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Some application of point processes

» Renewal of interest in point processes in the past years.
> Flexibility allows for the modeling of a wide range of phenomena in:

o Finance and insurance, neurosciences, biology and ecology,

biochemical systems, epidemiology, cyber risk..
> Human longevity

o Point processes appear in the study of population dynamics:

naturally in complex random environment.

o Impact of heterogeneity on longevity indicators

Kaakai, S. and El Karoui, Nicole. Birth Death Swap population in random
environment and aggregation with two timescales, arXiv:1803.00790, 2020.
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Recap of last week

Birth-Death-Swap process in random environment
m The model

m Two time-scales BDS
Stable convergence

B Averaging results for BDS processes
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Stochastic intensity

» An adapted counting process N, admits the (G;)-(predictable)
stochastic intensity (\¢) if

t
N, —f Asds is a (Gr)- local martingale.
0
> P(NH—dt — Nt = 1|Qt) ~ Atdt.

» Equivalently, for all nonnegative predictable processes C

E[LOO CodN,] = E[LOo Chods].

> In general:
o ()¢), does not characterize the distribution of N.

o \: is written as a functional of N

Ae(w) = afw, t, [N],-).
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Pathwise representation

0 A

>
t

Space-time (G;) Poisson measure @ on R x R" of mean measure
dt ®d6.
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Pathwise representation

Given a predictable process (A¢)=0 with Sé Aeds < 400 as. VE=0

(nonexplosion condition)

0 A

{(2,0);0 < A}
X

@._v

Restriction to predictable subset:

{(5,0); 0 < Xs(w), s <t}
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Pathwise representation

0 A

; S N
T T 5 Ty --- T

Thinning equation

N} = SS Se+ Lio<x,} Q(ds,df) is a counting process of (Gy)-intensity ;.
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SDEs driven by Poisson measures

» When \; = a(w, t,[N];-) is a functional of N, thinning equation =
SDE driven by Q:

t
N = [ ] Bosatoiney ) Qds.d0).  dN = Q(ae.J0.a(e V7))
@

» Existence of a well-defined (non-exploding) solution?

» Yes if o is “strongly” majorized by a “good” function 5: a <, 8

VYt =0, sup a(t,[m]) < p(t, [n]) as.
[m]<[n]
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Strong comparison

t
N = | Tocateine), ) @s.d0). dNg = QeJ0.ae [N )) @)

Results
> If a < B with
B(t. [n]) = keg(n(t))
(kt) predictable locally bounded process and g verifying >’ gL(j) = o,
then (1) admits a unique well-defined solution N*.

» Furthermore, N“ is strongly dominated by the counting process
N? of intensity functional 3 and obtained with the same Poisson
measure : N® < N%), ie.

NB — N is a counting process (jump times of N® = jump times of
NB).
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Converse result

Let N* with (G;)- intensity (\;) and such that N* < N.
Is there a representation of N* in terms of stochastic integral with

respect to a marked process with same jumps than N?

> YES

Corollary
Two counting processes with the same intensity functional and strongly

dominated by the same process have the same distribution.
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Birth-Death-Swap process in random environment
® The model

= Two time-scales BDS
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Birth-Death-Swap process in random environment

m The model
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The model

Environnement €, *

3 élalssance/Arrlvee 3 ( Swap ©,2) 3 (

> Population process Z = (Z');_1., structured by discrete subgroups
adapted to a history (G;) o (F7).

» Population evolves according to demographic events (births/arrival,

death/exit) or changes of characteristics (swap).

» Random environment = stochastic event intensities:

P( ev of type v €]t, t + dt]|G;) ~ u¥(w, t, Z;)dt.
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Standard framework

Markov multi-type Birth-Death processes

Mort'> 6aissance/Arrivée 3 { '> (
ious irouie 1 Sous irouie 2 Sous irouie 3

Only demographic events.
Birth and death intensity only depend on the state of the population.

P( ev of type v €]t, t + dt]|G:) ~ u(Z;)dt.
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Example: effect of habitat fragmentation

(from Pichancourt et al (2006))
» Population evolving on different type of habitats (favorable and
unfavorable)
» /' of habitat fragmentation = ” migration between patches =
probability of being in unfavorable habitat.
> Effect of environment: e.g. weather, habitat transformation, human

control, ...
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Example 2 : Botnets interactations
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Figure: From Song, Jin and Sun (2011).

v

Botnet : network of thousands of computers under the control of a

botnet owner. L, One of the most serious cyber risk.
Botnet owners try to increase the size of their botnets to survive
Market saturation = interactions between botnets owner.

