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Background: facts and figures

The interest rate market represents the largest portion of the OTC derivatives
market: in the first half of 2021, the notional amount outstanding of interest rate
contracts was 488.099 USD bn, with respect to 609.996 USD bn for all contracts.1

80% of the outstanding notional of OTC derivatives is on interest rates.

Over the last 10 years, several new phenomena appeared in interest rate markets:

multi-curve environment;

persistence of low (and even negative) rates;

credit/liquidity risk in the interbank loans market and Libor manipulation;

Libor reform and new alternative risk-free rates (SOFR, SONIA, eSTR, etc.)

In this course, we aim at discussing how these phenomena have led and are
leading to the development on new mathematical models.

1Source: BIS.
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Outline

1 Basic notions of interest rates;

2 the multi-curve environment: stylized facts of post-crisis interest rate
markets, terminology, basic traded assets;

3 absence of arbitrage in a multi-curve market;

4 a general multi-curve HJM framework;

5 models driven by affine processes and pricing aspects;

6 an overview of specific modelling approaches
(short rate models, HJM models, market models, rational models);

7 the importance of stochastic discontinuities;

8 lecture by Fabio Mercurio: the Libor reform and its modelling aspects;

9 alternative risk-free rates and stochastic discontinuities;

10 an extended HJM framework for overnight and term rates;

11 an illustrative Vasiček example with stochastic discontinuities;

12 consistency and hedging issues in the presence of stochastic discontinuities.
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Measuring the value of time
A fundamental purpose of interest rates is to measure the value of time:

a discount factor Pt(T ) measures the value at time t of one unit of
currency delivered at time T , with 0 ≤ t ≤ T , in the absence of any risk;
since there is no risk, the terminal condition PT (T ) = 1 has to be satisfied;
we associate Pt(T ) to the price of a zero-coupon bond (ZCB);
the term structure at time t is the collection {Pt(T );T ≥ t} and modelling
the term structure involves describing its dynamics over time.

Term structure reconstructed on 25/06/2018, interpolated from OIS swaps.
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Notions of interest rates
Starting from {Pt(T );T ≥ t}, different types of interest rates can be defined:

simple spot rate for [S ,T ]:

L(S ,T ) :=
1

T − S

(
1

PS(T )
− 1

)
simple forward rate for [S ,T ], contracted at t ≤ S :

Lt(S ,T ) :=
1

T − S

(
Pt(S)

Pt(T )
− 1

)
continuously compounded forward rate for [S ,T ], contracted at t ≤ S :

Ft(S ,T ) := − logPt(T )− logPt(S)

T − S

instantaneous forward rate with maturity T , contracted at t ≤ T :

ft(T ) := − ∂

∂T
logPt(T )

short rate at time t:
rt := ft(t)

References: Björk (2020), Musiela and Rutkowski (2005).
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Classical modelling approaches

Depending on which notion of interest rate is taken as fundamental quantity,
different modelling approaches arise:

1 simple spot/forward rates ⇒ Libor market models:
classically, the rate L(S ,T ) was representing the Libor rate:

I postulate dynamics for the process (Lt(S ,T ))t∈[0,S];
I in the log-normal case, Black-type formulae for caps/floors;
I calibration involves determining the volatility structure;
I variant: forward price model, modelling directly 1 + (T − S)Lt(S ,T ). This

works especially well for low/negative interest rates, see Eberlein et al. (2020).

2 instantaneous forward rates ⇒ Heath-Jarrow-Morton (HJM) models:
arguably, the most general perspective on interest rate modelling:

I postulate dynamics for (ft(T ))t∈[0,T ], for all T ∈ R+;
I this leads naturally to an infinite-dimensional system of SDEs...
I ...or to a single SDE on a function space (Musiela parametrization);
I HJM drift condition ensuring absence of arbitrage;
I tractability: existence of finite-dimensional realizations (see Björk (2004)).
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Classical modelling approaches

3 short rate ⇒ short rate models:
one of the most direct ways of modelling the term structure:

I postulate dynamics for (rt)t≥0;
I typically done directly under a risk-neutral measure Q;
I compute ZCB prices and derivative prices by risk-neutral valuation:

Pt(T ) = EQ[e− ∫ T
t rsds

∣∣Ft

]
I often makes use of affine processes. Classical examples: Vasiček, Hull-White,

Cox-Ingersoll-Ross, and many others, see e.g. Brigo and Mercurio (2006).
Jiao et al. (2017) for persistently low interest rates, using α-stable processes.

4 ZCB prices ⇒ bond price models:
I postulate dynamics or a structural form for the term structure {Pt(T );T ≥ t};
I Eberlein and Raible (1999) in the case of Lévy processes as drivers of Pt(T );
I potential models: Flesaker and Hughston (1996) and Rogers (1997), directly

modeling the stochastic discount factor. This usually leads to rational models:

Pt(T ) =
A(T ) + B(T )Xt

A(t) + B(t)Xt
,

where (Xt)t≥0 is some Markovian factor process.

Claudio Fontana (University of Padova, Italy) Cours Bachelier, IHP, Paris, 1-8 April 2022 8 / 51



Libor rates after the global financial crisis
The London Interbank Offered Rate (Libor):

daily computed as the trimmed average of rates reported by a panel of major
banks for interbank loans, for five currencies (CHF, EUR, GBP, JPY, USD)
and seven tenors (1D, 1W, 1M, 2M, 3M, 6M, 1Y);

launched in 1986 and widely adopted as benchmark rate.

Prior to the 2007-2009 global financial crisis:

interbank loans among major banks ≈ risk-free.

