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Processes with memory zﬁg’}

Memory can determine the dynamics of a stochastic process in different ways, e.g.,

Hidden Markov process: X is a component or function of an underlying Markov process
Z. E.g., the price process in a stochastic volatility model

dSt = \/V_[S tdB[, dV[ = G’(Vt)dt +B(V[)th, Z = (S, V).

Delay equations: The dynamics of X at time ¢ depends explicitly on (X);—n<s<:-
Memory kernel: The dynamics of X at time ¢ depends on

! !
fK(t,s)Xsds, fK(t,s)dXS,...

Special case: K(t, s) = K(t — s) (Volterra equation).

Processes with memory are the rule, not the exception! J
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Plan of this course

The path signature is a universal tool for approximating functions of paths, comparable to
polynomials in finite dimensions.

1. Introduction to signatures and rough paths (time permitting).

2. Universality of signatures and signature kernels: model-free statistics for stochastic
processes.

3. Optimal stopping as an example of using signatures for stochastic optimal control of
non-Markov processes.
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Outline

Kl Path signatures
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Paths

> A (d-dimensional) path is a continuous function x : I — R?, I c R being an interval.
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Paths

> A (d-dimensional) path is a continuous function x : I — R?, I c R being an interval.
> A path x is smooth if it is C' — more precisely, bounded variation would suffice.
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Figure: Sample of a 2d Brownian motion W. Figure: Path [0,1] 5t % (sin(87t), cos(87t)).
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Controlled differential equations — iterated integrals as polynomials on path space

Controlled differential equation

Let x : [0, 7] — R? be a smooth path, V : R¢ — R4 smooth, y, € R¢, and consider

dy(®) = V(y())dx(r), t€[0,T], y(0) = yo.
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Controlled differential equations — iterated integrals as polynomials on path space X“g’}

Controlled differential equation

Let x : [0, 7] — R? be a smooth path, V : R¢ — R4 smooth, y, € R¢, and consider

dy(®) = V(@) dx(»), 1€[0,T], y(0) = yo.

> y solves an ODE: y(7) = V(y(1))x(1), but difficult to generalize to rough paths.
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Controlled differential equations — iterated integrals as polynomials on path space z@’}

Controlled differential equation

Let x : [0, T] — R? be a smooth path, V : R¢ - R®*¢ smooth, y, € R¢, and consider

dy(®) = V(@) dx(»), 1€[0,T], y(0) = yo.

> y solves an ODE: y(r) = V(y(¢))x(¢), but difficult to generalize to rough paths.
> First order expansion: For s < u < t, y(u) = y(s) + H.O.T., implying that

V(y(w) = V(¥(s))+H.O.T., and hence y(7) = y(s) + V(y(s))xs, + HO.T.,, x5, = x(r) — x(s).
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Controlled differential equations — iterated integrals as polynomials on path space z@’}

Controlled differential equation

Let x : [0, T] — R? be a smooth path, V : R¢ - R®*¢ smooth, y, € R¢, and consider

dy(®) = V(@) dx(»), 1€[0,T], y(0) = yo.

> y solves an ODE: y(r) = V(y(¢))x(¢), but difficult to generalize to rough paths.
> First order expansion: For s < u < t, y(u) = y(s) + H.O.T., implying that

V(y(w) = V(¥(s))+H.O.T., and hence y(¢) = y(s) + V(y(s))xs, + HO.T.,, x5, = x(7) — x(s).
> Second order expansion: y(u) = y(s) + V(y(s))x;, + H.O.T., implying that
V@) = V(y(s)) + DV()V () Xsu, (1) = y(s) + V(y(s)xs, + DV(y(s)V(y(s))xs, + H.O.T.

xU = f X dxd(u) = f dx (1) dxl(n), i, j=1,....d.
' s s<t)<ty<t
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Controlled differential equations — iterated integrals as polynomials on path space z@’}

Controlled differential equation

Let x : [0, T] — R? be a smooth path, V : R¢ - R®*¢ smooth, y, € R¢, and consider

dy(®) = V(@) dx(»), 1€[0,T], y(0) = yo.

> y solves an ODE: y(r) = V(y(¢))x(¢), but difficult to generalize to rough paths.
> First order expansion: For s < u < t, y(u) = y(s) + H.O.T., implying that

V(y(w) = V(¥(s))+H.O.T., and hence y(¢) = y(s) + V(y(s))xs, + HO.T.,, x5, = x(7) — x(s).
> Second order expansion: y(u) = y(s) + V(y(s))x;, + H.O.T., implying that
V@) = V(y(s)) + DV()V () Xsu, (1) = y(s) + V(¥(5)xs; + DV () V(y($))xs, + H.O.T.

xU = f X dx(u) = f dx'(1) dx/ (), i, j=1,....,d.
' s s<t)<ty<t

> Third order expansion: involves iterated integrals of order three...
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Path signature

Path signature
Given a (smooth) path x : [s, f] — R?, the associated signature x; ;" is the collection of all
iterated integrals, i.e., x5 = (x57)"_, where

(i1 semin) (i1 seemsin) o i i
x., =1, x .—(X ) . , X = dx''(#y) - - - dx"(t,,).
7 U i)l Ld P ° 25 £<,1<...<,n<, t) (t)
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Path signature

Path signature

Given a (smooth) path x : [s, 7] — R?, the associated signature x; ;" is the collection of all

iterated integrals, i.e., x5 = (x7) ", where

S,t

=0 . =n . (il ,,,,, in)) (- in) . iy in
X = l, X = (X X X , X = dx''(¢p) - - - dx™(2,).
st s,t S,t (ll ln)E{ 1 d}n s,t Ltl< b <t ( 1) ( n)

..........

The signature is parameterization-invariant: i.e., for y : [u, v] — [s, ¢] increasing and C',
the change of variables formula — with r = y(¥) — implies that

v v ! !
f JO(P)dx(y(r) = f Jy)x(y(@)y(rdr = f J()x(rdr = f J(r)dx(r).