» Two strategies: cooperation and competition.
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A toy example

A B
1 1
W) = f(2)5 Y,
l'.‘ iﬂlz(z) = ko'
2 2

» Compositional effects (Dowd( 2014)).
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A toy example

12 (2) =)o (F)e? e

& |

zuSN

» Compositional effects (Dowd( 2014)).
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A toy example
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» Compositional effects (Dowd( 2014)).

16/47



A toy example

A B
1 1
piel=e N
':]C1221
2 2
>N

» Compositional effects (Dowd( 2014)).

> Individuals marked by numerous characteristics...
> e
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Events description
Mods éaissance/Arrivée 3 ( Swap 3,2) '> {
‘l——\

Sous groupe 1 Sous groupe 2 Sous groupe 3
| Swap (2, 3)

> Population process structured in p subgroups: population process
(Z:) = ((Z)?_,) counting the number of individuals in each
subgroup.
» Events description p(p + 1) types of events v € J.
o Birth events in subgroup j: AZ, =e; = (0,...,1;,0,...).
o Death events in subgroup i1 AZ; = —e; = (0,...,—-1;,0,...).
o Swap events from subgroup i to j:
AZ =e —e = (0,..,0,—1;,0,..,1;,0,...).
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Link with point processes

Idea Represent the population with point processes.
» Each type of event (birth, death, swap) v € J is associated with the

Ny = Y Laz—sm) (3)

O<s<t

» p(p + 1) multivariate counting process N = (N7).c 7.

counting process:
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Link with point processes

Idea Represent the population with point processes.
» Each type of event (birth, death, swap) v € J is associated with the

N = > Liaze—st) (3)

O<s<t

counting process:

» p(p + 1) multivariate counting process N = (N7).c 7.

» The population process can be expressed as a linear function of N:

Zk=Z§ + NP — NP+ YN =Y INE k= 1.p.
j#k ik

> Vector notation:

Zi =25+ NP —NY + ¢°ONS e NP. (4)

with N> e NP, NYeNP, NS = (N9)iyoi, e NP(P-D),
i#j
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Stochastic intensities

The BDS process is formally defined through its events counting process
N.

> Ingredient 1 : an intensity functional g = (%) e7.
» Vy e J, N7 has the G;- (predictable) intensity p(w, t, Z,-):

P(N;

t+dt N;Y = 1|gt) = /ﬂ(t, Zt)dt

o N — S; W (s, Zs)ds is a Gi-local martingale.

o Support condition (no death or swap from an empty class):
ph(t,2)1,i_gy =0 VieJ, feJD.
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> Poisson process: ¥ = ¢”.
E[N/] = c"t.
> Linear birth intensity:

1w, t,2) = Bj(w)Z' + Ni(t, V).
——

entry rate

> Death intensity :

p
i (w, t,z) = di(w)z' + Z c(z',2).
et —_——

competition

» Extension to path dependent intensity functionals.
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BDS process SDE

BDS process is formally defined through its events counting process N.

> Ingredient 1: an intensity functional p = (7).

» Ingredient 2 : Thinning and projection of space-time Poisson
measure.

o Driving multivariate Poisson measures family of (p+1)p

independent space-time Poisson measures
Q(ds, df) = (Q7(ds, df)) ey on RT x R (intensity dt ® d6).
t
N;Y = J f ]l{ggln(s)zs_)}Q’y(dS,de), V’y eJ.
o Jr+
o Birth Death Swap SDE:

t
Nt:JJ Losp(s,z,yQds, d0),  Ze = F(Zo,N). (5)
0 Jr+
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BDS process SDE

Existence of non-explosive solutions: control birth intensities
P
u’b(wv t7 Z) kl‘g Z z' (6)
i=1
. . . 1 _
with g verifying >} _, Soy = ©
Proposition (K., El Karoui)

There exists a unique well-defined solution N of (5), strongly
dominated by a multivariate counting process G: G — N is a
multivariate counting process.

The triplet (Zy, N, Z) defines a Birth Death Swap process of intensity
functional p and driven by Q.
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Birth-Death-Swap process in random environment

= Two time-scales BDS
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Population with two time-scales

Study of the population evolution when composition changes occurs at a

fast pace in comparison with the demographic scale.

