N be a (G;) Poisson process with intensity A.
» Let G = lHl]to,tl](S) with H € G;. Then,

J CodN] = E[Lp(Ny, — Nig)] = E[L4]A(t1 — to) — EJ CoAds]
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Intensity and martingale property

Let N be a (G;) Poisson process with intensity A.
» Let G = lHl]to,tl](S) with H € G;. Then,

J CodN] = E[Lp(Ny, — Nig)] = E[L4]A(t1 — to) — EJ CoAds]

» Generalization to nonnegative predictable processes C € P(G;):

0 0
E[f CdN,] — E[f Cads]. (1)
0 0
» Equivalent property:
(Ny — At) is a (G¢)-martingale.

» (1) can be generalized to define the intensity process of a counting

process.
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General case: stochastic intensity

Definition (Stochastic intensity (Bremaud))

Let N be an adapted counting process, and (\;) a nonnegative

(G¢)-process with .
vVt >0, f Asds < ooa.s.. (2)
0

Then, N admits the (G;)-intensity (\;) if for all nonnegative predictable

process C

B J " N = E[JOO Coreds]. (3)

0 0
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General case: stochastic intensity

Definition (Stochastic intensity (Bremaud))

Let N be an adapted counting process, and (\;) a nonnegative

(G¢)-process with

t
vVt >0, f Asds < ooa.s.. (2)
0
Then, N admits the (G;)-intensity (\;) if for all nonnegative predictable
process C
Q0 Q0
B J CodN,] — E[J Coreds]. (3)
0 0

» (2) is a non-explosion condition.

» Equivalenty: (N; — Sé Asds) is a (G;) local martingale.

» The existence of an intensity has to do with the absolute continuity
of the predictable compensator A of N w.r.t Leb. If \ exists,

Ap = 3 Asds.
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Examples and uniqueness

» NON-HOMOGENEOUS P0ISSON PROCESSES (NHP) (A;) = (f(t))

is a deterministic function.

» Cox/DOUBLY STOCHASTIC POISSON PROCESSES
(At) is Go-measurable.

(N; — Ns is independent of G given Go)

» Uniqueness of intensity process In order to be unique, ();) should

be taken predictable.
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Examples and uniqueness

» NON-HOMOGENEOUS P0ISSON PROCESSES (NHP) (A;) = (f(t))

is a deterministic function.

» Cox/DOUBLY STOCHASTIC POISSON PROCESSES
(At) is Go-measurable.

(N; — Ns is independent of G given Go)

» Uniqueness of intensity process In order to be unique, ();) should

be taken predictable.

» Does the intensity process characterizes the probability distribution

of a counting process?
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Martingale characterization

Let us come back to the example of the Poisson process:
Theorem (Martingale characterization of Poisson processes (Watanabe))

Let N be a counting process and f a locally integrable nonnegative
function such that N — Sé f(s)ds is (G:)-martingale.

Then N is a (G:)-non homogeneous Poisson process of intensity function
f.

» Extension The result still holds for Cox processes (Bremaud)

» SKETCH OF THE PROOF:
o Use (3) to show that (Z;) = (e"”N‘_Sé(em_l)f(s)ds)) is a
(Gt )-martingale.

o Laplace functional characterization.

18/66



General case(l)

Does the intensity process characterizes the probability distribution of a

counting process?
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General case(l)

Does the intensity process characterizes the probability distribution of a

counting process?
L, NO without further assumptions.

> Intensity process is often a function of the counting process itself.
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General case(l)

Does the intensity process characterizes the probability distribution of a
counting process?
L, NO without further assumptions.
> Intensity process is often a function of the counting process itself.
» EXAMPLES

o PURE BIRTH PROCESS WITH IMMIGRATION: As = a + bN.
Such a process is a Continuous Time Markov Chain (CTMC).
Ti, To— T1, T3 — Ta,... are independent and Ti41 — Tk ~ E(a + kb).

o (LINEAR) HAWKES PROCESS:

As =a+ JS h(s — r)dN.;.
As = f([N],-), with [N]s = (N¢as)e=o0 and £ :ne A (a+ {3 h(s — r)dn(r)).
In particular, if (f([N],-)) is the (G;)-intensity of N then (f([N],-))

is also its (F}') intensity.
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General case(ll)

Theorem (Jacod 75 (partial))

Let \: Q x Rt x A — R" a (G;)-predictable functional such that for all
counting path ne A and t > 0, A(w, t, [n]) € Go.