Hence, the following two operations on [S ,T ] should yield the same return:
1 interbank loan of 1 at S delivering 1 + (T − S)L(S ,T ) at T ;
2 risk-free investment at S in 1/PS(T ) units of ZCB bonds with maturity T .

This implies the classical representation of Libor rates in terms of ZCB prices:

L(S ,T ) =
1

T − S

(
1

PS(T )
− 1

)
.

Post-crisis evidence:

L(S ,T ) 6= 1

T − S

(
1

PS(T )
− 1

)
.
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Libor rates after the global financial crisis

Risks in the interbank market:

counterparty risk;

liquidity risk;

funding and roll-over risk.

As a consequence, Libor rates cannot be considered representative of riskless loans.

The emergence of the multiple curve environment:

Libor rates and risk-free ZCBs as distinct quantities;

Libor rates used as benchmark rates to define derivatives’ payoffs:
⇒ one “curve” to represent Libor rates;

risk-free ZCBs used as discount factors to compute (clean) derivatives prices:
⇒ one “curve” to represent ZCB prices (or, equivalently, risk-free rates).

Assuming risk-neutral valuation, the price of an interest derivative is given by

Πt = Pt(T )EQT [
Φ(L(S ,T ))

∣∣Ft

]
,

where Φ represents a generic payoff function with maturity T and QT denotes the
T -forward probability with numéraire P(T ).
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Libor rates after the global financial crisis
Libor rates show a distinct behavior depending on the length of the loan (tenor):
longer tenors are typically associated to greater risks.

Modelling consequence: one “curve” for each tenor δ ∈ D, where the set D of
tenors is typically a subset of {1D, 1W, 1M, 2M, 3M, 6M, 1Y}.

Differences (spreads) between Libor rates and simple spot OIS rates for different tenors.
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The multi-curve market
To analyse a multi-curve market, we need to identify the traded assets:

at least in theory, ZCBs can be considered as traded assets;

however, in a multi-curve financial market, ZCBs do not suffice;

Libor rates are benchmark rates and cannot be directly taken as traded assets;

which contract can be considered as a basic traded asset related to Libor?

Forward rate agreement (FRA):
for T ∈ R+, δ ∈ D and fixed rate K ∈ R, the payoff at T + δ of a FRA is given by

δ
(
L(T ,T + δ)− K

)
.

The forward Libor rate Lt(T ,T + δ) is the rate K such that the market value of
the corresponding FRA at time t is null. The price of a generic FRA is then

ΠFRA
t (T , δ,K ) = δPt(T + δ)

(
Lt(T ,T + δ)− K

)
.

If we assume (but do not need to!) risk-neutral valuation, then

Lt(T ,T + δ) = ET+δ
[
L(T ,T + δ)

∣∣Ft

]
, for t ∈ [0,T ].

References: Grbac and Runggaldier (2015), Cuchiero et al. (2016).
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The multi-curve market
FRAs represent the basic building block for interest rate derivatives:

linear derivatives (IRS, basis swaps) can be expressed in terms of FRAs;

non-linear derivatives (caplets/floorlets, swaptions) can be considered as
having FRAs as underlying assets.

We can then formalize the financial market as containing the following assets:

1 ZCBs for all maturities T ∈ R+;

2 FRAs for all maturities T ∈ R+, all tenors δ ∈ D, all rates K ∈ R,

together with a numéraire asset with strictly positive price process X 0 = (X 0
t )t≥0.

This is a Large Financial Market, containing uncountably many assets;

an appropriate notion of absence of arbitrage is no asymptotic free lunch with
vanishing risk (NAFLVR), see Cuchiero et al. (2016).

Notation:

D0 := D ∪ {0};
ΠFRA

t (T , 0, 0) := Pt(t ∧ T ), for all (t,T ) ∈ R2
+ and K ∈ R.

The set of traded assets can then be indexed by I ′ := R+×D0 × R.
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NAFLVR in multi-curve markets
Since FRA prices are linear wrt. K , the set I ′ can be reduced to I := R+×D0.
In other words, it suffices to consider FRAs for an arbitrary fixed rate K̄ .

On a given stochastic basis (Ω,F ,F,P), we proceed as follows:
for all n ∈ N, let In be the family of all subsets A ⊆ I containing n elements;
for each A = ((T1, δ1), . . . , (Tn, δn)) ∈ In, let SA = (S1, . . . ,Sn) be defined
by

S i
t = (X 0

t )−1ΠFRA
t (Ti , δi , K̄ ), for i = 1, . . . , n.

assume that, for each A ∈ In, n ∈ N, the process SA is a semimartingale;
a predictable process θ = (θ1, . . . , θ|A|) ∈ L∞(SA) is a 1-admissible trading
strategy if θ0 = 0 and (θ · SA)t ≥ −1 a.s., for all t ≥ 0;
define

XA
1 :=

{
θ · SA : θ ∈ L∞(SA) and θ is 1-admissible

}
,

X n
1 :=

⋃
A∈In

XA
1 and X1 :=

⋃
n∈N
X n

1 ,

where the closure is taken in the Émery semimartingale topology;
finally, the set of all admissible portfolios is given by

X :=
⋃
λ>0

λX 1.

Reference: Fontana et al. (2020).
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NAFLVR in multi-curve markets
Definition

The multi-curve financial market satisfies NAFLVR if

C ∩ L∞
+ = {0},

where C := (K0 − L0
+)∩ L∞, with K0 := {X∞ : X ∈ X} and C denoting the norm

closure of C in L∞.

