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Background: facts and figures

The interest rate market represents the largest portion of the OTC derivatives
market: in the first half of 2021, the notional amount outstanding of interest rate
contracts was 488.099 USD bn, with respect to 609.996 USD bn for all contracts.1

80% of the outstanding notional of OTC derivatives is on interest rates.

Over the last 10 years, several new phenomena appeared in interest rate markets:

multi-curve environment;

persistence of low (and even negative) rates;

credit/liquidity risk in the interbank loans market and Libor manipulation;

Libor reform and new alternative risk-free rates (SOFR, SONIA, eSTR, etc.)

In this course, we aim at discussing how these phenomena have led and are
leading to the development on new mathematical models.

1Source: BIS.
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Outline

1 Basic notions of interest rates;

2 the multi-curve environment: stylized facts of post-crisis interest rate
markets, terminology, basic traded assets;

3 absence of arbitrage in a multi-curve market;

4 a general multi-curve HJM framework;

5 models driven by affine processes and pricing aspects;

6 an overview of specific modelling approaches
(short rate models, HJM models, market models, rational models);

7 the importance of stochastic discontinuities;

8 lecture by Fabio Mercurio: the Libor reform and its modelling aspects;

9 alternative risk-free rates and stochastic discontinuities;

10 an extended HJM framework for overnight and term rates;

11 an illustrative Vasiček example with stochastic discontinuities;

12 consistency and hedging issues in the presence of stochastic discontinuities.
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Measuring the value of time
A fundamental purpose of interest rates is to measure the value of time:

a discount factor Pt(T ) measures the value at time t of one unit of
currency delivered at time T , with 0 ≤ t ≤ T , in the absence of any risk;
since there is no risk, the terminal condition PT (T ) = 1 has to be satisfied;
we associate Pt(T ) to the price of a zero-coupon bond (ZCB);
the term structure at time t is the collection {Pt(T );T ≥ t} and modelling
the term structure involves describing its dynamics over time.

Term structure reconstructed on 25/06/2018, interpolated from OIS swaps.
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Notions of interest rates
Starting from {Pt(T );T ≥ t}, different types of interest rates can be defined:

simple spot rate for [S ,T ]:

L(S ,T ) :=
1

T − S

(
1

PS(T )
− 1

)
simple forward rate for [S ,T ], contracted at t ≤ S :

Lt(S ,T ) :=
1

T − S

(
Pt(S)

Pt(T )
− 1

)
continuously compounded forward rate for [S ,T ], contracted at t ≤ S :

Ft(S ,T ) := − logPt(T )− logPt(S)

T − S

instantaneous forward rate with maturity T , contracted at t ≤ T :

ft(T ) := − ∂

∂T
logPt(T )

short rate at time t:
rt := ft(t)

References: Björk (2020), Musiela and Rutkowski (2005).
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Classical modelling approaches

Depending on which notion of interest rate is taken as fundamental quantity,
different modelling approaches arise:

1 simple spot/forward rates ⇒ Libor market models:
classically, the rate L(S ,T ) was representing the Libor rate:

I postulate dynamics for the process (Lt(S ,T ))t∈[0,S];
I in the log-normal case, Black-type formulae for caps/floors;
I calibration involves determining the volatility structure;
I variant: forward price model, modelling directly 1 + (T − S)Lt(S ,T ). This

works especially well for low/negative interest rates, see Eberlein et al. (2020).

