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Some application of point processes

§ Renewal of interest in point processes in the past years.

§ Flexibility allows for the modeling of a wide range of phenomena in:

Finance and insurance, neurosciences, biology and ecology,

biochemical systems, epidemiology, cyber risk..

§ Human longevity

Point processes appear in the study of population dynamics:

naturally in complex random environment.

Impact of heterogeneity on longevity indicators

Kaakäı, S. and El Karoui, Nicole. Birth Death Swap population in random

environment and aggregation with two timescales, arXiv:1803.00790, 2020.
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Stochastic intensity

§ An adapted counting process N, admits the pGtq-(predictable)

stochastic intensity pλtq if

Nt ´
ż t

0

λsds is a pGtq- local martingale.

§ PpNt`dt ´ Nt “ 1|Gtq » λtdt.

§ Equivalently, for all nonnegative predictable processes C

Er
ż 8

0

CsdNs s “ Er
ż 8

0

Csλsdss.

§ In general:

pλtq, does not characterize the distribution of N.

λt is written as a functional of N

λtpωq “ αpω, t, rNst´q.
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Pathwise representation

t

✓

Space-time pGtq Poisson measure Q on R` ˆ R` of mean measure

dt b dθ.

6/47



Pathwise representation

Given a predictable process pλtqtě0 with
şt

0
λsds ă `8 a.s. @t ě 0

(nonexplosion condition)

t

✓

{(t, ✓); ✓  �t}

✓ = �t

Restriction to predictable subset:

tps, θq; θ ď λspωq, s ď tu
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Pathwise representation

t

✓

✓ = �t

{(t, ✓); ✓  �t}

· · ·T4T3T2T1

Thinning equation

Nλ
t “

şt

0

ş

R` 1tθďλsuQpds,dθq is a counting process of pGtq-intensity λt .
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SDEs driven by Poisson measures

§ When λt “ αpω, t, rNst´q is a functional of N, thinning equation ñ
SDE driven by Q:

Nα
t “

ż t

0

ż

R`

1tθďαps,rNαss´ quQpds,dθq, dNα
t “ Qpdt, s0, αpt, rNαst´qsq

(1)

§ Existence of a well-defined (non-exploding) solution?

§ Yes if α is “strongly” majorized by a “good” function β: α ďs β

@t ě 0, sup
rmsărns

αpt, rmsq ď βpt, rnsq a.s.
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Strong comparison

Nα
t “

ż t

0

ż

R`

1tθďαps,rNαss´ quQpds,dθq, dNα
t “ Qpdt, s0, αpt, rNαst´qsq (2)

Results

§ If α ďs β with

βpt, rnsq “ ktgpnptqq
pktq predictable locally bounded process and g verifying

ř

1
gpjq “ 8,

then (1) admits a unique well-defined solution Nα.

§ Furthermore, Nα is strongly dominated by the counting process

Nβ of intensity functional β and obtained with the same Poisson

measure : Nα ă Nβ), i.e.

Nβ ´ Nα is a counting process (jump times of Nα “ jump times of

Nβ).
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Converse result

Let Nλ with pGtq- intensity pλtq and such that Nλ ă N.

Is there a representation of Nλ in terms of stochastic integral with

respect to a marked process with same jumps than N?

§ YES

Corollary

Two counting processes with the same intensity functional and strongly

dominated by the same process have the same distribution.
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The model

Sous groupe 1 Sous groupe 2 Sous groupe 3

Naissance/ArrivéeMort Swap (3, 2)

Swap (2, 3)

Environnement ,€

§ Population process Z “ pZ i qi“1..p structured by discrete subgroups

adapted to a history pGtq Ą pFZ
t q.

§ Population evolves according to demographic events (births/arrival,

death/exit) or changes of characteristics (swap).

§ Random environment ñ stochastic event intensities:

Pp ev of type γ Pst, t ` dts|Gtq » µγpω, t,Ztqdt.
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Standard framework

Markov multi-type Birth-Death processes

Sous groupe 1 Sous groupe 2 Sous groupe 3

Naissance/ArrivéeMort

1 Only demographic events.

2 Birth and death intensity only depend on the state of the population.

Pp ev of type γ Pst, t ` dts|Gtq » µγpZtqdt.
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Example: effect of habitat fragmentation

(from Pichancourt et al (2006))

§ Population evolving on different type of habitats (favorable and

unfavorable)

§ Õ of habitat fragmentation ñ Õ migration between patches ñ Õ
probability of being in unfavorable habitat.