Hence, denoting z o y = x, we have z; |’ = x}".
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Paths are characterized by their signature

Theorem (Chen 1958, Hambly and Lyons 2010)
A (smooth) path x is uniquely determined by its initial value and its signature — up to
re-parameterization and tree-like excursions.
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Paths are characterized by their signature zﬁ@

Theorem (Chen 1958, Hambly and Lyons 2010)

A (smooth) path x is uniquely determined by its initial value and its signature — up to
re-parameterization and tree-like excursions.

> The theorem was proved by Chen for C!-paths in 1958 and extended to
bounded-variation paths by Hambly and Lyons in 2010.

> Extended to (weakly geometric) rough paths.

> Tree-like paths are essentially paths, which start and end in the same point and
“‘completely re-trace their history”. These paths have trivial signatures.
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Paths are characterized by their signature z@’}

Theorem (Chen 1958, Hambly and Lyons 2010)

A (smooth) path x is uniquely determined by its initial value and its signature — up to
re-parameterization and tree-like excursions.

> The theorem was proved by Chen for C!-paths in 1958 and extended to
bounded-variation paths by Hambly and Lyons in 2010.

> Extended to (weakly geometric) rough paths.

> Tree-like paths are essentially paths, which start and end in the same point and
“‘completely re-trace their history”. These paths have trivial signatures.

Open problem

How can we computationally and efficiently recover the path (with unit speed) from its
signature?
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Tensor algebra zﬁ(;’}

Tensor algebra

Given a (finite-dimensional) vector space V, let V& := R, V®"*D .= y®" g V and denote

T(V) = @ VoL T((V)) = ]—[ ver TNW) = @ yon

n=0 n=0

Both 7'(V) and T'((V)) (and, with obvious modifications, the truncated tensor algebra
TN(V)) are algebras with usual addition and the product

a®b:=(z

i+j=n

a; ®bj) , where a = (a,),, b = (bn),-
n=0

Recall that a = (a,);”, € T((V)) is contained in T(V) iffa, =0 € Ve for all but finitely
many n.
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Signatures as elements of the tensor algebra zﬁ@

» Letey,...,e, denote a basis of R?, and x : [s, 1] — R? a smooth path with
x(u) = Z?:l X (we; = x'(u)e;.
> Recallthat{e;, ®---®e;, | (i1,...,in) €{1,...,d}"}is a basis of (R?)®".

» We denote the basis of (RY)® ~ R by 1 — which we identify with (1,0, ...) € T((R%)).
Note that 1 is the neutral element of the algebra T((R%)) w.r.t. ®.
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Signatures as elements of the tensor algebra

» Letey,...,e, denote a basis of R?, and x : [s, 1] — R? a smooth path with
x(u) = Z?zl X (we; = x'(u)e;.

> Recallthat {e;, ®---®e¢;, | (i1,...,ix) €{1,...,d}" }is a basis of (R?)®",

» We denote the basis of (RY)®" ~ R by 1 — which we identify with (1,0, ...) € T((R%)).
Note that 1 is the neutral element of the algebra T((R%)) w.r.t. ®.

Definition (Path signature)
We define the signature x;° € 7((R“)) by setting

=1+ Y xeie 0w, =:1+Zf dx(1) ® - - - ® dx(ty),
n=1 (i1,..0in)e{ L,....d }" n=1 YU <<l <t

as well as its truncated version xf’,\’ e TV(RY) by truncation at level N.
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Chen’s identity @

Theorem (Chen’s identity)

Given a (smooth) path x : [r,t] — R4, then for anyr < s <t we have

<00 <00 <0
® X

Xyt
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Chen’s identity zﬁ@

Theorem (Chen’s identity)

Given a (smooth) path x : [r,1] — RY, then for any r < s < t we have

<oo

Xyt

_ <00 <0
- Xr,s ®Xs,t .

> Formally, Chen’s identity follows easily from the differential equation satisfied by the
signature:

dxy = x5 @dx(n), x5y =1¢€T(RY).

S,

> Chen’s identity is a consequence of linearity of the integral. Hence, it is a fundamental
property valid for all notions of signatures, including for rough paths.
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Chen’s identity zﬁ@

Theorem (Chen’s identity)

Given a (smooth) path x : [r,t] — R4, then for anyr < s <t we have

<o

_ <o <00
Xr,t - Xr,s ®Xs,t .

> Given two paths x : [a, b] — R and y:lc,e] — R4, define their concatenation product
z:=x0y:[a,b+(e—c)] —>Rdby

x(u), a<u<hb,

Yu—-b+c)—y(c)+x(b), b<u<b+(e—c).

z(u) =

By Chen'’s identity (and re-parameterization invariance), z_ 7’ , ., ==, ® v:. .

<ooy—1
r,s

> Let % the time-reversal of x, s0 7 := x o % is tree-like, 7y, = 1. Hence, K50 = (x
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Some tools for book-keeping %

> Consider all words w in the letters { 1,..., d}, endowed with the concatenation product.
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Some tools for book-keeping zﬁ@

> Consider all words w in the letters { 1,..., d}, endowed with the concatenation product.

> Let W, denote the linear span of all such words: For words w1, ..., wy, a typical
element £ € W, is of the form € = Ayw; + -+ - + Lwy, Ay,...,Ax €R.

> Extending the concatenation product in a distributive way to ‘W,, we obtain an algebra,
including the empty word @ as neutral element w.r.t. multiplication (i.e., concatenation).
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Some tools for book-keeping z@’}

> Consider all words w in the letters { 1,..., d}, endowed with the concatenation product.

> Let ‘W, denote the linear span of all such words: For words wy, ..., wy, a typical
element £ € W, is of the form € = Ayw; + -+ - + Lwy, Ay,...,Ax €R.

> Extending the concatenation product in a distributive way to ‘W,, we obtain an algebra,
including the empty word @ as neutral element w.r.t. multiplication (i.e., concatenation).

» Note that ‘W, is isomorphic to the algebra T(R%), and, hence, (trivially) 7((R%)*).
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Some tools for book-keeping X“(;’}

> Consider all words w in the letters { 1,..., d}, endowed with the concatenation product.

> Let ‘W, denote the linear span of all such words: For words wy, ..., wy, a typical
element £ € W, is of the form € = Ayw; + -+ - + Lwy, Ay,...,Ax €R.