Then if two counting processes N and N’ have respective (G;) intensities
(Mw, t,[N]s-)) and (M(w, t,[N'],~)), then N and N’ have the same
distribution.

» Also weak existence result (under additional assumptions).
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General case(ll)

Theorem (Jacod 75 (partial))

Let \: Q x Rt x A — R" a (G;)-predictable functional such that for all
counting path ne A and t > 0, A(w, t, [n]) € Go.

Then if two counting processes N and N’ have respective (G;) intensities
(Mw, t,[N]:-)) and (M(w, t,[N'];-)), then N and N’ have the same

distribution.

» Also weak existence result (under additional assumptions).

BUT
Random environment/external noise is Go-measurable “known at time 0".

L, Stochastic intensity not sufficient to introduce a counting process.
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Space-time point process

Result originally stated for Marked point processes.
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Space-time point process

Result originally stated for Marked point processes.
» SPACE-TIME POINT PROCESS
o Random counting measure N on R™ x E.
o Defined relatively to (G;) if for all Ae £, N([0,t] x A) € G;

04 . "

X

R 4
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Marked point process

» SPACE-TIME POINT PROCESS
o Random counting measure N on R* x E.

o Defined relatively to (G;) if for all Ae £, N([0,t] x A) € G;

» MARKED POINT PROCESS on (Rt x E, Bg+ x &).

Ne(A) = N([0, t] x A) = Y Ti7,<yLa(Xn),

with (T,) increasing sequence and (X,)n>0 Sequence of r.v

taking values in the mark space E.
o In particular, (N:(E)) is a counting process.

> All space-time point processes are not Marked point processes!
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Examples (Marked Point processes)

» MULTIVARIATE COUNTING PROCESS E = {x1,...,Xp}

NI = N.({i}) = Zﬂ{nst}n{xn:m}, i=1,..p.

o Pure birth marked by discrete frailty variables, interacting Hawkes
processes...
o Usual hypothesis: components of (N, ..., N?) have no jumps in
common.
» COMPOUND POISSON PROCESS (T,) are jump times of a Poisson
process, marks (X;) are i.i.d ~ 7 and 1L of (T,).
A compound Poisson process is a Poisson random measure of mean

measure \ds ® .
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(G¢) Poisson measures (1)

Let v be a sigma-finite measure on (E,&).
Definition (Space-time (G;) Poisson measure)

Q(dt,dx) is a (G;)-Poisson measure on R x E of mean measure
dt ® y(dx) iff VAq, ..., A, disjoint sets with v(A;) < oo, the counting
processes Q:(A;) defined for i = 1..p by

Qt(A,') = Q([O, t] X A,‘), Vt>=0
are independent G;-Poisson processes of intensity v(A;).
» If E = {x}, Qis a (G:)-Poisson process of intensity v({x}).

> When 7 is finite, Q = {(T,, X,)} is a compound Poisson process. It

particular, its jump times can be enumerated increasingly.

It is not the case when + is only sigma-finite.
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(G¢) Poisson measures (Il)

Definition (Space-time (G;) Poisson measure)

Q(dt,dx) is a (G;)-Poisson measure on R x E of mean measure
Leb(dt)y(dx) iff VAq, ..., A, disjoint sets with y(A;) < o, the counting
processes Q:(A;) defined for i = 1..p by

Qt(A,') = Q([O, t] X A,'), vVt >0
are independent G;-Poisson processes of intensity v(A;).
E[Q:(A)] = 7(A) <

E[ f L0, (5:%) Q(ds, dx)] = E[ j L0105, X)7(dx)ds].
R+t xE R+t xE

» Generalization to predictable processes (G(s,x)) € P(G:) ® €

E[JW . G(s,x)Q(ds,dx)] = E[JR G(s,x)~(dx)ds].

+xE
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Stochastic intensity

STOCHASTIC INTENSITY OF SPACE-TIME POINT PROCESS N
Predictable random measure A\(w, s, dx) such that for all G € P(G;) ® €

E[Jw EG(s,z)N(ds, dz)] = E[Jw EG(s,z)/\(s,dx)ds]_ (4)

Equivalently,
The counting process (N;(A)) has the (G;) intensity (A = (4 (2, dx))

» (G;) intensity of Poisson random measure : A(s, dx) = v(dx).