» Hyp: intensity of swap events >> demographic events

> BDS process with intensity function p¢ = (pd™, 1 p®):

S,€ 1 € em,e m em €
dNy" = Qs(dta [07 g“s(ta Zt—)])v dN? b= Qde (dt7 [Oa ll’d (tv Zt—)])
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Population with two time-scales

Study of the population evolution when composition changes occurs at a

fast pace in comparison with the demographic scale.

» Hyp: intensity of swap events >> demographic events

> BDS process with intensity function p¢ = (pd™, 1 p®):

S,€ 1 € aem,e 1 em €
dNt’ = Qs(dta [07 gp's(ta Zt—)])v dN;l = Qde (dta [Oa /l’d (tv Zt—)])

» N*€ : explosion when ¢ — 0.
» The demographic intensity functional pd°™ is not modified =
uniform strong domination of (N4°™<)

Ve >0, Ndeme o gdem

24/47



Population with two time-scales

Study of the population evolution when composition changes occurs at a

fast pace in comparison with the demographic scale.

» Hyp: intensity of swap events >> demographic events

dem 1,,s

> BDS process with intensity function p¢ = (™, - p°):

S,€ 1 € aem,e 1 em €
dNt’ = Qs(dta [07 E/J'S(ta Zt—)])v dN;l = Qde (dta [07 /l’d (tv Zt—)])

» N*€ : explosion when ¢ — 0.
» The demographic intensity functional pd°™ is not modified =
uniform strong domination of (N4°™<)

Ve >0, Ndeme o gdem

Consequence: (N““")_is tight in A% (space of multivariate

counting functions).
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Aggregated process

Goal Study limit points of (N9™¢).

» Example of application Study of the “macro population”

P
zit =37},
i=1
with aggregated birth and death intensities:

5(t, Z5)

[ Mu

P
it Zy), pdi(t, ZE) = Z i(t, Z5)

» Population viability? Impact of composition changes on aggregated
demographic rates?
> Difficulty: Not a "true” Birth-Death process.
o Swap events
o Aggregated birth and death intensities depend on the whole
population structure.
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Aggregated process

Goal Study limit points of (N9™¢).

» Example of application Study of the “macro population”

P i P . .
20 = 220 = Zo+ Y (NPTF = ) = F(Zo,NE™),

i=1 i=1

with aggregated birth and death intensities:

5(t, Z5) ZP: (t,2), pei(t, Zf) = Zp: i(t, Z5)

» Population viability? Impact of composition changes on aggregated
demographic rates?
> Difficulty: Not a "true” Birth-Death process.
o Swap events
o Aggregated birth and death intensities depend on the whole

population structure. 25/47



ldentification of limit points of (N9™<)

» Natural framework: study of G;-local martingales
Nem-e Sé pdem(w, s, Z< )ds.
» Deterministic intensity functional (Markov framework) = Averaging
result of Kurtz (1992).
> Here: ud®™(w, t,z) + intensity functional does not characterize the
distribution of N9°™<,
Need convergence of random functionals preserving probabilistic structure

= Stable convergence.
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Stable convergence
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Stable convergence

» Originated by Alfred Rényi

> (Partial) references: Aldous et al. (1978), Jacod and Memin (1981),
Hausler and Luschgy (2015).
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Convergence in distribution and stable convergence

» Let (Y,)n=0 be a sequence of (E,E)-valued random variables, with
1" the distribution Y, and pu the distribution of Y.
> (Y,) converges to Y in distribution (weakly) iff for all bounded

continuous functions f € Cpc(E),
() = [ FOOu"(@0) = i) = [ P00

» Equivalently

VF e Goe(E), E[F(Yn)] = u(F) — E[F(Y)] = u(f).
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Convergence in distribution and stable convergence

» Let (Y,)n=0 be a sequence of (E,E)-valued random variables, with
1" the distribution Y, and pu the distribution of Y.
> (Y,) converges to Y in distribution (weakly) iff for all bounded

continuous functions f € Cpc(E),
() = [ FOOu"(@0) = i) = [ P00

» Equivalently

VF e GoelE), E[F(Yn)] = u(F) — E[F(Y)] = u(f).