> Extending the concatenation product in a distributive way to ‘W,, we obtain an algebra,
including the empty word @ as neutral element w.r.t. multiplication (i.e., concatenation).

» Note that ‘W, is isomorphic to the algebra T(R%), and, hence, (trivially) 7((R%)*).

Definition (Duality pairing)
Define a bi-linear map (-, -) : W, X T((RY) - R:Foraword £ = i --- i, € Wy, and for

T(RY)sa=a®1+> > a8,
n=1 (iy,....in)€{ 1,....d }"

set (i,---iy. a) := ¢ and extend bi-linearly to W, in the first argument.
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Shuffle identity @

Definition (Shuffle product)

Define a commutative product LI on ‘W, as follows: For words w, v and letters i, j define
W@ =@ lw:=w, Willv]:=WLvj)i+WiLlv)j,

and extend to ‘W, by bi-linearity.
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Shuffle identity @

Definition (Shuffle product)

Define a commutative product LI on ‘W, as follows: For words w, v and letters i, j define
W@ =@ lw:=w, Willv]:=WLvj)i+WiLlv)j,

and extend to ‘W, by bi-linearity.

Example: 12 W 34 = 1234 + 1324 + 1342 4+ 3124 + 3142 + 3412.
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Shuffle identity @

Definition (Shuffle product)

Define a commutative product LI on ‘W, as follows: For words w, v and letters i, j define
W@ =@ lw:=w, Willv]:=WLvj)i+WiLlv)j,

and extend to ‘W, by bi-linearity.

Example: 12 W 34 = 1234 + 1324 + 1342 4+ 3124 + 3142 + 3412.

Theorem (Shuffle identity)

Given a smooth path x : [s,7] — R4 and ¢;, ¢> € Wy, we have

(61, x5) (0, x57) = (61 W 6, x57).
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Remarks on the shuffle identity

> Follows from the chain rule, hence relies on smoothness of paths.
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Remarks on the shuffle identity @
> Follows from the chain rule, hence relies on smoothness of paths.

» Example: Let £; = £, = i. Then, by definition, i L i =2ii. Hence,

! t
(6w b, x57) =2(id, x55) =2 f (x' ()= x'(5))dx () = 2 f ()3 () du—2x (5L,
s s R/_/
=14 (xi(u))?
= ()P = ()P = 26 ()X ) + 2 () = (o, = (1, x5) = (0, x5 ) (0, x5).

Note the redundancies in the signature!
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Remarks on the shuffle identity zﬁ@

> Follows from the chain rule, hence relies on smoothness of paths.
» Example: Let £; = £, = i. Then, by definition, i L i =2ii. Hence,

! t
(6w b, x57) =2(id, x55) =2 f (X (u)—x'(5))dx'(u) = 2 f X ()& () du—2x'(5)x',
=3 & (K
. . . . . . ) o\2 o o
= ()= (¥ () =26 () () +2(x' () = () = (1, x57°) = (€1, x57°) (6o =57°)-
Note the redundancies in the signature!

> Given p € R[x] (e.g., p(x) = dg + A1 x + - - + 4,X") and € € W, there is p"'(£) e Wy,

s.t., » (<€’ X\<:{>o>) _ <pLLI([)’ Xf‘rx’> , pu-'([) =A00+ 410+ + ﬂnfm" e Wj.

Polynomials in the signature are linear functionals in the signature. J
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Lie-group @

Recall that signatures are invertible w.r.t. the tensor multiplication. Do they form a group?

Definition (Group-like elements)

GRY) ={ae T(®RY) | V1,6 € Wa: (b1, a) (L, a) = ({ W {3, a) |
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Lie-group %

Recall that signatures are invertible w.r.t. the tensor multiplication. Do they form a group?

Definition (Group-like elements)

GRY) ={aeT(R) |Vt € Wy: (t1, a) (L, a) = (6 W {3, a) |

> From the shuffle-identity, for any smooth path x : [s, 7] » RY, x5 € G(RY).

> Ifae GRY), thena =1+a (with(2, a) =0), anda™' = 3)}° (—1)"a®.

Signatures and applications in finance - March 1st - 8th 2024 - Page 15 (64) %



Lie-group zﬁ@

Recall that signatures are invertible w.r.t. the tensor multiplication. Do they form a group?

Definition (Group-like elements)

GRY) ={aeT(R) |Vt € Wy: (t1, a) (L, a) = (6 W {3, a) |

> From the shuffle-identity, for any smooth path x : [s, 7] — RY, x55° € GRY).

> Ifa e G(RY), thena =1+a (with (2, a) = 0), and a™! = ;> (- 1)*a®.

» We can also define a group GV (R?) c TV(R?) by truncation. GN(R?) is a Lie group.

Signatures and applications in finance - March 1st - 8th 2024 - Page 15 (64) %



Lie algebra %

Define exp : T((RY)) — T((RY)) and log : {a e T(RY) | (2, ay =1 } — T((RY)) by

0 1 0 -1 k+1
exp(a) =1+ Z Fa@’k, log(a) = Z ( ]z a®% witha=1+a.
P =1
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Lie algebra %
Define exp : T((RY)) — T((RY)) and log : {a e T(RY) | (2, ay =1 } — T((RY)) by

0 1 0 -1 k+1
exp(a) =1+ Z Ea@’k, log(a) = Z ( ]z a®% witha=1+a.
=T =1

Lie algebra

a(RY) := log(G(R?)) is a Lie algebra under the commutator [a,b] :=a®b — b ®a. In fact, it
is the free Lie algebra generated by e, ..., es. Similarly, define g (R%).
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Lie algebra

Define exp : T((RY)) — T((RY)) and log : {a e T(RY) | (2, ay =1 } — T((RY)) by

0 1 1 k+1
exp(a) =1+ Z Ea@’k, log(a) = Z - ) a®, witha=1+a.
=T

Lie algebra

a(RY) = log(G(R?)) is a Lie algebra under the commutator [a,b] :=a®b — b ®a. In fact, it
is the free Lie algebra generated by ey, ..., e;. Similarly, define g"(R%).