» The (G;) multivariate intensity of a multivariate counting process
N = (N1, ..., NP) is the vector A = (Al,..., \P) of the components

(G:)-intensity processes.
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Characterization of space-time point processes

» A Poisson measure is uniquely characterized by its intensity.
» If Ge = Go v o(Ns(B) : s < t, Be &), then two marked point
processes with (G;) intensity (A(t,dx)) have the same distribution.

But

» Poor structure random environment/external noise which is

Go-measurable.

> Existence results in distribution, no pathwise construction.
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Outline

Pathwise representation of point processes in random environment
m Process with bounded intensity
m General case

m A first “converse result”
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Pathwise representation of point processes

Two main approaches:
> Multiple random time changes (Kurtz (1980), Garcia (1995), Garcia
and Kurtz (2008)).
» Thinning and projection of Poisson measures
o Population dynamics (Fournier and Méléard (2004), Garcia and
Kurtz (2006), Méléard and Tran (2009), El Karoui and Boumezoued
(2016)), interacting Hawkes processes (Chevallier et. al (2015),
Delattre et al (2016),..), PDP (Lemaire et al. (2018)...)
o General construction in the spirit of Massoulié (1998): Point

processes described by an intensity process+ Poisson measure.
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Pathwise representation of point processes

Two main approaches:
Multiple random time changes (Kurtz (1980), Garcia (1995), Garcia

>
and Kurtz (2008)).
Thinning and projection of Poisson measures

o General construction in the spirit of Massoulié (1998): Point

v

processes described by an intensity process+ Poisson measure.

First step: How to simulate a counting process with bounded intensity

Ae S A?
> Naive idea: take N} = é%

X. (N = §5 Asds)e=o is a local martingale.

dNs with N Poisson process of intensity

20/66



Pathwise representation of point processes

Two main approaches:
> Multiple random time changes (Kurtz (1980), Garcia (1995), Garcia

and Kurtz (2008)).
» Thinning and projection of Poisson measures
o General construction in the spirit of Massoulié (1998): Point

processes described by an intensity process+ Poisson measure.

First step: How to simulate a counting process with bounded intensity

Ae < A?
A
> Naive idea: take N} = édes with N Poisson process of intensity

X. (N = §5 Asds)e=o is a local martingale.
But N* is not a counting process.
> Solution: Increase space dimension and represent space-time point

processes as strong solutions of SDEs driven by Poisson measures.
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Pathwise representation of point processes in random environment

m Process with bounded intensity
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Thinning with bounded intensity

Simulation of counting process N with given (stochastic) bounded

intensity A¢ < A (Lewis and Shedler (1979)):
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Thinning with bounded intensity

Simulation of counting process N with given (stochastic) bounded
intensity A\; < A\ (Lewis and Shedler (1979)):
Take Q Marked Poisson measure on R* x [0, 1] with intensity
\ds ® du:

Q(ds, du) = 3. d7,(s)du,(u)

n=1
with
o (Ta)n=1 jump times of Poisson process of intensity .

o (Un)nz1 i.i.d variables on [0, 1].
Accept T, as jump time of N if

AT,
b

Up <
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NHP with intensity A, = e 7t

Step 1: Simulation of {(T,, Us)n=0}-

Ty TaT3 TIs Ts T7s -

32/66
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NHP with intensity A, = e 7t

T
Poisson measure
lambda;

—
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NHP with intensity A, = e 7t

T
Poisson measure
lambda;

32/66



Step 3: Projection on R

10

9

8

NHP with intensity A, = e 7t

T
Thinned process
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Thinning equation: bounded case (1)

Ny = Z 11{T,,<t}]1{u Oy T Z ]l{Tngt}]lDA(Tn’ U,),
n=oN

n=1 n=1
with D* the predictable set:

D* = {(s,u); u<

1y

> &
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Thinning equation: bounded case (1)

Ny = Z 11{T,,<t}]1{u Oy T Z 1i7,<e31p> (Th, Un),
=N

n=1 n=1
with D* the predictable set:

D* = {(s,u); u<

1y

> &

Thinning equation associated with simulation

Step 2 Projection of @ on D*:
QD(ds7 du) = 1pxr(s,u)Q(ds,du) = > 1pr(Tp, Uy)oT,(s)oy,(u).

n=1

Step 3 Projection on R*:

t t
N — J f QP (ds, du) = J f ]1{L’<§}Q(ds7 du).
0 Jio1 oJo1 2

33/66



Thinning equation: bounded case (Il)

» Stochastic intensity: Let C € P(G;)

f CdND] = f J01 Cell 201 Q(ds, du)]
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Thinning equation: bounded case (Il)

> Stochastic intensity: Let C € P(G;)

[J CodN2] = ij 1,2 Q(ds, du)]

=EJJ G1,, A Aduds
[ 0 J[o,1] tusx) |
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Thinning equation: bounded case (Il)

» Stochastic intensity: Let C € P(G;)

f C.dND = fjm 1<, Q(ds, du)]

=E[ f J 1y,c As}/\duds]
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Outline

Pathwise representation of point processes in random environment

m General case
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Thinning equation: General case

0 A

>
t

Space-time (G;) Poisson measure @ on R x R" of mean measure
dt ® de.