> ldea of stable convergence: extend class of test functions to
random functionals H(w, x)
E[F(Ya)] — E[F(Y)]-
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Convergence in distribution and stable convergence

» Let (Y,)n=0 be a sequence of (E,E)-valued random variables, with
1" the distribution Y, and pu the distribution of Y.
» (Y,) converges to Y in distribution (weakly) iff for all bounded

continuous functions f € Cpc(E),
() = | A0 (@) = ) = | £l

» Equivalently

Ve Coc(E), E[f(Yn)] = p"(F) = E[f(Y)] = u(F).

> ldea of stable convergence: extend class of test functions to

random functionals H(w, x)
E[A(Ya)]
E[H(-, Ya)]

E[X(Y)].

?

—
—
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Space of rules

» Class of test functions Cp,c(Q2 x E): Bounded measurable
functions H : Q x E — R, with H(w, -) continuous.

> ldea write

E[H(-, Y,)] = R"(H) :L Hlw R (dw, dx).
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Space of rules

» Class of test functions Cp,c(Q2 x E): Bounded measurable
functions H : Q x E — R, with H(w, -) continuous.

> ldea write

E[H(-, Y,)] = R"(H) :L Hlw R (dw, dx).

» Take: R"(dw,dx) = P(dw)dy, (w)(dx).

Space of rules
» Probability measures R on Q x E with marginal P on Q.
» Disintegration R(dw,dx) = P(dw)l'(w, dx)
R(H) = J P(dw)f H(w, x)I (w,dx) = E[[(H)]
Q E

F(H)

30/47



Stable convergence of random variables

Stable convergence of (Y,) to a rule R:
» Convergence of probability measures on the space of rules:
R"(H) = R(H), V H € Cpme(Q2 x E).
> 2 interpretations:

Convergence of the given space:

View 1 R"(H) = E[H(Y4)] — E[T(H)] (= R(H)).

Convergence to an r.v on extended space (Q x E,G, R) with

Y (w,x) = x:

View 2 E[H(Y™)] — R[H(Y)].
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» Mode of convergence stronger than convergence in distribution.

> Property (Jacod and Memin (1981)
If (Yn) (1") converges in distribution to Y (x), there exists a

subsequence of (Yn) converging stably to a rule R.

» In particular, if (") is tight, then there exists a subsequence of (Yn)

converging stably to a rule R.

Agenda Apply stable convergence to obtain averaging results for point

processes with stochastic intensities.
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Averaging results for BDS processes
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Two timescales BDS processes

» Two timescales BDS system:
S,€ S 1 S € em,e em em €
ANE = Q°(de, [0, 7 (£, ZE)]). ANE™ = QU (de, [0, u™ (£, ZE)]).

ZE=Zo+ NP+ NP+ ¢° O NP

> Variable of interest: 2p-multivariate counting N4°™<.

» State space: E = AP
o Subspace of Skorohod space D(R™,N??) of counting functions.

o FA =o(a(s);s < t, aec A%).
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Stable limits of demographic process

> (Ndem’e) is tight in .A4%P = subsequence converging stably.

> Enlarged space: (Q x E,(G;)) = (2 x A%, (G: ® FA)).
Stable N4°™(w, o) = o € A%,

> (N9°™) converges stably to N9“™ on (Q x A%, (G, ® FA), Riem) if

E[H(Ndem,e)] N Rdem[H(Ndem)]7 VH e Cbmc(Q % A2p)‘

e—0
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Stable limits of demographic process

> (N9°™€) s tight in A% = subsequence converging stably.
> Enlarged space: (Q x E,(G;)) = (2 x A%, (G: ® FA)).
Stable N9°™(w, a) = a € A%.
> (N9°™¢) converges stably to N9°™ on (Q x A%, (G, @ F), Rdem)

if

E[ILBf-(Ndem,e)] _ Rdem[:[LB]((Ndem)]7 vV Be g7 fe ch(A2p).

e—0
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Stable limits of demographic process

> (N“™€) is tight in A% = subsequence converging stably.
> Enlarged space: (Q x E,(G;)) = (2 x A%, (G: ® FA)).
Stable N9°™(w, a) = a € A%.
> (N9°™¢) converges stably to N9°™ on (Q x A%, (G, @ F), Rdem)

if

E[ILBf-(Ndem,e)] _ Rdem[:[LB]:(Ndem)]7 vV Be g7 fe ch(A2p).

e—0

> A first property Conservation of strong domination at the limit
Y d
Ndem < gee™,  Rdem 35,

(6% (w,5) = 6*"(«).)
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Limit compensator

Second step: Study of the limit compensators.
> N9 have for (G;)-compensator:

Ac = pi(w,s, Z)ds.