> Note that exp : g(RY) — G(RY) and log : G(RY) — g(R?) are both bijective, and the
same holds, mutatis mutandis, for the truncated versions G (R?), g (R?). Hence,
gV (RY) is a global chart of the Lie group GV (R?).
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Lie algebra

Define exp : T((RY)) — T((RY)) and log : {a e T(RY) | (2, ay =1 } — T((RY)) by

0 1 1 k+1
exp(a) =1+ Z Ea@’k, log(a) = Z - ) a®, witha=1+a.
=T

Lie algebra

a(RY) = log(G(R?)) is a Lie algebra under the commutator [a,b] :=a®b — b ®a. In fact, it
is the free Lie algebra generated by ey, ..., e;. Similarly, define g"(R%).

> Note that exp : g(RY) — G(RY) and log : G(RY) — g(R?) are both bijective, and the
same holds, mutatis mutandis, for the truncated versions GV (R9), a" (R¢). Hence,
gV (RY) is a global chart of the Lie group GV (R?).

» dim g"(RY) grows much slower than dim TV (R%). E.g., ford = 3 and N = 4:
dim TV(R?) = 120, dim ¢V (R?) = 32. Hence, the Lie algebra removes many
redundancies (at the cost of the shuffle identity).
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Log-signatures X“g’}

Definition (Log-signature)

Given a smooth path x : [s,7] — R4, define the (truncated) log-signature by
155 = log(x;") € a(RY) — and similarly its truncated version I5Y € gV (RY).
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Log-sighatures

Definition (Log-signature)

Given a smooth path x : [s,7] — R4, define the (truncated) log-signature by
15 = log(x:%) € g(RY) — and similarly its truncated version 15V € gV (R9).

Example: N =2

el
~
.

> A basis of g?(R?) is given by e;, i = 1,.. ., d, together with [e;,e;], 1 < i< j<d.
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Log-signatures

Definition (Log-signature)

Given a smooth path x : [s,7] — R4, define the (truncated) log-signature by
15 = log(x%°) € g(R?) — and similarly its truncated version IV € gV (RY)

Example: N =2

. -
Il |
o
-~
.

> A basis of g?(R?) is given by e;, i = 1,.. ., d, together with [e;,e;], 1 < i< j<d.
> By the definition of log applied to x37 = 1+ x/ ¢; + xg’, e ® ej, we get
logxs? = (x$2 - 1) - (x5! - 1)®2 = xs’,e,-+( G _ Ly )e,®e,

> Note that x (l j) + X(J ) = fs<t1<t <t dxi(tl)dxj(tZ) + f<, <ti<t dxi(tl)dxj(lé) =
f f dx’ (tl)dxj(tz) = xi ,x],. Hence, x(’ D) z(x”)Z 0, X(’J) _ 1x”xj 2(X(z g _ (],z))

> |n total: logxS2 Z X € + Z (”) (”))[e,,ej] Z Xgs€i + Z a(”).

=1l 1<i< ;<d 1<i<j<d

h
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Example: Signatures and areas of x() = (a cosh(0;1) — @, cos(6:1)), d = 2

1.00
0.75
0.50
0.25

ﬁk 0.00 -

-0.25 1
~0.50 -

—0.75 1

—1.00 4

0.0 0.2 0.4 0.6 0.8
Xl

Figure: The path — up to re-parameterization.
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Example: Signatures and areas of x() = (a cosh(0;1) — @, cos(6:1)), d = 2

1.00 4 1.00
0.75 0.75

0.50 0.50

0.25 0.25

N>< 0.00 - N>< 0.00 -
—0.25 1 —0.25
~0.50 —0.50
~0.75 ~0.75 1
~1.00 1 ~1.00

0.0 02 0.4 0.6 0.8 0.0 02 0.4 0.6 08
x1 x1

Figure: The shuffle identity x;” + x3" = x! 22,

s,
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Example: Signatures and areas of x() = (a cosh(0;1) — @, cos(6:1)), d = 2

1oo{ &&(U)
0.75 A
0.50 A
0.25 A
0.00 -
—0.25
—0.50

—0.75 +

—1.00 -

(t

0.0 0.2 0.4 0.6 0.8

Figure: Interpretation of Lévy’s area
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Example: Signatures and areas of x() = (a cosh(0;1) — @, cos(6:1)), d = 2

1.00 A1

0.75 1

0.50 4

0.25 1

0.00 -

—0.25 1

—0.50 1

—0.75 1

—1.00 1

0.0 0.2 0.4 0.6 0.8
t

Figure: The path and the induced area path ¢ — ay,.
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Example: Signatures and areas of x() = (a cosh(0;1) — @, cos(6:1)), d = 2

1004 &(U) 1.00 1
1 — x4)
0.75 1 0.75 1
—— x(t)
0.50 0501 —— 3(t)
0.25 - 0.25
0.00 0.00
—0.25 A (s) —0.25 A
~0.50 —0.50
—0.75 —0.75
—1.00 —1.00
0.0 02 0.4 0.6 0.8 0.0 02 0.4 0.6 0.8

Figure: Construction of the induced area path 7 — ag,.
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Example: Signatures and areas of x() = (a cosh(0;1) — @, cos(6:1)), d = 2

100 (V) 1.00

— x}()
0.75 0.75 x2(t)
0.50 0501 —— 3(t)

0.25 0.25
0.00 A 0.00 A
—0.25 -0.25
—0.50 - —0.50 -
—0.75 (s) —0.75
~1.00 ~1.00
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 08

Figure: Construction of the induced area path 7 — ag,.
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Example: Signatures and areas of x() = (a cosh(0;1) — @, cos(6:1)), d = 2

1.00 A (U) 1.00 A 1
(s) — x=(t)

0.75 0.75 Xz(t)

0.50 A 0504 a(t)

0.25 - 0.25 -
0.00 - 0.00 A
~0.25 ~0.25
~0.50 —0.50 -
—0.75 —0.75 1
~1.00 ~1.00
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 08

Figure: Construction of the induced area path 7 — ag,.
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Example: Signatures and areas of x() = (a cosh(0;1) — @, cos(6:1)), d = 2

1.00 A (U) 1.00 A 1
— xY(t)
0.75 A 0.75 A
—— X2(t)
0.50 A 0504 a(t)
(s)
0.25 A 0.25 A
0.00 A 0.00 A
—0.25 A —0.25 A
—0.50 A —0.50 A
—0.75 A —0.75 A
—1.00 A —1.00 A
ofo 0t2 of4 ofe 018 ofo 0t2 074 ofe ofs