No increasing enumeration of jumps times.

36/66



Thinning equation: General case

Given a predictable process (A¢)=0 with Sé Aeds < 400 as. VE=0

(nonexplosion condition)

0 A

{(2,0);0 < A}
X

@._v

Restriction to predictable subset:

{(5,0); 0 < Xs(w), s <t}
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Thinning equation: General case

0 A

; S N
T T 5 Ty --- T

“Theoretical” Thinning

N} = SS Se+ Lio<x,} Q(ds,df) is a counting process of (Gy)-intensity ;.
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Some remarks

» General case: Thinning does not give a simulation procedure.

» Bounded case: Q can replaced by ]l{ugg\}Q Poisson measure of
intensity ds ® 1,5, du.

~ Compound Poisson process of mean measure \ds ® %]l{ug;\}du.

» (As) does not characterizes the distribution of N.

t
W= [ ten0tds.du) (5)
0 JRt
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Some remarks

» General case: Thinning does not give a simulation procedure.

» Bounded case: Q can replaced by ]l{ugg\}Q Poisson measure of
intensity ds ® 1,5, du.

~ Compound Poisson process of mean measure \ds ® %]l{u<;\}du.

» (As) does not characterizes the distribution of N.
t
Ny = f J 1y Q(ds, du). (5)
0 Jr+
» Space-time point processes of (G;) intensity A(s,dx) = u(s, x)y(dx):

t
N’\(dt,dx)=J f Ly pu(s 0y @(ds, du, dx).
0 JRtxE

with Q (G:) space-time Poisson measure on R x R™ x E of mean

measure ds ® df ® ~v(dx).
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SDE driven by Poisson measure

» When A\ = a(w, t,[N];-) is a functional of N, (5) = SDE driven by
Q:

t
N? = f J . ]l{aéa(s,[N“]r)}Q(dsvda)? dNta = Q(dt’]ov a(ta [Na]t_)])
0 JR

» Existence of a well-defined (non-exploding) solution?
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SDE driven by Poisson measure

» When A\ = a(w, t,[N];-) is a functional of N, (5) = SDE driven by
Q:

t
N? = f J . ]l{aéa(s,[NO‘]r)}Q(dsvda)? dNt('x = Q(dt’]ov a(ta [Na]t_)])
0 JR

» Existence of a well-defined (non-exploding) solution?

o If a is uniformly bounded by a constant A: same as in bounded case

(recursive procedure).

o Even in simpler case « is not uniformly bounded.

Example: Linear birth process, A\ = bN,—.

*> In the following: Existence, uniqueness and nonexplosion by strong

domination.
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Outline

Pathwise representation of point processes in random environment

m A first “converse result”
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“Converse” result (1)

If a counting process N* admits a (G;)-intensity (\;),
is there a representation of N* in terms of stochastic integral with

respect to some Poisson process?
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“Converse” result (1)

If a counting process N* admits a (G;)-intensity (\;),
is there a representation of N* in terms of stochastic integral with
respect to some Poisson process?
» YES: see e.g. Grigelionis (1971), Jacod (1980), Massoulié (1998).
> Ingredients:

o A space-time Poisson measure Q(ds, df) of intensity ds @ df and
independent of G.

o A sequence of i.i.d variables (U,),=0 uniform on [0,1] and

independent of G.
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“Converse” result (I1)

Ty T T, Ts Ts T7
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“Converse” result (I1)

0 =X\

T1 T2 T3 T4 T5 T6 T7
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“Converse” result (Il)
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“Converse” result (I1)

*
L L.
e ! : !
Lo . Lo
- I | Lo |
: L ; >
T1 T2 T3 T4 T5 TG T7
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Sketch of the proof

Let Q(ds, d9) = Z 5Tn(5)5()\7,, U,) (9) + J ]1{92)\5}@((15,(19).

n>1 R+ xR+

t
Show that N} :J f Lip<n,; Q(ds, df).
0 JRt

Show that @ is a space time Poisson measure of mean measure
ds ®d#.
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Strong comparison of point processes
m Point processes with ordered intensities
m General case

m Converse result
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A standard nonexplosion criterion

Existence of non-exploding solution to:

t
Ne = f JR+ ]l{eéa(&[/va]r)}Q(dSade)a dNy = Q(dt, 10, a(t, [N“]:-)])?
0

A standard assumption
» Sublinear growth:
a(w,s,[n]) < c+ bn(s)
> Example: Linear Hawkes process (s, [n]) = b + {; h(s — r)dn(s))
with bounded h.