§ Effect of environment: e.g. weather, habitat transformation, human

control,...
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Example 2 : Botnets interactations

Figure: From Song, Jin and Sun (2011).

§ Botnet : network of thousands of computers under the control of a

botnet owner. ë One of the most serious cyber risk.

§ Botnet owners try to increase the size of their botnets to survive.

§ Market saturation ñ interactions between botnets owner.

§ Two strategies: cooperation and competition.
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A toy example

1

2

1

2

A B

µ21(z) = f(z)z2

µ12(z) = k12z
1

§ Compositional effects (Dowd( 2014)).

§ Individuals marked by numerous characteristics...

§ ....
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A toy example

A toy example
1

2

1

2

A B

µ21(z) = f(z)z2

µ12(z) = k12z
1

§ Non-linear swap intensities.

§ Individual death rate in the limit aggregated population:

dpt, nq “ 1
n�

dpt, nq “ 1
n pd1

t ⇡pn, z1q ` d2
t ⇡pn, z2qq.

§ Aggregated death rate depend non-linearly on the population size n:

Small population (n § N):

dpt, nq “ d1
t

Cn↵

k12 ` Cn↵
` d2

t
k12

k12 ` Cn↵

Large population (n ° N) :

dpt, nq “ d1
t

�

� ` k12
` d2

t
k12

k12 ` �

27/43

µ21(z) = C(z\)↵z2

z\  N

k12z
1

§ Compositional effects (Dowd( 2014)).

§ Individuals marked by numerous characteristics...

§ ....
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Events description

Sous groupe 1 Sous groupe 2 Sous groupe 3

Naissance/ArrivéeMort Swap (3, 2)

Swap (2, 3)

§ Population process structured in p subgroups: population process

pZtq “ ppZ i
t qpi“1q counting the number of individuals in each

subgroup.

§ Events description ppp ` 1q types of events γ P J .

Birth events in subgroup j : ∆Zt “ ej “ p0, . . . , 1j , 0, . . . q.
Death events in subgroup i : ∆Zt “ ´ei “ p0, . . . ,´1i , 0, . . . q.
Swap events from subgroup i to j :

∆Zt “ ej ´ ei “ p0, .., 0,´1i , 0, .., 1j , 0, . . . q.
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Link with point processes

Idea Represent the population with point processes.

§ Each type of event (birth, death, swap) γ P J is associated with the

counting process:
Nγ

t “
ÿ

0ăsďt

1t∆Zs“φpγqu (3)

§ ppp ` 1q multivariate counting process N “ pNγqγPJ .

§ The population process can be expressed as a linear function of N:

Z k
t “ Z k

0 ` Nb,k
t ´ Nd,k

t `
ÿ

j‰k

N jk
t ´

ÿ

i‰k

Nki
t @k “ 1..p.

§ Vector notation:

Zt “ Z0 `Nb
t ´Nd

t ` φs dNs
t P Np. (4)

with Nb
t P Np, Nd

t P Np, Ns
t “ pN ij

t q i,j“1..p
i‰j

P Nppp´1q.
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Stochastic intensities

The BDS process is formally defined through its events counting process

N.

§ Ingredient 1 : an intensity functional µ “ pµγqγPJ .

§ @γ P J , Nγ has the Gt- (predictable) intensity µpω, t,Zt´q:
PpNγ

t`dt ´ Nγ
t “ 1|Gtq » µγpt,Ztqdt

Nγ
t ´

şt

0
µγps,Zsqds is a Gt-local martingale.

Support condition (no death or swap from an empty class):

µiβpt, zq1tz i“0u ” 0 @i P Jp, β P J piq.
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Examples

§ Poisson process: µγ ” cγ .

ErNγ
t s “ cγt.

§ Linear birth intensity:

µb,i pω, t, zq “ bitpωqz i ` λi pt,Ytq
looomooon

entry rate

.

§ Death intensity :

µd,i pω, t, zq “ d i
t pωqz i `

p
ÿ

j“1

cpz i , z jq
looomooon

competition

.

§ Extension to path dependent intensity functionals.
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BDS process SDE

BDS process is formally defined through its events counting process N.

§ Ingredient 1: an intensity functional µ “ pµγqγ .

§ Ingredient 2 : Thinning and projection of space-time Poisson

measure.

Driving multivariate Poisson measures family of (p+1)p

independent space-time Poisson measures

Qpds, dθq “ pQγpds, dθqqγPJ on R` ˆ R` (intensity dt b dθ).