Figure: Construction of the induced area path 7 — ag,.
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Example: Signatures and areas of x() = (a cosh(0;1) — @, cos(6:1)), d = 2

100 X(U) 1.00

— x}()
0.75 0.75 x2(t)
0.50 0501 —— 3(t)

0.25 A 0.25 A

0.00 A 0.00 A

—0.25 A1 —0.25 A1

—0.50 A (S) —0.50

—0.75 A —0.75 A

—1.00 A —1.00 A
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Figure: Construction of the induced area path 7 — ag,.
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Example: Signatures and areas of x() = (a cosh(0;1) — @, cos(6:1)), d = 2

1004 &X(U) 1.001 1
— Xx(t)
0.75 0.75
— x%(t)
0.50 - 0501 a(¢f)
0.25 0.25
0.00 0.00
-0.25- -0.25 1
~0.50 ~0.50
~0.75 1 ~0.75-
~1.00 (5) ~1.00
0.0 02 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Figure: Construction of the induced area path ¢ — ay;.
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Area of a two-dimensional Brownian motion

0.4 4

0.2

0.0 1

W2

—-0.2 1

—-0.4 1

—0.6 1
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

Figure: Path of a two-dimensional Brownian motion
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Area of a two-dimensional Brownian motion

154 — tl
2
t
1.0
— At
051 '
(! o “
0.0 A '
_0'5-
0.0 02 0.4 0.6 0.8 1.0

t

Figure: Path and area of a two-dimensional Brownian motion
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Area of a two-dimensional Brownian motion

1.5
1.0 1
0.5 1
0.0 1 ™
1
Wt
054 — Wt2
Wl, 2)
—1.0 A 0,t
WZ, 1)
-1.5 0.t

0.0 0.2 0.4 0.6 0.8 1.0
t

Figure: Path of W and non-trivial entries of W57 — note that Wg,}i) = 3(W )%
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Signatures as features for Machine Learning methods

> Input data: a path or, more realistically, a time series in d dimensions.
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Signatures as features for Machine Learning methods

> Input data: a path or, more realistically, a time series in d dimensions.
> Feature transformation: extract a finite dimensional projection of the path-signature.

» ML framework: plug the features into a standard ML framework, e.g., random forest or
deep neural network.
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Signatures as features for Machine Learning methods

> Input data: a path or, more realistically, a time series in d dimensions.

> Feature transformation: extract a finite dimensional projection of the path-signature.

» ML framework: plug the features into a standard ML framework, e.g., random forest or
deep neural network.

Examples [Terry Lyons and co-authors]
Human action recognotion ~ Psychiatric diagnosis Chinese handwriting

1 Head

Anxiety

2 Shoulder Center
t Shoulder
S Lt Elbow s
6 Left Hand
7 Right Shoulder
§ Right Elbow 0
9 Right Hand —
10 Left Hip H
11 Left Knee 2 -
12 Left Foot

13 Right Hip 0
14 Right Knee
15 Right Foot
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Useful path-transformations

> Time-extended path: Recall that the signature x3;° is invariant under
re-parameterization. If this is not appropriate, extend x to x(x) := (u, x(u)) € R, Its
signature Ej}” effectively respects the given parameterization.
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Useful path-transformations %

> Time-extended path: Recall that the signature x3;° is invariant under
re-parameterization. If this is not appropriate, extend x to x(u) := (u, x(u)) € R¥*!. Its
signature Efj" effectively respects the given parameterization.

> Interpolation in time: Given a time series (x, x2, . . .), choose the appropriate
interpolation to construct a path. Popular choices: piece-wise linear or piece-wise
axis-parallel.

> Discrete time signature: Alternatively, choose discrete time signatures.
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Useful path-transformations z@’}

> Time-extended path: Recall that the signature x3;° is invariant under
re-parameterization. If this is not appropriate, extend x to x(u) := (u, x(u)) € R¥*!. Its
signature Efj" effectively respects the given parameterization.

> Interpolation in time: Given a time series (x, x2, . . .), choose the appropriate
interpolation to construct a path. Popular choices: piece-wise linear or piece-wise
axis-parallel.

> Discrete time signature: Alternatively, choose discrete time signatures.

> Lead-lag-transform: Especially for financial time series, extend a time series
(x1, x2, X3, ...) to ((x1, x1), (x2, x1), (x3, X2), (x4, X3), . . .). (Related to quadratic variation.)
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Useful path-transformations zﬁg’}

> Time-extended path: Recall that the signature x3;° is invariant under
re-parameterization. If this is not appropriate, extend x to x(u) := (u, x(u)) € R¥*!. Its
signature Efj" effectively respects the given parameterization.

> Interpolation in time: Given a time series (x, x2, . . .), choose the appropriate
interpolation to construct a path. Popular choices: piece-wise linear or piece-wise
axis-parallel.

> Discrete time signature: Alternatively, choose discrete time signatures.

> Lead-lag-transform: Especially for financial time series, extend a time series
(x1, x2, X3, ...) to ((x1, x1), (x2, x1), (x3, X2), (x4, X3), . . .). (Related to quadratic variation.)

Modern trends
> Neural (rough) DEs. > Signature kernel methods
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Figure: Kuo-Tsai Chen
(1923-1987)
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Outline

H Rough Paths
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Discontinuity of solutions to controlled differential equations %

Can we solve dy(r) = V(y(1))dx(¢) for a non-smooth path x : [0, T] — R — e.g., a-Hélder? J
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Discontinuity of solutions to controlled differential equations %

Can we solve dy(r) = V(y(1))dx(¢) for a non-smooth path x : [0, T] — R — e.g., a-Hélder? J

> Standard recipe: Let x,, be smooth paths such that ||x, — x]|, "%, 0. Define y as limit
of solutions y, to dy,(t) = V(y,(t))dx,(1).
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Discontinuity of solutions to controlled differential equations %

Can we solve dy(r) = V(y(1))dx(¢) for a non-smooth path x : [0, T] — R — e.g., a-Hélder? J

> Standard recipe: Let x,, be smooth paths such that ||x;, — x|/, 2%, 0. Define y as limit
of solutions y, to dy,(t) = V(y,(t))dx,(1).