Using the techniques of Cherny and Shiryaev (2005), we can obtain the following
FTAP, extending the result of Cuchiero et al. (2016) to an infinite time horizon.

Theorem

The multi-curve financial market satisfies NAFLVR if and only if there exists an
equivalent separating measure Q, i.e., a probability measure Q ∼ P on (Ω,F) such
that EQ[X∞] ≤ 0 for all X ∈ X .

Practical issue: characterizing an equivalent separating measure Q is difficult:

a sufficient condition is ∃ of an equivalent local martingale measure (ELMM) for

(X 0)−1ΠFRA(T , δ, K̄ ), for all (T , δ) ∈ R+×D0.

In concrete models, ELMMs can typically be explicitly characterized.

Claudio Fontana (University of Padova, Italy) Cours Bachelier, IHP, Paris, 1-8 April 2022 15 / 51



A weaker notion of no-arbitrage
Definition

The multi-curve financial market satisfies no unbounded profit with bounded risk
(NUPBR) if the set K 1

0 := {X∞ : X ∈ X1} is bounded in probability.

Introduced under this name in Karatzas and Kardaras (2007) and equivalent
to some other notions of no-arbitrage (BK, NA1, see Kabanov et al. (2016));

in large financial markets: Kardaras (2013) and Cuchiero et al. (2016);

importance: minimal no-arbitrage condition for portfolio optimization.

Theorem

The multi-curve financial market satisfies NUPBR if and only if there exists an
equivalent supermartingale deflator Z , i.e., a strictly positive supermartingale Z
with Z0 = 1 such that Z (1 + X ) is a supermartingale for all X ∈ X1.

Remark: a sufficient condition for NUPBR is ∃ of an equivalent local martingale
deflator (ELMD) Z , i.e., a strictly positive local martingale Z such that

Z (X 0)−1ΠFRA(T , δ, K̄ ) ∈Mloc, for all (T , δ) ∈ R+×D0.

In concrete models, usually the structure of Z can be explicitly described.
(⇒ work in progress with E. Platen and S. Tappe.)
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A general multi-curve HJM framework
Suppose that, on a given stochastic basis (Ω,F ,F,P) we have

a d-dimensional Brownian motion W = (Wt)t≥0;

an integer-valued random measure µ(dt,dx), with compensator
ν(dt,dx) = λt(dx)dt, where λt(dx) is a kernel from (Ω× R+,P) into
(E ,BE ). We denote µ̃(dt,dx) := µ(dt,dx)− λt(dx)dt.

We assume the validity of the following martingale representation assumption.

Assumption

Every local martingale N = (Nt)t≥0 can be represented as

N = N0 + θ ·W + ψ ∗ µ̃,

for some θ ∈ L2
loc(W ) and ψ ∈ Gloc(µ), see Jacod and Shiryaev (2003).

For simplicity, we assume that the numéraire is a savings account:

X 0 = exp

(∫ ·
0

rs ds

)
,

with r = (rt)t≥0 representing the risk-free short rate (typically, OIS rate).

Reference: Fontana et al. (2020).
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An alternative representation of FRA prices
Let us recall the model-free representation of FRA prices:

ΠFRA
t (T , δ,K ) = δPt(T + δ)

(
Lt(T ,T + δ)− K

)
,

which we rewrite as follows, using the notation K (δ) := 1 + δK :

ΠFRA
t (T , δ,K ) = Pt(T + δ)

(
1 + δLt(T ,T + δ)

)
− K (δ)Pt(T + δ)

= Sδt Pt(T , δ)− K (δ)Pt(T + δ),

with

Pt(T , δ) :=
Pt(T + δ)

Pt(t + δ)

1 + δLt(T ,T + δ)

1 + δLt(t, t + δ)
and

Sδt := Pt(t + δ)
(
1 + δLt(t, t + δ)

)
=:

1 + δLt(t, t + δ)

1 + δLzcb(t, t + δ)
,

where Lzcb denotes the simple forward rate associated to risk-free ZCBs.

Terminology and interpretation:

1 Sδt : spot multiplicative spread, measures the relative riskiness of interbank
rates with tenor δ at time t;

2 Pt(T , δ): δ-tenor bond, time-to-maturity behavior for tenor δ.
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An alternative representation of FRA prices
These quantities admit a foreign exchange analogy:
let us imagine that a foreign economy is associated to each tenor δ ∈ D:

1 Pt(T , δ) represents the price of a ZCB of the foreign economy δ measured in
units of the corresponding foreign currency;

2 Sδt represents the spot exchange rate between the foreign currency of
economy δ and the domestic currency.

Then, the price of a foreign ZCB in units of the domestic currency is given by
Sδt Pt(T , δ) and the FRA becomes analogous to a FX forward contract.

Remark: this analogy suggests that this general HJM framework can be applied to
other markets having multiple term structures, such as

foreign exchange markets;

energy markets;

credit rating markets.

Remark: the classical single-curve setting corresponds to

Sδt ≡ 1 and Pt(T , δ) = Pt(T ).
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A general multi-curve HJM framework

We adopt the parametrization in terms of Sδt and Pt(T , δ) and suppose that

Sδt = Sδ0 E
(∫ ·

0

αδs ds +

∫ ·
0

Hδ
s dWs +

∫ ·
0

∫
E

Lδ(s, x)µ̃(ds,dx)

)
and, for all δ ∈ D0 and 0 ≤ t ≤ T < +∞,

Pt(T , δ) = exp

(
−
∫ T

t

ft(u, δ)du

)
,

where

ft(T , δ) = f0(T , δ) +

∫ t

0

a(s,T , δ)ds +

∫ t

0

b(s,T , δ)dWs

+

∫ t

0

∫
E

g(s, x ,T , δ)µ̃(ds,dx).