2 instantaneous forward rates ⇒ Heath-Jarrow-Morton (HJM) models:
arguably, the most general perspective on interest rate modelling:

I postulate dynamics for (ft(T ))t∈[0,T ], for all T ∈ R+;
I this leads naturally to an infinite-dimensional system of SDEs...
I ...or to a single SDE on a function space (Musiela parametrization);
I HJM drift condition ensuring absence of arbitrage;
I tractability: existence of finite-dimensional realizations (see Björk (2004)).
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Classical modelling approaches

3 short rate ⇒ short rate models:
one of the most direct ways of modelling the term structure:

I postulate dynamics for (rt)t≥0;
I typically done directly under a risk-neutral measure Q;
I compute ZCB prices and derivative prices by risk-neutral valuation:

Pt(T ) = EQ[e− ∫ T
t rsds

∣∣Ft

]
I often makes use of affine processes. Classical examples: Vasiček, Hull-White,

Cox-Ingersoll-Ross, and many others, see e.g. Brigo and Mercurio (2006).
Jiao et al. (2017) for persistently low interest rates, using α-stable processes.

4 ZCB prices ⇒ bond price models:
I postulate dynamics or a structural form for the term structure {Pt(T );T ≥ t};
I Eberlein and Raible (1999) in the case of Lévy processes as drivers of Pt(T );
I potential models: Flesaker and Hughston (1996) and Rogers (1997), directly

modeling the stochastic discount factor. This usually leads to rational models:

Pt(T ) =
A(T ) + B(T )Xt

A(t) + B(t)Xt
,

where (Xt)t≥0 is some Markovian factor process.
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Libor rates after the global financial crisis
The London Interbank Offered Rate (Libor):

daily computed as the trimmed average of rates reported by a panel of major
banks for interbank loans, for five currencies (CHF, EUR, GBP, JPY, USD)
and seven tenors (1D, 1W, 1M, 2M, 3M, 6M, 1Y);

launched in 1986 and widely adopted as benchmark rate.

Prior to the 2007-2009 global financial crisis:

interbank loans among major banks ≈ risk-free.

Hence, the following two operations on [S ,T ] should yield the same return:
1 interbank loan of 1 at S delivering 1 + (T − S)L(S ,T ) at T ;
2 risk-free investment at S in 1/PS(T ) units of ZCB bonds with maturity T .

This implies the classical representation of Libor rates in terms of ZCB prices:

L(S ,T ) =
1

T − S

(
1

PS(T )
− 1

)
.

Post-crisis evidence:

L(S ,T ) 6= 1

T − S

(
1

PS(T )
− 1

)
.
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Libor rates after the global financial crisis

Risks in the interbank market:

counterparty risk;

liquidity risk;

funding and roll-over risk.

As a consequence, Libor rates cannot be considered representative of riskless loans.

The emergence of the multiple curve environment:

Libor rates and risk-free ZCBs as distinct quantities;

Libor rates used as benchmark rates to define derivatives’ payoffs:
⇒ one “curve” to represent Libor rates;

risk-free ZCBs used as discount factors to compute (clean) derivatives prices:
⇒ one “curve” to represent ZCB prices (or, equivalently, risk-free rates).

Assuming risk-neutral valuation, the price of an interest derivative is given by

Πt = Pt(T )EQT [
Φ(L(S ,T ))

∣∣Ft

]
,

where Φ represents a generic payoff function with maturity T and QT denotes the
T -forward probability with numéraire P(T ).
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Libor rates after the global financial crisis
Libor rates show a distinct behavior depending on the length of the loan (tenor):
longer tenors are typically associated to greater risks.

Modelling consequence: one “curve” for each tenor δ ∈ D, where the set D of
tenors is typically a subset of {1D, 1W, 1M, 2M, 3M, 6M, 1Y}.

Differences (spreads) between Libor rates and simple spot OIS rates for different tenors.
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The multi-curve market
To analyse a multi-curve market, we need to identify the traded assets:

at least in theory, ZCBs can be considered as traded assets;

however, in a multi-curve financial market, ZCBs do not suffice;

Libor rates are benchmark rates and cannot be directly taken as traded assets;

which contract can be considered as a basic traded asset related to Libor?

Forward rate agreement (FRA):
for T ∈ R+, δ ∈ D and fixed rate K ∈ R, the payoff at T + δ of a FRA is given by

δ
(
L(T ,T + δ)− K

)
.