> Let x,(7) = (sin(nzt)/n, cos(nzt)/n), t € [0, 27], with limit x(7) = 0, and the area

! !
2= 5 [ 68 -3 [ R
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Discontinuity of solutions to controlled differential equations @

Can we solve dy(7) = V(y(1))dx(¢) for a non-smooth path x : [0, T] — R — e.g., a-Hélder? J

> Standard recipe: Let x,, be smooth paths such that ||x,, — x|/, 2%, 0. Define y as limit
of solutions y, to dy,(t) = V(y,(t))dx,(?).

> Let x,(f) = (sin(nzt)/n, cos(an)/n), t € [0, 2], with limit x(f) = 0, and the area

(D) = % fo x},(s)dx,%(s)—% fo x2($)dx)(s)

Aot fonter
= Z(L sm(n s) ds + 0cos(n s) ds
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Discontinuity of solutions to controlled differential equations %

Can we solve dy(7) = V(y(1))dx(¢) for a non-smooth path x : [0, T] — R — e.g., a-Hélder? J

> Standard recipe: Let x,, be smooth paths such that ||x,, — x|/, 2%, 0. Define y as limit
of solutions y, to dy,(t) = V(y,(t))dx,(?).

> Let x, (1) := (sin(n?1)/n, cos(n#)/n), t € [0, 2], with limit x(r) = 0, and the area

2a(D) = % fo x,ll(s)dx,zl(s)—% fo x2(s)dx}(s)

1

!
1
=_§f0 1ds = =314 0=z asn - .
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Discontinuity of solutions to controlled differential equations

Can we solve dy(7) = V(y(1))dx(¢) for a non-smooth path x : [0, T] — R — e.g., a-Hélder? J

> Standard recipe: Let x,, be smooth paths such that ||x,, — x|/, 7%, 0. Define y as limit

of solutions y, to dy,(t) = V(y,(t))dx,(?).

> Let x,(f) = (sin(nzt)/n, cos(an)/n), t € [0, 2], with limit x(f) = 0, and the area

2a(D) = % fo x,ll(s)dx,zl(s)—% fo x2(s)dx}(s)

1 1
:——flds:——ty%O:z(t)aSnﬁoo.
2 Jo 2

> Note that y,(¢) := (x}(2), x2(¢), z,(1)) solves controlled DE with V(y) := (

1 0
1)
¥ -3yt

DI—=
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Euler scheme

dy(t) = V(y(@)dx(?), t € [0,T], y(0) = yg, x:[0,T]1 > RY O0=19<--- <t =T.
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Euler scheme @

dy(r) = V(y(2))dx(t), t € [0,T], y(0) = yg, x:[0,T] — Rd, O=ty<---<t,=T. J

Case: smooth path x. If x is smooth, we have |x,,.,

i | = O(tiz1 — til). By Taylor,

Y(tir1) = Y(t:) + VO Xy s, + HOT,  [HOT = Otie1 — 1) = o(|tie1 — 1))

Ignoring error propagation, the Euler scheme converges as 27;01 [H.O.T.;| = o(1), n = 0.
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Euler scheme %

dy(r) = VO @)dx(0), t € [0,T1, y(0) =y, x:[0,T] > R%, O0=tg<---<t,=T. J

Case: smooth path x. If x is smooth, we have |x,,.,

= O(|ti+1 — ti). By Taylor,

liv1
Y(tir1) = Y(t:) + VO Xy s, + HOT,  HO.Til = O(tir1 — i) = o(|tix1 — til).
Ignoring error propagation, the Euler scheme converges as Z;"l [H.O.T.;] = o(1), n — 0.

Case: a-Holder path x, @ > 5. We have |x;,

i | = O(tiz1 — 1%). By Taylor,

W(tis1) = Y(t;) + VO Xy s, + HOTy,  [HOT = Otin1 — 1:*") = o(|tie1 — 1))

Ignoring error propagation, the Euler scheme converges as Z?:‘Ol [H.O.T.;| = o(1), n = 0.
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Euler scheme z@’}

dy(r) = VOy(1))dx(t), 1 € [0,T1, y(0) = yo, x:[0,T] = RY, 0 =19 <--- <1, = T. ]

Case: smooth path x. If x is smooth, we have |x,,.,

= O(|ti+1 — ti). By Taylor,

li+]
Y(tir1) = Y(t:) + VO Xy s, + HOT,  HO.Til = O(tir1 — i) = o(|tix1 — til).
Ignoring error propagation, the Euler scheme converges as Z;"l [H.O.T.;] = o(1), n — 0.

Case: a-Holder path x, @ > 1. We have |x;,

= O(|ti+1 — ti|"). By Taylor,

ti+]
W(tis1) = Y(t;) + VD) X4, + HOTi,  HOTil = Otin1 — ti*™) = o(|tix1 — til).

Ignoring error propagation, the Euler scheme converges as Z?:‘OI [H.O.T.;] = o(1), n = 0.
Remark: (Young ’30s) fOT f(s)dg(s) well-defined for f a-Hblder, g S-Holder iff o + 5 > 1.
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Extended Euler scheme %

dy(r) = V(y(1))dx(z), t € [0,T], y(0) = y9, x:[0,T] — R, 0=ty <---<t,=T. J

Now consider x to be a-Holder with 1 < a < 1. By the previous calculation, the Euler
scheme diverges. Recall the formal second order expansion:

Ytis1) + VO X 1y + DVGEN V@)L, +HOT,.
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Extended Euler scheme

dy(r) = VOy@)dx(?), t € [0,T1, y(0) =y, x:[0,T] > R%, O0=tg<---<t,=T. J

Now consider x to be a-Hélder with 1 3<a<; By the previous calculation, the Euler
scheme diverges. Recall the formal second order expansion:

Ytis1) + VU)X + DVOE)V (D)7, +H.O. T

Key observation

|
.

Assume that we could define ;2 = (/" X'n,s-dxk(s))j ., - Then we would expect

.....