Technical assumptions: suitable integrability assumptions that ensure the

applicability of ordinary and stochastic Fubini theorems to develop
∫ T

t
ft(u, δ)du.

(see Assumption 3.3 in Fontana et al. (2020) for details)
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A general multi-curve HJM framework
Let us introduce the following notation, for all 0 ≤ t ≤ T , δ ∈ D0 and x ∈ E :

ā(t,T , δ) :=

∫ T

t

a(t, u, δ)du, b̄(t,T , δ) :=

∫ T

t

b(t, u, δ)du, ḡ(t, x ,T , δ) :=

∫ T

t

g(t, x , u, δ)du.

Lemma

For every T ∈ R+ and δ ∈ D0, it holds that

P(T , δ) = P0(T , δ) E
(∫ ·

0

fs(s, δ)ds −
∫ ·

0

ā(s,T , δ)ds +
1

2

∫ ·
0

|b̄(s,T , δ)|2ds

−
∫ ·

0

b̄(s,T , δ)dWs −
∫ ·

0

∫
E

ḡ(s, x ,T , δ)µ̃(ds, dx)

+

∫ ·
0

∫
E

(
e−ḡ(s,x,T ,δ) − 1 + ḡ(s, x ,T , δ)

)
µ(ds, dx)

)
.

By martingale representation, every density process Z = (Zt)t≥0 can be written as

Z = E
(
−θ ·W − ψ ∗ µ̃

)
,

for some θ ∈ L2
loc(W ) and ψ : Ω× R+× E → (−∞, 1) belonging to Gloc(µ).

objective: characterize when Z is the density process of an ELMM Q.
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A general multi-curve HJM framework

Let us define

Λ∗(t, x ,T , δ) :=
(
1− ψ(t, x)

)(
(1 + Lδ(t, x))e−ḡ(t,x,T ,δ) − 1

)
− Lδ(t, x) + ḡ(t, x ,T , δ).

Proposition

Let Q ∼ P be a probability measure with density process Z represented as above.
Then, Q is an ELMM if and only if, for all T > 0,∫ T

0

∫
E

|Λ∗(s, x ,T , δ)|λs(dx)ds < +∞ a.s.,

and the following two conditions hold a.s.

1 for a.e. t ∈ R+, it holds that

rt = ft(t, 0),

αδt = ft(t, 0)− ft(t, δ) + θ>t H
δ
t +

∫
E

ψ(t, x)Lδ(t, x)λt(dx);
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A general multi-curve HJM framework

Proposition (cont.)

2 for every T > 0 and for a.e. t ∈ [0,T ], it holds that

ā(t,T , δ) =
1

2
|b̄(t,T , δ)|2 + b̄(t,T , δ)>(θt − Hδt )

+

∫
E

(
(1− ψ(t, x))(1 + Lδ(t, x))(e−ḡ(t,x,T ,δ) − 1) + ḡ(t, x ,T , δ)

)
λt(dx).

Proof (sketch):

using the preceding Lemma and Yor’s formula, write Z (X 0)−1SδP(T , δ) as a
stochastic exponential E(Y ), where the process Y can be explicitly computed;

E(Y ) ∈Mloc ⇐⇒ Y ∈Mloc;

Y ∈Mloc is equivalent to
I Y has finite variation terms of locally integrable variation,
I the predictable compensator Y p of Y must be null;

deduce that Y p ≡ 0⇐⇒ HJM conditions (1)-(2).

Reference: follows from a more general result in Fontana et al. (2020).
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A general multi-curve HJM framework

Interpretation:

1 condition (1) means the following:
I the instantaneous yield on a ZCB must equal the risk-free short rate rt ;
I the instantaneous yield on the floating leg of a FRA must equal the

instantaneous risk-free return rt plus a risk premium term.

2 condition (2) is a generalization of the HJM drift restriction.

Remark: conditions (1)-(2) actually characterize ELMDs, i.e., all strictly positive
Z ∈Mloc such that

Z (X 0)−1SδP(T , δ)

is a local martingale, for all (T , δ) ∈ R+×D0, with S0 ≡ 1 and P(T , 0) := P(T ).
Therefore, the Proposition can be used to deduce explicit conditions guaranteeing
NUPBR for the multi-curve market.
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A hybrid LMM-HJM framework

In the spirit of Libor market models (LMM), let us denote for each δ ∈ D:

T δ = {T δ
0 , . . . ,T

δ
Nδ} the set of settlement dates of traded FRAs with tenor δ;

we assume that T δ
0 = T0 and T δ

Nδ = T ∗, for all δ ∈ D, for T ∗ ∈ (0,+∞);

equidistant tenor structures: T δ
i − T δ

i−1 = δ, for all i = 1, . . . ,Nδ;

T :=
⋃
δ∈D T δ, corresponding to the set of traded FRAs;

ZCBs are traded for all maturities in the set T 0 := T ∪ {T ∗ + δ; δ ∈ D}.
Under the above structure, we are considering finitely many traded assets.