Nγ
t “

ż t

0

ż

R`

1tθďµγps,Zs´ quQ
γpds,dθq, @γ P J .

Birth Death Swap SDE:

Nt “
ż t

0

ż

R`

1tθďµps,Zs´ quQpds,dθq, Zt “ F pZ0,Ntq. (5)
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BDS process SDE

Existence of non-explosive solutions: control birth intensities

µbpω, t, zq ď ktgpz6q “ gp
p
ÿ

i“1

z i q, (6)

with g verifying
ř

ně1
1

ř

g i pnq “ 8.

Proposition (K., El Karoui)

There exists a unique well-defined solution N of (5), strongly

dominated by a multivariate counting process G: G´N is a

multivariate counting process.

The triplet pZ0,N,Z q defines a Birth Death Swap process of intensity

functional µ and driven by Q.
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Population with two time-scales

Study of the population evolution when composition changes occurs at a

fast pace in comparison with the demographic scale.

§ Hyp: intensity of swap events ąą demographic events

§ BDS process with intensity function µε “ pµdem, 1
εµ

sq:

dNs,ε
t “ Qspdt, r0, 1

ε
µspt,Z εt´qsq, dNdem,ε

t “ Qdempdt, r0,µdempt,Z εt´qsq.

§ Ns,ε : explosion when εÑ 0.

§ The demographic intensity functional µdem is not modified ñ
uniform strong domination of pNdem,εq

@ε ą 0, Ndem,ε
ă Gdem.

Consequence: pNdem,εqε is tight in A2p (space of multivariate

counting functions).
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Aggregated process

Goal Study limit points of pNdem,εq.
§ Example of application Study of the “macro population”

Z 6,εt “
p
ÿ

i“1

Z i,ε
t ,

with aggregated birth and death intensities:

µb,6pt,Z εt q “
p
ÿ

i“1

µb,i pt,Ztq, µd,6pt,Z εt q “
p
ÿ

i“1

µd,i pt,Z εt q

§ Population viability? Impact of composition changes on aggregated

demographic rates?

§ Difficulty: Not a ”true” Birth-Death process.

Swap events

Aggregated birth and death intensities depend on the whole

population structure.
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p
ÿ
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Z i,ε
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ÿ
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¯
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Identification of limit points of pNdem,ε
q

§ Natural framework: study of Gt-local martingales

Ndem,ε
t ´ şt

0
µdempω, s,Z εs´qds.

§ Deterministic intensity functional (Markov framework) ñ Averaging

result of Kurtz (1992).

§ Here: µdempω, t, zq + intensity functional does not characterize the

distribution of Ndem,ε.

Need convergence of random functionals preserving probabilistic structure

ñ Stable convergence.
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Stable convergence

§ Originated by Alfred Rényi

§ (Partial) references: Aldous et al. (1978), Jacod and Memin (1981),

Hausler and Luschgy (2015).
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Convergence in distribution and stable convergence

§ Let pYnqně0 be a sequence of pE , Eq-valued random variables, with

µn the distribution Yn and µ the distribution of Y .

§ pYnq converges to Y in distribution (weakly) iff for all bounded

continuous functions f P CbcpE q,

µnpf q “
ż

E

f pxqµnpdxq ÑnÑ8 µpf q “
ż

E

f pxqµpdxq.

§ Equivalently

@f P CbcpE q, Erf pYnqs “ µnpf q Ñ Erf pY qs “ µpf q.

§ Idea of stable convergence: extend class of test functions to

random functionals Hpω, xq
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Space of rules

§ Class of test functions CbmcpΩˆ E q: Bounded measurable

functions H : Ωˆ E Ñ R, with Hpω, ¨q continuous.

§ Idea write

ErHp¨,Ynqs “ RnpHq “
ż

ΩˆE

Hpω, xqRnpdω,dxq.

§ Take: Rnpdω,dxq “ PpdωqδYnpωqpdxq.

Space of rules

§ Probability measures R on Ωˆ E with marginal P on Ω.

§ Disintegration Rpdω,dxq “ PpdωqΓpω,dxq

RpHq “
ż

Ω

Ppdωq
ż

E

Hpω, xqΓpω,dxq
loooooooooomoooooooooon

ΓpHq

“ ErΓpHqs
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Stable convergence of random variables

Stable convergence of pYnq to a rule R:

§ Convergence of probability measures on the space of rules:

RnpHq Ñ RpHq, @ H P CbmcpΩˆ E q.
§ 2 interpretations:

1 Convergence of the given space:

View 1 RnpHq “ ErHpYnqs Ñ ErΓpHqs p“ RpHqq.