The forward Libor rate Lt(T ,T + δ) is the rate K such that the market value of
the corresponding FRA at time t is null. The price of a generic FRA is then

ΠFRA
t (T , δ,K ) = δPt(T + δ)

(
Lt(T ,T + δ)− K

)
.

If we assume (but do not need to!) risk-neutral valuation, then

Lt(T ,T + δ) = ET+δ
[
L(T ,T + δ)

∣∣Ft

]
, for t ∈ [0,T ].

References: Grbac and Runggaldier (2015), Cuchiero et al. (2016).
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The multi-curve market
FRAs represent the basic building block for interest rate derivatives:

linear derivatives (IRS, basis swaps) can be expressed in terms of FRAs;

non-linear derivatives (caplets/floorlets, swaptions) can be considered as
having FRAs as underlying assets.

We can then formalize the financial market as containing the following assets:

1 ZCBs for all maturities T ∈ R+;

2 FRAs for all maturities T ∈ R+, all tenors δ ∈ D, all rates K ∈ R,

together with a numéraire asset with strictly positive price process X 0 = (X 0
t )t≥0.

This is a Large Financial Market, containing uncountably many assets;

an appropriate notion of absence of arbitrage is no asymptotic free lunch with
vanishing risk (NAFLVR), see Cuchiero et al. (2016).

Notation:

D0 := D ∪ {0};
ΠFRA

t (T , 0, 0) := Pt(t ∧ T ), for all (t,T ) ∈ R2
+ and K ∈ R.

The set of traded assets can then be indexed by I ′ := R+×D0 × R.
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NAFLVR in multi-curve markets
Since FRA prices are linear wrt. K , the set I ′ can be reduced to I := R+×D0.
In other words, it suffices to consider FRAs for an arbitrary fixed rate K̄ .

On a given stochastic basis (Ω,F ,F,P), we proceed as follows:
for all n ∈ N, let In be the family of all subsets A ⊆ I containing n elements;
for each A = ((T1, δ1), . . . , (Tn, δn)) ∈ In, let SA = (S1, . . . ,Sn) be defined
by

S i
t = (X 0

t )−1ΠFRA
t (Ti , δi , K̄ ), for i = 1, . . . , n.

assume that, for each A ∈ In, n ∈ N, the process SA is a semimartingale;
a predictable process θ = (θ1, . . . , θ|A|) ∈ L∞(SA) is a 1-admissible trading
strategy if θ0 = 0 and (θ · SA)t ≥ −1 a.s., for all t ≥ 0;
define

XA
1 :=

{
θ · SA : θ ∈ L∞(SA) and θ is 1-admissible

}
,

X n
1 :=

⋃
A∈In

XA
1 and X1 :=

⋃
n∈N
X n

1 ,

where the closure is taken in the Émery semimartingale topology;
finally, the set of all admissible portfolios is given by

X :=
⋃
λ>0

λX 1.

Reference: Fontana et al. (2020).
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NAFLVR in multi-curve markets
Definition

The multi-curve financial market satisfies NAFLVR if

C ∩ L∞
+ = {0},

where C := (K0 − L0
+)∩ L∞, with K0 := {X∞ : X ∈ X} and C denoting the norm

closure of C in L∞.

Using the techniques of Cherny and Shiryaev (2005), we can obtain the following
FTAP, extending the result of Cuchiero et al. (2016) to an infinite time horizon.

Theorem

The multi-curve financial market satisfies NAFLVR if and only if there exists an
equivalent separating measure Q, i.e., a probability measure Q ∼ P on (Ω,F) such
that EQ[X∞] ≤ 0 for all X ∈ X .

Practical issue: characterizing an equivalent separating measure Q is difficult:

a sufficient condition is ∃ of an equivalent local martingale measure (ELMM) for

(X 0)−1ΠFRA(T , δ, K̄ ), for all (T , δ) ∈ R+×D0.