In the spirit of LMM, we postulate dynamics directly for the forward Libor
rates, for every δ ∈ D and T ∈ T δ:

Lt(T ,T + δ) = L0(T ,T + δ) +

∫ t

0

aL(s,T , δ)ds +

∫ t

0

bL(s,T , δ)dWs

+

∫ t

0

∫
E

gL(s, x ,T , δ)µ̃(ds,dx),

for bL(·,T , δ) ∈ L2
loc(W ) and gL(·, ·,T , δ) ∈ Gloc(µ).
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A hybrid LMM-HJM framework
Proposition

Suppose that the conditions of the previous Proposition are satisfied for δ = 0
and for all T ∈ T 0. Let Q be a probability measure with density process Z as
represented above. Then, Q is an ELMM for all traded FRAs if and only if∫ T

0

∫
E

∣∣∣gL(s, x ,T , δ)
(

(1− ψ(s, x))e−ḡ(s,x,T+δ,0) − 1
)∣∣∣λs(dx)ds < +∞ a.s.,

and the following condition holds a.s., for all δ ∈ D, T ∈ T δ and a.e. t ∈ [0,T ]:

aL(t,T , δ) = bL(t,T , δ)>
(
θt + b̄(t,T + δ, 0)

)
−
∫
E

gL(t, x ,T , δ)
(

(1− ψ(t, x))e−ḡ(t,x,T+δ,0) − 1
)
λt(dx).

Proof (sketch):

the assumptions imply that Z (X 0)−1P(T + δ) is a local martingale;

apply the product rule to L(T ,T + δ)Z (X 0)−1P(T + δ);

apply similar reasoning as in the previous Proposition to characterize the
local martingale property by analysing the finite variation terms.
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Towards tractable models
So far, we discussed general dynamic multi-curve term structure models. We now
move towards tractable specifications that allow for explicit pricing formulas.

Let us recall the concept of spot multiplicative spread:

Sδt =
1 + δLt(t, t + δ)

1 + δLzcbt (t, t + δ)
.

Looking at market data, multiplicative spreads show a typical behavior:

Sδit ≥ 1, for all i = 1, . . . ,m;

Sδit ≤ S
δj
t , for all i , j = 1, . . . ,m such that δi < δj .

To develop a tractable class of models, we shall proceed as follows:

martingale modelling: work directly under a risk-neutral probability Q;

as fundamental modelling quantities, consider
1 the instantaneous short-rate r defining the savings account numéraire X 0;
2 spot multiplicative spreads Sδ, for δ ∈ D;

model r and log Sδ as affine functions of an affine process X .

References: Henrard (2014) for parametrizing multiple curves via multiplicative spreads,

see also Cuchiero et al. (2016) and Grbac and Runggaldier (2015).
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Forward multiplicative spreads
We also define forward multiplicative spreads:

Sδt (T ) =
1 + δLt(T ,T + δ)

1 + δLzcbt (T ,T + δ)
,

where
Lt(T ,T + δ) is the forward Libor rate,
Lzcbt (T ,T + δ) is the simple forward rate associated to risk-free ZCBs.

Using the concept of δ-tenor bonds, forward multiplicative spreads correspond to

Sδt (T ) = Sδt
Pt(T , δ)

Pt(T )
.

Lemma

Suppose that P(T )/X 0 ∈M(Q), for all T ∈ R+. The following are equivalent:

1 the X 0-discounted (T , δ)-FRA price belongs to M(Q),

2 (X 0)−1SδP(T , δ) ∈M(Q),

3 Sδ(T ) ∈M(QT ),

4 L(T ,T + δ) ∈M(QT+δ),

where QT and QT+δ denote respectively the T -fwd and (T + δ)-fwd measures.

Proof: easily follows from definition of multiplicative spread and Bayes’ formula.
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Martingale modelling

Working directly under a risk-neutral probability Q corresponds to the following:

Assumption (MM - martingale modelling)

The X 0-discounted prices of basic traded assets (ZCBs for all maturities T ∈ R+

and FRAs for all maturities T ∈ R+ and tenors δ ∈ D) are martingales under Q.

In more practical terms (and making use of the previous Lemma), this means that

Pt(T ) = EQ [e−
∫ T
t
rsds
∣∣Ft ],

Sδt (T ) = EQT

[SδT |Ft ].

Under MM, this justifies the choice of r and Sδ as main modelling quantities.

At this stage, tractability depends on a suitable specification of r and Sδ.

Reference: Cuchiero et al. (2019).
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Basics of affine processes
Let (Ω,F ,F,Q) be a filtered probability space, with T < +∞ a time horizon;

let D be a non-empty closed convex subset of a real vector space V ;

let X = (Xt)0≤t≤T be an adapted time-homogeneous and conservative
Markov process taking values in D, starting at X0 = x ∈ Do ;

denote by {pt : D × BD → [0, 1]; t ∈ [0,T]} its transition kernels;

let
UT :=

{
ζ ∈ V + iV : E[e〈ζ,Xt〉] < +∞, for all t ∈ [0,T ]

}
and

D := {(t, ζ) ∈ [0,T]× (V + iV ) : ζ ∈ Ut}.

Definition

The Markov process X is said to be affine if

1 it is stochastically continuous, i.e., the transition kernels satisfy
lims→t ps(x , ·) = pt(·, x) weakly on D, for every (t, x) ∈ [0,T]× D;

2 there exist functions φ and ψ such that, for any T ∈ [0,T] and u ∈ UT ,

EQ[e〈u,XT 〉] = eφ(T ,u)+〈ψ(T ,u),x〉.

References: Duffie et al. (2003), Keller-Ressel and Mayerhofer (2015). A generalization

(affine semimartingales) has been more recently introduced in Keller-Ressel et al. (2019).
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Basics of affine processes

The Markov property of X implies that φ and ψ satisfy the semiflow relations:

φ(t + s, u) = φ(t, u) + φ(s, ψ(t, u)),

ψ(t + s, u) = ψ(s, ψ(t, u)),

for all t, s ∈ [0,T] with s + t ≤ T.