» Under this assumption:

t t

(c+bN;-)ds] = ct+J bE[NZ ]ds.
0

e = €[ afs, V], )as] < [

0 0

: bt
Gronwall lemma: E[N¢] < ce®. 44/66



Strong comparison of point processes

> Issue: domination by deterministic function, linear assumption can

be relaxed (Markov case).

» Existence, uniqueness and nonexplosion by strong domination.

» Comparison of counting processes with ordered intensity processes:
Preston (1975), Bhaskaran (1986), Rolski and Szekli (1991), Bezborodov
(2015)).

> Pathwise representation: well-adapted to study this problem,

simplifies proofs significantly, “strong” pathwise comparison.
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Strong comparison of point processes

m Point processes with ordered intensities
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Example NHPs with exponential intensities

A2(t) = e702t < \(f) = e 01,

1 TaTs Tis Te T#s Ty Tio
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Example NHPs with exponential intensities
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Example NHPs with exponential intensities
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Example NHPs with exponential intensities

A2(t) = e702t < \(f) = e 01,

10 T T T

T
Thinned process 1
Thinned process 2

Z | |
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Counting processes with ordered intensity

Let N and N? two counting processes with ordered (G, )-intensities:
AN <A t=0,
and defined by:
t
N} = f f 1<\ Q(ds,d), i=1,2.
0 Jr+ ’

» {u< N2} < {u< AL} sothat N2 < N}, vt

A\

0.
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Counting processes with ordered intensity

Let N and N? two counting processes with ordered (G, )-intensities:
AN <A t=0,
and defined by:
t
NI = f f 1<\ Q(ds,d), i=1,2.
0 Jr+ :

» {u< A2} < {u< \l} sothat N2 < N}, Vt=0.

A\

Stronger result
> Let Q'(ds, df) = 1(u<x1y Q(ds, d0) = > 671(5)g, (0

n=1
t t
[ ] etasan. wE = [ | 1 @ics o).
0 JR+ 0 JR+

N2 =3, Tir1<i1ip,<xz 1 All jumps of N? are jumps of N!

49/66



Strong domination of space-time point

processes

> A space-time point process N? is strongly dominated by
space-time point process N1, N2 < N1 if
N — N2 is a space-time point process.
» Example of counting processes:
N? < N < all jumps of N? are jumps of N
» PROPERTY If two counting processes N* and N2 have ordered

intensities and are generated with the same Poisson measure, then
N2 < N1

Difficulty:
» When \; = a(w, t,[N];-): natural order of random intensity

functionals does not necessary imply an order on intensities

processes.
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Strong comparison of point processes

m General case
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Strong order of intensity functionals

» Let o, B: Q2 x RT x A — RT two (G;)-predictable functionals.
« is strongly majorized by 5, o < (5 if

Vt >0, sup «(t,[m]) < pB(t,[n]) as. (6)

[ml<[n]

> EXAMPLE a(t, [n]) = A + §g hi(t — s)dn(s) and
a(t,[n]) = A¢ + §g ha(t — s)dn(s) with 0 < hy < hy.
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Construction by strong domination (1D case)

Proposition (El Karoui, K.)
Assume that there exists a unique well-defined solution N? of:
ANy = Q(dt,]o, B(t, [N"].-)]).
(i) Then, for all « < 3, there exists a unique solution of the SDE
dNg = Q(dt, ]0, a(t, [N]e-)]). (7)

(ii) Furthermore, N is strongly dominated by N (N < N¥#), ie.