In concrete models, ELMMs can typically be explicitly characterized.
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A weaker notion of no-arbitrage
Definition

The multi-curve financial market satisfies no unbounded profit with bounded risk
(NUPBR) if the set K 1

0 := {X∞ : X ∈ X1} is bounded in probability.

Introduced under this name in Karatzas and Kardaras (2007) and equivalent
to some other notions of no-arbitrage (BK, NA1, see Kabanov et al. (2016));

in large financial markets: Kardaras (2013) and Cuchiero et al. (2016);

importance: minimal no-arbitrage condition for portfolio optimization.

Theorem

The multi-curve financial market satisfies NUPBR if and only if there exists an
equivalent supermartingale deflator Z , i.e., a strictly positive supermartingale Z
with Z0 = 1 such that Z (1 + X ) is a supermartingale for all X ∈ X1.

Remark: a sufficient condition for NUPBR is ∃ of an equivalent local martingale
deflator (ELMD) Z , i.e., a strictly positive local martingale Z such that

Z (X 0)−1ΠFRA(T , δ, K̄ ) ∈Mloc, for all (T , δ) ∈ R+×D0.

In concrete models, usually the structure of Z can be explicitly described.
(⇒ work in progress with E. Platen and S. Tappe.)
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A general multi-curve HJM framework
Suppose that, on a given stochastic basis (Ω,F ,F,P) we have

a d-dimensional Brownian motion W = (Wt)t≥0;

an integer-valued random measure µ(dt,dx), with compensator
ν(dt,dx) = λt(dx)dt, where λt(dx) is a kernel from (Ω× R+,P) into
(E ,BE ). We denote µ̃(dt,dx) := µ(dt,dx)− λt(dx)dt.

We assume the validity of the following martingale representation assumption.

Assumption

Every local martingale N = (Nt)t≥0 can be represented as

N = N0 + θ ·W + ψ ∗ µ̃,

for some θ ∈ L2
loc(W ) and ψ ∈ Gloc(µ), see Jacod and Shiryaev (2003).

For simplicity, we assume that the numéraire is a savings account:

X 0 = exp

(∫ ·
0

rs ds

)
,

with r = (rt)t≥0 representing the risk-free short rate (typically, OIS rate).

Reference: Fontana et al. (2020).
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An alternative representation of FRA prices
Let us recall the model-free representation of FRA prices:

ΠFRA
t (T , δ,K ) = δPt(T + δ)

(
Lt(T ,T + δ)− K

)
,

which we rewrite as follows, using the notation K (δ) := 1 + δK :

ΠFRA
t (T , δ,K ) = Pt(T + δ)

(
1 + δLt(T ,T + δ)

)
− K (δ)Pt(T + δ)

= Sδt Pt(T , δ)− K (δ)Pt(T + δ),

with

Pt(T , δ) :=
Pt(T + δ)

Pt(t + δ)

1 + δLt(T ,T + δ)

1 + δLt(t, t + δ)
and

Sδ
t := Pt(t + δ)

(
1 + δLt(t, t + δ)

)
=:

1 + δLt(t, t + δ)

1 + δLzcb(t, t + δ)
,

where Lzcb denotes the simple forward rate associated to risk-free ZCB bonds.

Terminology and interpretation:

1 Sδt : spot multiplicative spread, measures the relative riskiness of interbank
rates with tenor δ at time t;

2 Pt(T , δ): δ-tenor bond, time-to-maturity behavior for tenor δ.
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An alternative representation of FRA prices
These quantities admit a foreign exchange analogy:
let us imagine that a foreign economy is associated to each tenor δ ∈ D:

1 Pt(T , δ) represents the price of a ZCB of the foreign economy δ measured in
units of the corresponding foreign currency;

2 Sδt represents the spot exchange rate between the foreign currency of
economy δ and the domestic currency.

Then, the price of a foreign ZCB in units of the domestic currency is given by
Sδt Pt(T , δ) and the FRA becomes analogous to a FX forward contract.