The stochastic continuity of X implies its regularity and, therefore, the following
derivatives exist and are continuous at u = 0:

F (u) :=
∂φ(t, u)

∂t

∣∣∣∣
t=0

and R(u) :=
∂ψ(t, u)

∂t

∣∣∣∣
t=0

.

Therefore, we can differentiate wrt. s the semiflow relations and evaluate them at
s = 0, thus obtaining the following system of Riccati ODEs:

∂tφ(t, u) = F (ψ(t, u)), φ(0, u) = 0,

∂tψ(t, u) = R(ψ(t, u)), ψ(0, u) = u.

The functions F and R completely characterize the law of X and are therefore
called the functional characteristics of X . They have a Lévy-Khintchine form.

Claudio Fontana (University of Padova, Italy) Cours Bachelier, IHP, Paris, 1-8 April 2022 31 / 51



Basics of affine processes

Lemma

Let X be an affine process and R := 〈λ,X 〉. Then Y := (X ,
∫ ·

0
Rs ds) is an affine

process taking values in D × R. Moreover, it holds that

EQ[e〈u,XT 〉+v
∫ T

0
Rs ds] = eφ̃(T ,u,v)+〈ψ̃(T ,u,v),x〉,

whenever the expectation is finite, with φ̃ and ψ̃ satisfying the following ODEs:

∂t φ̃(t, u, v) = F (ψ̃(t, u, v)), φ(0, u, v) = 0,

∂t ψ̃(t, u, v) = R(ψ̃(t, u, v)) + vλ, ψ(0, u, v) = u.

Remarks:

this Lemma is a crucial result in the applications of affine processes in
interest rate modelling, with R playing the role of a short-rate;

more generally, an analogous statement holds true whenever Y = (X ,Z ) is
an affine stochastic volatility process, see Keller-Ressel (2011).
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Affine multi-curve models
Definition

Let ` : [0,T] → R, λ ∈ V , c = {cδ; δ ∈ D} a family of functions cδ : [0,T] → R
and γ = {γδ; δ ∈ D} ∈ V |D|. The tuple (X , `, λ, c,γ) is an affine short rate
multi-curve model if

rt = `(t) + 〈λ,Xt〉, for all t ∈ [0,T],

log Sδt = cδ(t) + 〈γδ,Xt〉, for all t ∈ [0,T] and δ ∈ D.

Structure:

classical short-rate approach for the risk-free rate r ;
multiplicative spreads as exponentially affine functions of X .

Special case: spreads can be modelled via an instantaneous spread rate sδ:

log Sδt =

∫ t

0

sδu du =

∫ t

0

qδ(Xu)du, for δ ∈ D,

where qδ : D → R is an affine function, for each δ ∈ D. This modelling approach
has some similarities with stochastic intensity models in credit risk, see Chapter 2
in Grbac and Runggaldier (2015).

Reference: Cuchiero et al. (2019).
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Affine multi-curve models
The role of the functions ` and c consists in fitting the initial term structures:

{PM
0 (T );T ∈ R+}: term structure of ZCB prices;

{Sδ,M0 (T );T ∈ R+, δ ∈ D}: term structure of forward multiplicative spreads.

Definition

An affine short rate multi-curve model (X , `, λ, c,γ) is said to achieve an exact fit
to the initially observed term structures if

P0(T ) = PM
0 (T ) and Sδ0 (T ) = Sδ,M0 (T ), for all T ∈ [0,T] and δ ∈ D.

Interpretation: model quantities = market data at t = 0.

Proposition

An affine short rate multi-curve model (X , `, λ, c,γ) achieves an exact fit to the
initially observed term structures if and only if

`(t) = f M0 (t)− f 0
0 (t),

cδ(t) = log Sδ,M0 (t)− log Sδ,00 (t),
for all t ∈ [0,T] and δ ∈ D,

where the superscript 0 denotes quantities computed from the model (X , 0, λ, 0,γ).

Reference: Brigo and Mercurio (2001) (and Cuchiero et al. (2019) in this context).
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Affine multi-curve models
Proposition

Let (X , `, λ, c,γ) be an affine short rate multi-curve model. Then, ZCB prices and
forward multiplicative spreads are given by

Pt(T ) = exp
(
A0(t,T ) + 〈B0(T − t),Xt〉

)
,

Sδt (T ) = exp
(
Aδ(t,T ) + 〈Bδ(T − t),Xt〉

)
,

for all 0 ≤ t ≤ T ≤ T and δ ∈ D, where

A0(t,T ) = −
∫ T

t

`(u)du + φ̃(T − t, 0,−λ),

B0(T − t) = ψ̃(T − t, 0,−λ),

Aδ(t,T ) = cδ(T ) + φ̃(T − t, γδ,−λ)− φ̃(T − t, 0,−λ),

Bδ(T − t) = ψ̃(T − t, γδ, λ)− ψ̃(T − t, 0,−λ).