> Issue Family of population processes (Z¢) = (g(Zo, N9“™¢, N*)) is

not tight, due to explosion of swap events.
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Limit compensator (II)

> N9™¢ have for (G,)-compensator:
= §ouM(w,s, Z5)ds.

> (Z9) = (g(Zo, N™,N*)) is not tight.

Actually, we are interested in convergence of quantities E[Sé A(s, Z)ds].

» Idea See Z¢ as an NP-valued random variable on 2 x R™
Z¢(w,s) = ZE(w),  E[A(-,Z9)] = E[[A(-, Z5)ds].
> Stable limits of Z¢ with view 1 : random kernels

MNw,s,dz)
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Limit compensator (II)

> N9™¢ have for (G,)-compensator:
= §ouM(w,s, Z5)ds.

> (Z9) = (g(Zo, N™,N*)) is not tight.

Actually, we are interested in convergence of quantities E[Sé A(s, Z)ds].

» ldea See Z¢ as an NP-valued random variable on 2 x R*

Z¢(w,s) = ZE(w),  E[A(-,Z9)] = E[[A(-, Z5)ds].

» Joint Stable limits of Z¢ with view 1 : random kernels
Mw,s, [Ndem]s, dz)
t t _
E[f A(s, Z8)ds] —». RI™[ f (s, )Mo ([N9™],, dz)ds]
0 NP
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Summary/General averaging result

Stable limits of (N9“™¢) are multivariate counting processes:
Defined on an extension (Q x A%, (G: ® F), R¥™) of (Q, (G:), P).
Ndem,e < Gdem_

Limit demographic intensity

— dem

NY™ has the (Gy)-intensity (FS[Ndem]s,udem) = f pdem (s, ) [N, dz).
NrP

> At the limit, the demographic intensity is averaged against stable

limits of the population variables (Z7¢).
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Properties of averaging kernels (1)

> Let f € Cp(NP). (f(Z5)): is a pure jump process.
> Jump of type v occurs = jump f(Z7 + ¢(v)) — f(Z5), so that:

f(Z) - (%)

= > f fF(ZE + ¢(v)) — F(Z)) AN~

yeJdem

+ ) J ) — F(ZE)) AN

~ET W
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Properties of averaging kernels (1)

» Let f € Cp(NP). (f(Zf)): is a pure jump process.
> Jump of type 7 occurs = jump f(Z + ¢(v)) — f(Z5), so that:

F(Z5)—f(Z0)— D, J F(ZE + (7)) — F(Z2)) (s, Z%)ds

T dem

Ldem f(Zé)

_ f FZE + 6(y)) — F(ZE)) (AN~ (s, Z5)ds)

dem
ed local martingale

t
= 3 [ (@ -z
'YEJSW 0
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Properties of averaging kernels (1)

» Let f € Cp(NP). (f(Z5)); is a pure jump process.
> Jump of type v occurs = jump f(Z;_ + ¢(v)) — f(Z;-), so that:

F(Z5) - F(Z0)— D, J o)) — F(ZE)) i (s, Z)ds
yegdem Ldemf(Ze)
N N R e
vejbw Lo f(Zf)
_ j FZE + 6(r)) — F(ZE)) (AN~ (s, Z5)ds)
,yejdum

local martingale

+ ) f(f(Z;,+7)—f(Z:,))(dN'” ! 1 (s, Z)ds)

e 7sw J0
ves local martingale
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Properties of averaging kernels (I1)

t 1 t
f(Zf)—f(Zo)—f Lfemf(Z;)ds—gJ- L3VF(ZS)ds is a (Gr)-local martingale.
0 0
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Properties of averaging kernels (I1)

t t
e(f(Zf)—f(Zo)—Jo Lfer’“f(Z:)ds)—J0 L3¥F(ZE)ds is a (G¢)-local martingale.
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Properties of averaging kernels (I1)

t
e(F(Z) — f(Zo) — J;) Ldemf(Z<)ds)— fo L3VF(ZS)ds s a (Gy)-local martingale.