Remark: this analogy suggests that this general HJM framework can be applied to
other markets having multiple term structures, such as

foreign exchange markets;

energy markets;

credit rating markets.

Remark: the classical single-curve setting corresponds to

Sδt ≡ 1 and Pt(T , δ) = Pt(T ).
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A general multi-curve HJM framework

We adopt the parametrization in terms of Sδt and Pt(T , δ) and suppose that

Sδt = Sδ0 E
(∫ ·

0

αδs ds +

∫ ·
0

Hδ
s dWs +

∫ ·
0

∫
E

Lδ(s, x)µ̃(ds,dx)

)
and, for all δ ∈ D0 and 0 ≤ t ≤ T < +∞,

Pt(T , δ) = exp

(
−
∫ T

t

ft(u, δ)du

)
,

where

ft(T , δ) = f0(T , δ) +

∫ t

0

a(s,T , δ)ds +

∫ t

0

b(s,T , δ)dWs

+

∫ t

0

∫
E

g(s, x ,T , δ)µ̃(ds,dx).

Technical assumptions: suitable integrability assumptions that ensure the

applicability of ordinary and stochastic Fubini theorems to develop
∫ T

t
ft(u, δ)du.

(see Assumption 3.3 in Fontana et al. (2020) for details)
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A general multi-curve HJM framework
Let us introduce the following notation, for all 0 ≤ t ≤ T , δ ∈ D0 and x ∈ E :

ā(t,T , δ) :=

∫ T

t

a(t, u, δ)du, b̄(t,T , δ) :=

∫ T

t

b(t, u, δ)du, ḡ(t, x ,T , δ) :=

∫ T

t

g(t, x , u, δ)du.

Lemma

For every T ∈ R+ and δ ∈ D0, it holds that

P(T , δ) = P0(T , δ) E
(∫ ·

0

fs(s, δ)ds −
∫ ·

0

ā(s,T , δ)ds +
1

2

∫ ·
0

|b̄(s,T , δ)|2ds

−
∫ ·

0

b̄(s,T , δ)dWs −
∫ ·

0

∫
E

ḡ(s, x ,T , δ)µ̃(ds, dx)

+

∫ ·
0

∫
E

(
e−ḡ(s,x,T ,δ) − 1 + ḡ(s, x ,T , δ)

)
µ(ds, dx)

)
.

By martingale representation, every density process Z = (Zt)t≥0 can be written as

Z = E
(
−θ ·W − ψ ∗ µ̃

)
,

for some θ ∈ L2
loc(W ) and ψ : Ω× R+× E → (−∞, 1) belonging to Gloc(µ).

objective: characterize when Z is the density process of an ELMM Q.
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A general multi-curve HJM framework

Let us define

Λ∗(t, x ,T , δ) :=
(
1− ψ(t, x)

)(
(1 + Lδ(t, x))e−ḡ(t,x,T ,δ) − 1

)
− Lδ(t, x) + ḡ(t, x ,T , δ).

Proposition

Let Q ∼ P be a probability measure with density process Z represented as above.
Then, Q is an ELMM if and only if, for all T > 0,∫ T

0

∫
E

|Λ∗(s, x ,T , δ)|λs(dx)ds < +∞ a.s.,

and the following two conditions hold a.s.

1 for a.e. t ∈ R+, it holds that

rt = ft(t, 0),

αδt = ft(t, 0)− ft(t, δ) + θ>t H
δ
t +

∫
E

ψ(t, x)Lδ(t, x)λt(dx);
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A general multi-curve HJM framework

Proposition (cont.)

2 for every T > 0 and for a.e. t ∈ [0,T ], it holds that

ā(t,T , δ) =
1

2
|b̄(t,T , δ)|2 + b̄(t,T , δ)>(θt − Hδt )

+

∫
E

(
(1− ψ(t, x))(1 + Lδ(t, x))(e−ḡ(t,x,T ,δ) − 1) + ḡ(t, x ,T , δ)

)
λt(dx).