Proof:
1 for ZCB prices: direct application of the affine transform formula;
2 for multiplicative spreads: application of the affine transform formula together

with the martingale property of Sδ(T ) under the T -fwd. measure QT .
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Pricing applications: linear derivatives
All linear derivatives can be directly priced in terms of P(T ) and Sδ(T ).

forward rate agreements (FRAs):

ΠFRA
t (T , δ,K ) = Pt(T )Sδt (T )− (1 + δK )Pt(T + δ)

interest rate swap (IRS), exchanging a stream of cashflows indexed to the
Libor rate with tenor δ against a stream of cashflows with a fixed rate K at
dates T1, . . . ,TN , with Tn − Tn−1 = δ, for all n = 1, . . . ,N:

ΠIRS
t (T1,TN ,K ) =

N∑
n=1

(
Pt(Tn−1)Sδt (Tn−1)− (1 + δK )Pt(Tn)

)
basis swap, corresponding to a long/short position on two interest rate
swaps with different tenors δ1 < δ2 and fixed leg with payment frequency δ3:

ΠBS
t (T 1, T 2, T 3,K) =

N1∑
n=1

(
Pt(T

1
n−1)Sδ1

t (T 1
n−1)− Pt(T

1
n )

−
N2∑
i=1

(
Pt(T

2
i−1)Sδ2

t (T 2
i−1)− Pt(T

2
i )
)
− δ3 K

N3∑
j=1

Pt(T
2
j ),

where T i = {T i
0,T

i
1, . . . ,T

1
Ni
}, for i = 1, 2, 3, with T 1

N1
= T 2

N2
= T 3

N3
.

Remark: in pre-crisis setup (single-curve), value of a basis swap with K = 0 is null!

Reference: Grbac and Runggaldier (2015) and Appendix A of Cuchiero et al. (2019).
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Pricing applications: non-linear derivatives
Non-linear derivatives can be priced by Fourier methods, see e.g. Chapter 10 in
Filipović (2009). Let us consider the case of a caplet with payoff

δ
(
LT (T ,T + δ)− K

)+
, at maturity T + δ.

By risk-neutral valuation, the corresponding risk-neutral price is given by

ΠCPL
t (T , δ,K ) = δE

[
e−

∫ T+δ
t

rsds
(
LT (T ,T + δ)− K

)+
∣∣∣Ft

]
= Pt(T + δ)EQT+δ[(

eYT − (1 + δK )
)+∣∣Ft

]
,

where

YT := log(SδT/PT (T + δ))

= cδ(T ) +

∫ δ

0

`(T + u)du − φ̃(T + δ − t, 0,−λ) + 〈γδ − ψ̃(T + δ − t, 0,−λ),Xt〉.

Let
CT :=

{
ν ∈ R : ET+δ

[
eνYT

]
< +∞

}
and ΛT := {ζ ∈ C : −Im(ζ) ∈ CoT}. For ζ ∈ ΛT , we can compute the modified
moment generating function of YT :

ΦYT
(ζ) := Pt(T + δ)EQT+δ[

e iζYT
∣∣Ft

]
,

with explicit representation as time-dependent exponentially affine function of Xt .
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Pricing applications: non-linear derivatives

Proposition

Let ζ ∈ C, ε ∈ R, K (δ) := 1 + δK and assume that 1 + ε ∈ CoT . Then, the
risk-neutral price of a caplet is given by

ΠCPL
t (T , δ,K ) =

1

X 0
t

(
1

π

∫ +∞−iε

0−iε

Re

(
e−iζ log K(δ) ΦYT

(ζ − i)

−ζ(ζ − i)

)
dζ +R(ε)

)
,

where R(ε) denotes a reminder term which depends on K (δ) and ε and satisfies
R(ε) = 0 for ε > 0.

Remarks:

caplet pricing amounts to one-dimensional integration;

computational effort can be further reduced by application of Fast Fourier
Transform (FFT) methods, see Carr and Madan (1999);

alternative methodology: Fourier-based quantization, Callegaro et al. (2019)
(see also Fontana et al. (2021) for the specific application to caplets).

Reference: Cuchiero et al. (2019), relying on Theorem 5.1 of Lee (2004).
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Pricing applications: non-linear derivatives

An alternative representation of a caplet price can be derived by a measure change.
Let the probability Q̃ ≈ Q be defined by

dQ̃

dQ
:=

SδT
X 0
TS

δ
0 (T )P0(T )

=
SδT (T )PT (T )

X 0
TS

δ
0 (T )P0(T )

.

Since Q is a risk-neutral measure, Q̃ intuitively corresponds to the measure having
the floating leg of a FRA as numéraire. By changing the measure, we can write

ΠCPL
t (T , δ,K ) = Pt(T + δ)EQT+δ[(

eYT − (1 + δK )
)+∣∣Ft

]
= Sδt (T )Pt(T )Q̃t

(
YT > log(1 + δK )

)
− (1 + δK )Pt(T + δ)QT+δ

t

(
YT > log(1 + δK )

)
.

For specific models, these conditional probabilities can be explicitly computed:

Gaussian (Hull-White type) models;

Cox-Ingersoll-Ross models;

Wishart models (see Cuchiero et al. (2019)).
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Pricing applications: non-linear derivatives

Another important class of Libor derivatives are swaptions. Consider a swaption
written on an IRS starting at T0 = T with payment dates T1, . . . ,TN , with
Tn − Tn−1 = δ, for n = 1, . . . ,N. The corresponding risk-neutral price is given by

ΠSWP
t (T1,TN , δ,K) = E

[
e−

∫ T
t rsds

(
N∑

n=1

PT (Tn−1)SδT (Tn−1)− (1 + δK)PT (Tn)

)+ ∣∣∣∣∣Ft

]
.

In affine models, the pricing of swaptions is challenging:

approximate the exercise region, see Singleton and Umantsev (2002) and also
Grbac et al. (2015) in the context of a multi-curve affine (Libor) model;

lower bound that is quite close to the true value, see Caldana et al. (2017)

...otherwise: use a polynomial process as driver!
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Looking back at multiplicative spreads
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Looking back at multiplicative spreads

Empirical features of (multiplicative) spreads

typically greater than one;

longer tenors associated to larger spreads;

volatility clustering and persistence of low values;

strong comovements, in particular common upward jumps.