2 Convergence to an r.v on extended space pΩˆ E , Ḡ,Rq with

Ȳ pω, xq “ x :

View 2 ErHpY nqs Ñ RrHpȲ qs.
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Properties

§ Mode of convergence stronger than convergence in distribution.

§ Property (Jacod and Memin (1981)

If pYnq (µn) converges in distribution to Y (µ), there exists a

subsequence of pYnq converging stably to a rule R.

§ In particular, if pµnq is tight, then there exists a subsequence of pYnq
converging stably to a rule R.

Agenda Apply stable convergence to obtain averaging results for point

processes with stochastic intensities.
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Two timescales BDS processes

§ Two timescales BDS system:

dNs,ε
t “ Qspdt, r0, 1

ε
µspt,Z εt´qsq, dNdem,ε

t “ Qdempdt, r0,µdempt,Z εt´qsq.

Z εt “ Z0 `Nb,ε
t `Nd,ε

t ` φs dNs,ε
t

§ Variable of interest: 2p-multivariate counting Ndem,ε.

§ State space: E “ A2p

Subspace of Skorohod space DpR`,N2pq of counting functions.

FA
t “ σpαpsq; s ď t, α P A2pq.
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Stable limits of demographic process

§ pNdem,εq is tight in A2p ñ subsequence converging stably.

§ Enlarged space: pΩˆ E , pḠtqq “ pΩˆA2p, pGt b FA
t qq.

Stable N̄dempω, αq “ α P A2p.

§ pNdem,εq converges stably to N̄dem on pΩˆA2p, pGt bFA
t q,Rdemq if

ErHpNdem,εqs ÝÑ
εÑ0

RdemrHpN̄demqs, @H P CbmcpΩˆA2pq.

§ A first property Conservation of strong domination at the limit

N̄dem ă Gdem, Rdem a.s.

(Gdempω, sq “ Gdempωq.)
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Limit compensator

Second step: Study of the limit compensators.

§ Ndem,ε have for pGtq-compensator:

Aε “ ş¨

0
µdempω, s,Z εs qds.

§ Issue Family of population processes pZ εq “ pgpZ0,N
dem,ε,Ns,εqq is

not tight, due to explosion of swap events.
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Limit compensator (II)

§ Ndem,ε have for pGtq-compensator:

Aε “ ş¨

0
µdempω, s,Z εs qds.

§ pZ εq “ pgpZ0,N
dem,ε,Ns,εqq is not tight.

Actually, we are interested in convergence of quantities Erşt
0
λps,Z εs qdss.

§ Idea See Z ε as an Np-valued random variable on Ωˆ R`

Z̃ εpω, sq “ Z εs pωq, Ẽ rλp¨, Z̃ εqs “ Erşλp¨, Z̃ εs qdss.
§ Stable limits of Z̃ ε with view 1 : random kernels

Γpω, s,dzq

Er
ż t

0

λps,Z εs qdss Ñε Rdemr
ż t

0

ż

Np

λps, zqΓsprN̄demss ,dzqdss
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Summary/General averaging result

Stable limits of pNdem,εq are multivariate counting processes:

1 Defined on an extension pΩˆA2p, pGt bFA
t q,Rdemq of pΩ, pGtq,Pq.

2 Ndem,ε
ă Gdem.

3 Limit demographic intensity

N̄
dem

has the pḠtq-intensity pΓs rN̄demss ,µdemq “
ż

Np

µdemps, zqΓs rN̄demss ,dzq.

§ At the limit, the demographic intensity is averaged against stable

limits of the population variables pZ̃ εq.
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Properties of averaging kernels (I)

§ Let f P CbpNpq. pf pZ εt qqt is a pure jump process.

§ Jump of type γ occurs ñ jump f pZ εt´ ` φpγqq ´ f pZ εt´q, so that:

f pZ εt q ´ f pZ0q

“
ÿ

γPJ dem

ż t

0

`

f pZ εs´ ` φpγqq ´ f pZ εs´q˘dNγ,ε
s

`
ÿ

γPJ sw

ż t

0

`

f pZ εs´ ` γq ´ f pZ εs´q˘dNγ,ε
s
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Properties of averaging kernels (II)

f pZ εt q´f pZ0q´
ż t

0

Ldems f pZ εs qds´
1

ε

ż t

0

Lsws f pZ εs qds is a pGtq-local martingale.