= O(ltis1 — %),  H.O.Til = Oltis1 — 1P = o(ltiz1 — i)

=2
|xti,l‘i+1 = 0(|ti+1 - tila)’ |XfiJi+l
Hence, we expect convergence of the extended Euler scheme

yH—l - yz + V(yz)xh fin T Dv(yl)v(yl)xfl tip1®
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Definition of rough paths zﬁ@

Definition (a-Ho6lder rough paths)

Let 1 < @ < §. An a-Holder rough path on R? is a pair x = (x,x), x : [0,T] > R,
x : [0, T]?> - RY®@RY, continuous, such that Chen’s identity (truncated to N = 2) holds and

| el
sup

— < 0.
s#r [t —s[* T oswt |t - s
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Definition of rough paths zﬁg’}

Definition (a-Ho6lder rough paths)

Let 1 < @ < §. An a-Holder rough path on R? is a pair x = (x,x), x : [0,T] > R,
x : [0, T]?> - RY®@RY, continuous, such that Chen’s identity (truncated to N = 2) holds and

|xs,t| |Xs,t|
sup

s#r [t —s[* T oswt |t — s

< 00.

» The definition can be extended to general a > 0, by providing |1/« iterated integrals.
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Definition of rough paths z@’}

Definition (a-Ho6lder rough paths)
Let 1 < @ < §. An a-Holder rough path on R? is a pair x = (x,x), x : [0,T] > R,
x : [0, T]?> - RY®@RY, continuous, such that Chen’s identity (truncated to N = 2) holds and

|xs,t| |Xs,t|
sup

s#r [t —s[* T oswt |t — s

< 00.

> The definition can be extended to general @ > 0, by providing | 1/«a] iterated integrals.

» Every a-Holder path can be extended to an a-Hélder rough path, but the extension is
generally not unique. (N.b.: If x is smooth, there is a canonical choice.)
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Definition of rough paths X“(;’}

Definition (a-Ho6lder rough paths)

Let 1 < @ < §. An a-Holder rough path on R? is a pair x = (x,x), x : [0,T] > R,
x : [0, T]?> - RY®@RY, continuous, such that Chen’s identity (truncated to N = 2) holds and

|-xs,t| |Xs,t|

sup < 0o,

s#r [t —s[* T oswt |t — s

> The definition can be extended to general @ > 0, by providing | 1/«a] iterated integrals.

> Every a-Holder path can be extended to an a-Hélder rough path, but the extension is
generally not unique. (N.b.: If x is smooth, there is a canonical choice.)

> The theory of rough paths was developed by Terry Lyons starting from 1994. Important

re-formulations and generalizations were due to Massimiliano Gubinelli (controlled
rough paths) and Martin Hairer (regularity structures).
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Lyons’ universal limit theorem zﬁgy
Universal limit theorem

Given an a-Hélder rough path x, and V € C” for y > 1/a. Then there is a unique solution
of the rough differential equation

dy() = V(y(0)dx(®),  y(0) = yo.

The map (o, V,x) — y is locally Lipschitz continuous — w.r.t. appropriate topologies.
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Lyons’ universal limit theorem z@;,}
Universal limit theorem

Given an a-Hélder rough path x, and V € C” for y > 1/a. Then there is a unique solution
of the rough differential equation

dy(®) = Vy@)dx(®), y(0) = yo.

The map (o, V,x) — y is locally Lipschitz continuous — w.r.t. appropriate topologies.

v

> As the signature solves the RDE dx;° = x57;° ® dx(?), Rough path principle

x;5 = 1, this implies that every rough path has a uniquely

()
defined signature. Yy
Y
> The solution y depends on the rough path x, i.e., the choice l‘ﬂ/

of extension of x. X
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Brownian rough path

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L.
or almost sure sense) as follows

(i,j),lto — i J =2,lto ._ (i, )),lto
> W f Wi dwi, W= N W% e,

1<i,j<d

> St f Wi odW), WS = Z WS, gy
1<i,j<d
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Brownian rough path %

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L2
or almost sure sense) as follows

> e f Wi dwi, W = Z Wiy g ),
1<i,j<d
W(z D) Strat f W;.’uOdW,{, Wz?,Strat o Z ng;}j),Stratei(gej'
1< j<d
> Both W'°(w) and WS"@(w) are a.s. -Holder rough paths, for any @ < 3
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Brownian rough path zﬁgy

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L2
or almost sure sense) as follows

> e f Wi dwi, W = Z Wiy g ),
1<i,j<d
> W(z ) Strat f W;.’uOdW,{, Wz?,Strat - Z W(s{}j)’snate,-@ej.
1<i,j<d
> Both W'°(w) and WS"@(«w) are a.s. a-Holder rough paths, for any @ < 3
» Solutions of RDEs driven by W'® coincide (a.s.) with the corresp. lto-SDE solutions.

» Solutions of RDEs driven by WS coincide (a.s.) with the corresp. Stratonovich-SDE
solutions.
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Brownian rough path z@;’}

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L2
or almost sure sense) as follows

> e f Wi dwi, W = Z Wiy g ),
1<i,j<d
W(z SJ)s Strat f Wé’uOdW,f, Wz?,Strat o Z W(s{}j)’snate,-@ej.
1<i,j<d
> Both W'°(w) and WS"@(«w) are a.s. a-Holder rough paths, for any @ < 3
» Solutions of RDEs driven by W'® coincide (a.s.) with the corresp. lto-SDE solutions.

» Solutions of RDEs driven by WS coincide (a.s.) with the corresp. Stratonovich-SDE
solutions.

> W WorStrat ) is discontinuous, the solution map in W'°/Sat(y) is continuous.
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Brownian rough path z@;,}

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L2
or almost sure sense) as follows

> e f Widwl, W= S Wy g,
1<i,j<d
> St f Wi odwy, wirStat: Z WS, gy
1<i,j<d
> Both W'°(w) and WS"@(«w) are a.s. a-Holder rough paths, for any @ < 3
» Solutions of RDEs driven by W'® coincide (a.s.) with the corresp. lto-SDE solutions.

» Solutions of RDEs driven by WS coincide (a.s.) with the corresp. Stratonovich-SDE
solutions.