Proof (sketch):

using the preceding Lemma and Yor’s formula, write Z (X 0)−1SδP(T , δ) as a
stochastic exponential E(Y ), where the process Y can be explicitly computed;

E(Y ) ∈Mloc ⇐⇒ Y ∈Mloc;

Y ∈Mloc is equivalent to
I Y has finite variation terms of locally integrable variation,
I the predictable compensator Y p of Y must be null;

deduce that Y p ≡ 0⇐⇒ HJM conditions (1)-(2).

Reference: follows from a more general result in Fontana et al. (2020).
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A general multi-curve HJM framework

Interpretation:

1 condition (1) means the following:
I the instantaneous yield on a ZCB must equal the risk-free short rate rt ;
I the instantaneous yield on the floating leg of a FRA must equal the

instantaneous risk-free return rt plus a risk premium term.

2 condition (2) is a generalization of the HJM drift restriction.

Remark: conditions (1)-(2) actually characterize ELMDs, i.e., all strictly positive
Z ∈Mloc such that

Z (X 0)−1SδP(T , δ)

is a local martingale, for all (T , δ) ∈ R+×D0, with S0 ≡ 1 and P(T , 0) := P(T ).
Therefore, the Proposition can be used to deduce explicit conditions guaranteeing
NUPBR for the multi-curve market.
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A hybrid LMM-HJM framework

In the spirit of Libor market models (LMM), let us denote for each δ ∈ D:

T δ = {T δ
0 , . . . ,T

δ
Nδ} the set of settlement dates of traded FRAs with tenor δ;

we assume that T δ
0 = T0 and T δ

Nδ = T ∗, for all δ ∈ D, for T ∗ ∈ (0,+∞);

equidistant tenor structures: T δ
i − T δ

i−1 = δ, for all i = 1, . . . ,Nδ;

T :=
⋃
δ∈D T δ, corresponding to the set of traded FRAs;

ZCBs are traded for all maturities in the set T 0 := T ∪ {T ∗ + δ; δ ∈ D}.
Under the above structure, we are considering finitely many traded assets.

In the spirit of LMM, we postulate dynamics directly for the forward Libor
rates, for every δ ∈ D and T ∈ T δ:

Lt(T ,T + δ) = L0(T ,T + δ) +

∫ t

0

aL(s,T , δ)ds +

∫ t

0

bL(s,T , δ)dWs

+

∫ t

0

∫
E

gL(s, x ,T , δ)µ̃(ds,dx),

for bL(·,T , δ) ∈ L2
loc(W ) and gL(·, ·,T , δ) ∈ Gloc(µ).
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A hybrid LMM-HJM framework
Proposition

Suppose that the conditions of the previous Proposition are satisfied for δ = 0
and for all T ∈ T 0. Let Q be a probability measure with density process Z as
represented above. Then, Q is an ELMM for all traded FRAs if and only if∫ T

0

∫
E

∣∣∣gL(s, x ,T , δ)
(

(1− ψ(s, x))e−ḡ(s,x,T+δ,0) − 1
)∣∣∣λs(dx)ds < +∞ a.s.,

and the following condition holds a.s., for all δ ∈ D, T ∈ T δ and a.e. t ∈ [0,T ]:

aL(t,T , δ) = bL(t,T , δ)>
(
θt + b̄(t,T + δ, 0)

)
−
∫
E

gL(t, x ,T , δ)
(

(1− ψ(t, x))e−ḡ(t,x,T+δ,0) − 1
)
λt(dx).

Proof (sketch):

the assumptions imply that Z (X 0)−1P(T + δ) is a local martingale;

apply the product rule to L(T ,T + δ)Z (X 0)−1P(T + δ);

apply similar reasoning as in the previous Proposition to characterize the
local martingale property by analysing the finite variation terms.
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