§ Proposition The random kernel Γ must satisfy

ΓsprN̄demss , Lsws f q “
ż

Np

Lsws f pzqΓsprN̄demss ,dzq “ 0, Rdemb ds, a.s. (7)
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Link with pure swap processes

ΓsprN̄demss , Lsws f q “ 0, Rdem b ds, a.s., p5q

§ Pure swap processes S :

Population with NO demographic events.

Constant size: S0 P Ud ñ St P Ud , populations of size d .

Swap random operator:

Lsw
s pωqf pzq “

p
ÿ

i,j“1
i‰j

`

f pz`ej´ei q´f pzq
˘

µpi,jqpω, s, zq, @s ě 0, z P Np,

§ Interpretation of (5): ΓsprN̄demss , Lswf q “ 0: Γs is an invariant

measure of the pure Markov swap.

§ General case: Γs is an invariant measure of a fictitious Markov pure

swap of generator L “ Lsws pωq. “ Frozen” random environment

(pω, sq is fixed).
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Averaging result (I)

Assumption

@n ě 0, t ě 0, there exists a unique pGtq-random probability kernel

pπtpω, n,dzqq on Un such that @ f : Un ÞÑ R:

πtpn, Lswt f q “ 0, Pb ds a.s. (8)

Proposition (partial)

Under Assumption (8), the aggregated processes Z ε,6 converge in

distribution to a BD process X of intensity:

λbpt,Xtq “
ż

UXt

µb,6pt, zqπtpXt ,dzq, λdpt,Xtq “
ż

UXt

µd,6pt, zqπtpXt ,dzq.
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Averaging result (I)

Proposition (partial)

Under Assumption (8), the aggregated processes Z ε,6 converge in

distribution to a BD process X of intensity:

λbpt,Xtq “
ż

UXt

µb,6pt, zqπtpXt ,dzq, λdpt,Xtq “
ż

UXt

µd,6pt, zqπtpXt ,dzq.

Theorem (K., El Karoui)

Under Assumption 8, the demographic counting processes pNdem,εq
converge in distribution to the solution N “ pN b,N dq of:

dNt “ Qdempdt, s0, πtpXt´ ,µdemqsq, @t ě 0, (9)

with X “ řp
i“1 N

b,i ´řp
i“1 N

d,i the limit of the aggregated process.
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Sketch of the proof

§ It is sufficient to show that all stable limits N̄dem have the same

distribution.

§ Assumption (8) + support property: N̄dem has the pḠtq intensity

πtpXt´ ,µdemq.
§ Strong domination N̄dem ă Gdem.

§ Conclusion with “Converse result”: If X and X 1 are two counting

processes strongly dominated by the same process Y and with same

intensity functional, then X and X 1 have the same distribution.
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A toy example (I)

A toy example
1

2

1

2

A B

µ21(z) = f(z)z2

µ12(z) = k12z
1

§ Non-linear swap intensities.

§ Individual death rate in the limit aggregated population:

dpt, nq “ 1
n�

dpt, nq “ 1
n pd1

t ⇡pn, z1q ` d2
t ⇡pn, z2qq.

§ Aggregated death rate depend non-linearly on the population size n:

Small population (n § N):

dpt, nq “ d1
t

Cn↵

k12 ` Cn↵
` d2

t
k12

k12 ` Cn↵

Large population (n ° N) :

dpt, nq “ d1
t

�

� ` k12
` d2

t
k12

k12 ` �

27/43

d1
t

d2
t

§ Linear death functionals: µd,i pt,Ztq “ d i
tZ

i
t , d1

t ď d2
t

(Aggregated death intensity) µd,6pt,Ztq “ d1
t Z

1
t ` d2

t Z
2
t .

§ If Z 6t “ n, individual death rate is
µd,6pt,Ztq

n
.
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A toy example (II)

1

2

1

2

A B

µ21(z) = f(z)z2

µ12(z) = k12z
1

§ Non-linear swap intensities.

µp1,2qpω, t, zq “ pk12
t pωqz6qz1, µp2,1qpω, t, zq “ k21

t pωqz2

§ Death intensity in the limit aggregated population:

πtpn, µd,6q “ `

d1
t p

1
t pnq ` d2

t p
2
t pnq

˘

n “ d1
t

1` αtn

`

1` αtwtnqn,

with wt “ d2
t

d1
t

.
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Thank You For Your Attention
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