N J _

0 = §ETS([Adem],, 137 F)ds

(along a subsequence)

> Proposition The random kernel I' must satisfy

Co([Ndem],, L3V F) = f LY f(2)Ts([N°™],,dz) =0, R¥™@®ds, a.s. (7)
Npr
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Link with pure swap processes

Fs([N9m],, L5VF) =0, R¥™@®ds, as.,, (5)

> Pure swap processes S :
o Population with NO demographic events.
o Constant size: Sp € Uy = S; € Uq, populations of size d.
e Swap random operator:
p
LM (W)f(z) = Y (f(z+ej—e)—F(2))u" (w,s,2), Vs>0, ze N,

ij=1
i
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Link with pure swap processes

F([Ndem],, [2VF) =0, RI™@®ds, as., (5)

> Pure swap processes S :
o Population with NO demographic events.

o Constant size: Sp € Uy = S: € Uy, populations of size d.

o Swap random operator: particular case of deterministic swap

intensity functions

LY f(z) = Zp] (f(z+ej—e)—f(2)) "™ (2, X, 2), Vs=0, ze N,
l,/;l
o L®V is the infinitesimal generator of a pure Markov swap process.
> Interpretation of (5): I,([N9™],, [5¥f) = 0: T is an invariant
measure of the pure Markov swap.
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Link with pure swap processes

Fs([N9m],, L5VF) =0, R¥™@®ds, as.,, (5)

> Pure swap processes S :
o Population with NO demographic events.

o Constant size: Sp € Uy = S; € Uq, populations of size d.

o Swap random operator:

LY (w)f(z) = i (f(z+ej—e)—f(2)) ' (w,s,2), ¥Yt=0, ze N,
1,[];1
» General case: [ is an invariant measure of a fictitious Markov pure
swap of generator £ = L5 (w). " Frozen” random environment
((w, s) is fixed).
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Averaging result (1)

Assumption
Vn =0, t > 0, there exists a unique (G;)-random probability kernel
(m¢(w, n,dz)) on Uy, such that V  : U, — R:

me(n, L3¥f) =0, P®dsas. (8)

Proposition (partial)

Under Assumption (8), the aggregated processes Z% converge in

distribution to a BD process X of intensity:

)\b(t,Xt)=J LPA(E, 2)me( X, d2), /\d(t,Xt)=J- LAt 2) (X, d2).
Us, U,
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Averaging result (1)

Proposition (partial)
Under Assumption (8), the aggregated processes Z° converge in

distribution to a BD process X of intensity:

Pt 2)me(Xeydz),  A(E X)) = f WOt Z)me (X, d2).
U,

No(t, &) = J

Ux,

Theorem (K., El Karoui)

Under Assumption 8, the demographic counting processes (N4°™€)
converge in distribution to the solution N' = (N°, N'¥) of:

dNt = Qdem(dt7 ]07 7Tt‘(‘/‘t‘t_ ) Ndem)])7 vt > 07 (9)

with X =P | Nb" — P | N/ the limit of the aggregated process.
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Sketch of the proof

> It is sufficient to show that all stable limits N9°™ have the same
distribution.

> Assumption (8) -+ support property: N9 has the (G;) intensity
e (X, o

> Strong domination Ndem < Gdem,

dem)-

» Conclusion with “Converse result”: If X and X’ are two counting
processes strongly dominated by the same process Y and with same

intensity functional, then X and X' have the same distribution.
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A toy example (1)

A B
1
1 / dy 1
- W
—a
2 /\tA 2
. L 4

> Linear death functionals: u®i(t,Z;) = diZi, d} < d?

(Aggregated death intensity) u®t(t, Z;) = d1Z} + d?Z2.

dh(t, Z
> If Z:rh = n, individual death rate is w
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A toy example (I1)

A
1
w2 (z) = f(z)z!:! .

'12 1
1= (2))= kraz
v 12

B
1
\
2 2
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A toy example (I1)

A B \

I~ 1

zth

> Non-linear swap intensities.

I (w,t,2) = (kF(w)2)zh,  pCY(w,t,2) = kP (w)2?
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A toy example (I1)

A

1

-

w2ef=s Y
;klzzl

<

>N

B
1
2

> Non-linear swap intensities.

pD(w,t,2) = (kP ()22t PP (w,t,2) = K (w)2?
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A toy example (I1)

> Non-linear swap intensities.

p(w,t,2) = (kP (w)2)2', 1D (w,t,2) = K (w)2?

> Death intensity in the limit aggregated population:

dl

me(n, u®?) = (dfpi(n) + d?pZ(n))n = 1+atn(1+atwtn)n

2
with w, = d—tl
t
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Thank You For Your Attention
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