These phenomena can be reproduced in a model driven by CBI processes, which
belong to the class of affine processes, see Duffie et al. (2003) and Li (2020).

Reference: Fontana et al. (2021).
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A primer on CBI processes
Let (Ω,F ,F,Q) be a filtered probability space supporting:

a white noise W (ds,du) on (0,+∞)2 with intensity ds du;

a Poisson time-space random measure M(ds,dz ,du) on (0,+∞)3 with

intensity ds π(dz)du, let M̃(ds,dz ,du) be the compensated measure.

For each i = 1, . . . ,m, let Y i = (Y i
t )t≥0 be the unique strong solution of

Y i
t = y i

0 +

∫ t

0

(β(i)− bY i
s )ds + σ

∫ t

0

∫ Y i
s

0

W (ds,du)

+ η

∫ t

0

∫ +∞

0

∫ Y i
s−

0

zM̃(ds,dz ,du),

where

β : {1, . . . ,m} → R+, with β(i) ≤ β(i + 1);

(b, σ) ∈ R2 and η ≥ 0;

π is a tempered alpha-stable measure:

π(dz) = − 1

Γ(−α) cos(απ/2)

e−θz

z1+α
1{z>0}dz ,

with α ∈ (1, 2) and θ > η.

Reference: Jiao et al. (2017) in the case of single-curve short rate modelling.
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Modeling multiple curves via CBI processes

We specify the OIS short rate and spot multiplicative spreads by

rt = `(t) + µ>Yt ,

log Sδit = ci (t) + Y i
t ,

for all t ≥ 0 and i = 1, . . . ,m, with ` : R+ → R, ci : R+ → R+ and µ ∈ Rm.

Functions ` and ci are chosen to fit the term structures at t = 0;

multiplicative spreads are by construction greater than one;

OIS rate and spreads are driven by common sources of randomness;

dependence among different spreads and OIS rates;

each process Y i is a self-exciting mean-reverting process;

spreads have a mutually exciting: a large value of Sδit increases the likelihood
of upward jumps of all spreads with tenor δj > δi .

Proposition

Suppose that y i
0 ≤ y i+1

0 and ci (t) ≤ ci+1(t), for all i = 1, . . . ,m − 1 and t ≥ 0.

Then Sδit (T ) ≤ Sδi+1
t (T ) a.s., for all i = 1, . . . ,m − 1 and 0 ≤ t ≤ T < +∞.
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A sample path: multiplicative spreads
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Affine structure of CBI-driven multi-curve models
CBI processes belong to the class of affine processes, see Duffie et al. (2003).

E
[
e−pY

i
t−q

∫ t
0
Y i
s ds
]

= exp

(
−Y i

0v(t, p, q)− β(i)

∫ t

0

v(s, p, q)ds

)
,

where the function v(·, p) is given by the unique solution to the ODE

∂tv(t, p, q) = q − φ
(
v(t, p, q)

)
, v(0, p, q) = p,

with

φ(z) = bz +
σ2

2
z2 +

θα + zαηθα−1 − (zη + θ)α

cos(απ/2)
, for z ≥ −θ/η.

Theoretical results:

existence of exponential moments of Y i , in particular:

b ≥ σ2

2

θ

η
+ η

(1− α)θα−1

cos(απ/2)
=⇒ E [eY

i
T ] < +∞ for all T ≥ 0.

0 is an inaccessible boundary for Y i if and only if β(i) ≥ σ2/2;

characterization of the ergodic distribution of the process.
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A calibration exercise
We calibrate a two-tenor (3M, 6M) version of the model. Data (25/06/2018):

OIS and FRAs (bootstrapping vai Finmath Java library);

market cap volatilities (Bachelier implied volatilities), maturities between 6
months and 6 years, strikes between -0.13% and 2%.
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A calibration exercise
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Duffie, D., Filipović, D. and Schachermayer, W. (2003), Affine processes and applications in
finance, Annals of Applied Probability, 13(3): 984–1053.

Eberlein, E., Gerhart, C. and Grbac, Z. (2020), Multiple curve Lévy forward price model allowing
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Fontana, C., Grbac, Z., Gümbel, S. and Schmidt, T. (2020), Term structure modeling for
multiple curves with stochastic discontinuities, Finance and Stochastics, 24: 465–511.

Grbac, Z., Papapantoleon, A., Schoenmakers, J. and Skovmand, D. (2020), Affine LIBOR
models with multiple curves: theory, examples and calibration, SIAM Journal on Financial
Mathematics, 6: 984–1025.

Grbac, Z. and Runggaldier, W. (2015), Interest Rate Modeling: Post-Crisis Challenges and
Approaches, Springer.

Henrard, M. (2014), Interest Rate Modelling in the Multi-curve Framework, Palgrave Macmillan.

Jacod, J. and Shiryaev, A. (2003), Limit Theorems for Stochastic Processes, 2nd ed., Springer.

Claudio Fontana (University of Padova, Italy) Cours Bachelier, IHP, Paris, 1-8 April 2022 50 / 51



Jiao, Y., Ma, C. and Scotti, S. (2017(, Alpha-CIR model with branching processes in sovereign
interest rate modeling, Finance and Stochastics, 21: 789–813.

Kabanov, Y., Kardaras, C. and Song, S. (2016), No arbitrage of the first kind and local
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