N8 — N® is a counting process (jump times of N® = jump times of N?).
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Application to nonexplosion criteria (1)

a<s =

j J 19<a (t,[N*]e— Q(dS da) < N{j = J‘ J ]19<ﬁ(t [NB],— Q(dS d9)

» Pathwise comparison result: N < N , for f nonnegative function

J dN”‘sJ f(s)dNZ,..
0
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Application to nonexplosion criteria (1)

a<s =

f J 19<a (t,[N*]e— Q(dS da) < N{j = f J ]19<ﬁ(t [NB],— Q(dS d9)

» Pathwise comparison result: N < Ntﬁ, for f nonnegative function

J s)ANZ < f )ANZ,..
0

» A FIRST APPLICATION: case 3(t,[n]) = ¢ + bn(t)

o NP is a Markov birth process of (G,)-intensity (c + bNP). lts

distribution does not depends on Q.

o a < f3 corresponds to Sublinear growth condition.
= N < NP < oo, forall t >0
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Application to nonexplosion criteria (I1)

Goal Define a class of dominating intensity functionals 3 associated with

nonexploding processes.
> Preceding proof does not rely on the linearity of
B(t,[n]) = ¢ + bn(t).
» EXTENSION TO NONLINEAR DOMINATING INTENSITIES

o Markov birth processes (8(t, [n]) = g(n(t)))): n.s.c for

nonexplosion

Zgi(j):oo. (8)

j=0

o If a <5 g with g verifying (8), unique nonexploding solution
N of (7).
o Sometimes known as the Jacobsen condition (proof without

pathwise representation much harder!).
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Application to nonexplosion criteria (1)

Goal Define a class of dominating intensity functionals 5 associated with

nonexploding processes.

» A SECOND APPLICATION: if a@ <g (A¢) with SS Ads < o0, then

unique nonexploding solution N* of (7).
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Application to nonexplosion criteria (1)

Goal Define a class of dominating intensity functionals 5 associated with
nonexploding processes.
» A SECOND APPLICATION: if a@ <g (A¢) with SS Ads < o0, then

unique nonexploding solution N* of (7).

» Corollary of the proposition
If o <5 B with 5(t,[n]) = keg(n(t)), (k) predictable locally
bounded process and g verifying >’ gi(j), then (7) admits a unique

well-defined solution N¢.
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Other following results

» Corollary 2: V o <; 3, the sequence of jump times of N is a

localizing sequence of the local martingales Nf* — So a(s, N¥)ds.

> Corollary 3: Let (a/);c; be a family of intensity functionals with
a' < B and:

dN} = Q(dt,]0, &/ (t, [N].-)])
Then (N'); is tight.

» Straigthforward extension to strong comparison for space-time point

processes.
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Sketch of the proof

a<s B = NP,
dN? = Q(dt7]07a(wa t, N:_*X—)]) ? (9)

» Step 1: replace Q by
Qﬁ(dt,dﬁ) = ﬂ{gg‘g(t,[[\/d]r)}Q(df, d0) = anl 57’,’,3 (dt)égn (dS)

dN& = Q7(dt, 10, aw, t, N*)]). (10)
Jumps times of Q& can be enumerated increasingly = (10).
» Step 2: show equality between (9) and (10).

Remark The proof also gives a simulation algorithm.
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Strong comparison of point processes

m Converse result
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Converse result (1)

Let N* with(G,)- intensity (\;) and such that N® < NA.
Is there a representation of N in terms of stochastic integral with
respect to a marked process with same jumps than N”?

> YES

> Ingredients:

o A sequence of i.i.d variables (U,),~0 uniform on [0,1] and

independent of G .

o A sequence of i.i.d variables (V,),~0 uniform on [0, 1] and

independent of G .
» See also Rolski and Szekli (1991) (distributional viewpoint)
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Converse result (11)

Notations:
A

VT c _ NB _ N _ N\t

X=N* X°=N N* ¢y = SE? <1

¢y + (1 — ¢13)V2

X
15 + (1 — br5) V3

&

¢y + (1 = ¢ry) V1

\/

X Ty =17 Ty =1°

8
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Converse result (11)

Notations:

X =N X =N’ —N® ¢ ="2<]1.

¢y + (1 — ¢13)V2

X
15 + (1 — br5) V3

&

\/

T =T T, =T} Ty=1X°

8

Ts* Ts = TX°

Corollary Two counting processes with the same intensity functional and

stronglv dominated by the same process have the same distribution.  61/66



Birth-Death-Swap process in random environment
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Birth Death Swap (BDS) systems

An example of BDS system
Environnement €, *‘

3 élalssance/Arnvee 3 ( Swap 3 2 3 (

> The variability of the environment is taken into account =

stochastic intensities:

P( ev of type v €]t, t + dt]|G:) ~ u¥(w, t, Z;)dt.
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