> w > WStal,)) is discontinuous, the solution map in W"°/Sta(y,) is continuous.
> Note that W<>-Sta gatisfies the shuffle identity, but W< does not.
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The space of rough paths

Let €([0, T]; RY) denote the space of a-Hdlder rough paths.
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The space of rough paths %

Let ([0, T]; R?) denote the space of a-Hdélder rough paths. J

> While €%([0, T1; R?) is not a linear space, it is a complete metric space with the
appropriate Hélder-distance.
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The space of rough paths

Let €([0, T]; RY) denote the space of a-Hdlder rough paths.

» While ([0, T1; R?) is not a linear space, it is a complete metric space with the
appropriate Holder-distance.

Given a smooth path x : [0, T] — R?, construct a corresponding a-Hélder rough path x by

X=(6%), X=X - x(s), x0 = f X' ()dx/ (u).
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The space of rough paths

Let €([0, T]; RY) denote the space of a-Hdlder rough paths.

» While ([0, T1; R?) is not a linear space, it is a complete metric space with the
appropriate Holder-distance.

Given a smooth path x : [0, T] — R?, construct a corresponding a-Hélder rough path x by

X=(6%), X=X - x(s), x0 = f X' ()dx/ (u).

Let €2 ([0, T];RY) ¢ €*([0, T1; R?) denote the closure of smooth rough paths in
€°([0, T1;R?). x € €2([0, T];RY) is called geometric.
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The space of rough paths z@’}

Let €([0, T]; RY) denote the space of a-Hdlder rough paths. )

» While ([0, T1; R?) is not a linear space, it is a complete metric space with the
appropriate Holder-distance.
Given a smooth path x : [0, T] — R?, construct a corresponding a-Hélder rough path x by

X =(x,x), X5 :=x()— x(s), x(sl;’tj) = f xi(u)dxj(u).

Let ([0, T]:RY) ¢ €*([0, T]: R?) denote the closure of smooth rough paths in
€([0, T1;RY). x € €2([0, T];RY) is called geometric.

> The signature x3;° of a geometric rough path x € €' satisfies the shuffle identity.

Symbolically, 4 4
Vx € G, ([0, TR, VO<s <t <T: x;;° € GRY).
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Outline

El Universality and the signature kernel

Signatures and applications in finance - March 1st - 8th 2024 - Page 32 (64)



Setting of bounded variation paths revisited

W.l.o.g., all paths start at 0, i.e., x(0) = 0.

> Let Q; := ¢'7¥([0, T]; V) denote the space of bounded variation functions taking
values in a (finite-dimensional) Banach space V with the norm
[l —var = [x(0)] + |x]; _yar, Where
N

|| —yar := sup sup Z [x(tir1) — x(2)] .
NeN 0<ry<t) <--<ty<T i1
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Setting of bounded variation paths revisited %

W.l.0.g., all paths start at 0, i.e., x(0) = 0. )

> letQ) =% 1‘V"I([O, T1; V) denote the space of bounded variation functions taking
values in a (finite-dimensional) Banach space V with the norm
Il —var = 1x(0)| + |x|;_yar, Where
N
|x|l—var ‘= sup sup Z [x(tir1) — x(2)] .

NeN 0<ro<t;<--<ty<T =1

> Given x € €17 ([0, T]: RY), we obtain 7 + x5 € C!=¥ ([0, 77: 7V (R)) and the lift
x > x5V is continuous: ‘ SN '1 < |x|_y.r — provided that V := GY(R?) is equipped
’ ’ —var

with the Carnot-Caratheodory metric.

X
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Setting of bounded variation paths revisited z@’}

W.l.0.g., all paths start at 0, i.e., x(0) = 0. J

> Let Qp = ‘51‘““([0, T1; V) denote the space of bounded variation functions taking
values in a (finite-dimensional) Banach space V with the norm
Xl —var = [X(O)] + |x]1—yar, Where
N
|| —yar := sup sup Z [x(tir1) — x(2)] .
NeN 0<ro<t;<--<ty<T im1
> Given x € €17 ([0, T]; RY), we obtain ¢ - x5\ € €'~ ([0, 71; TV (R¢)) and the it
<N

x - x5V is continuous: oMMl <Ixli_yar — provided that V := GV (RY) is equipped
with the Carnot-Caratheodory metric.
> Given x € €7V ([0, T1; RY), we define x(7) := (1, x(1)) € R'*? and denote

Q= {Y| x € Q }. Note that X'is uniquely determined by its signature x;7 and x(0)!
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Universal approximation @

LetA :={fr| €€ Wiiq} where for any £ € W, ., we set

Then A C C(ﬁl ;R) is dense w.r.t. uniform convergence on compacts.
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Universal approximation z@;’}

LetA :={fr| €€ Wiiq} where for any £ € W, ., we set

for Qo R, To (6x53).

Then A C C(ﬁl ;R) is dense w.r.t. uniform convergence on compacts.

The proof is based on the classical Stone — Weierstrass theorem. We give a sufficient
version below:

Theorem (Stone — Weierstrass)

Let X be a compact metric space and consider a subalgebra A c C(X;R) that is
point-separating and vanishes nowhere. Then A c C(X;R) is dense w.r.t. uniform
convergence.
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Variations on the setting

> We can replace Q by &, the set of bounded variation paths modulo
re-parameterization and tree-like excursion.
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Variations on the setting X“g’}

> We can replace Q by &, the set of bounded variation paths modulo
re-parameterization and tree-like excursion.

» We can immediately generalize the theorem to the rough setting, i.e., by replacing Q;
and Q by their rough analogues for p > 1:

Q, =6 "(0.TIERY), Q,:={x=(xx) e E (0.TER"™) | Vie[0,T]: (1) =1}.
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Variations on the setting z@’}

> We can replace ﬁl by &, the set of bounded variation paths modulo
re-parameterization and tree-like excursion.

» We can immediately generalize the theorem to the rough setting, i.e., by replacing Q;
and Q; by their rough analogues for p > 1:

Q, =60, TERY), Q,:={x=(xx) €670, TR |Vt €[0,T]: x°(t) =1},

» Unlike €'/7([0, T1; RY), ‘5;/”([0, T1;RY) is separable, hence a Polish space. Any rough
process defined as a random variable taking values in Q,, or Q,, respectively, is tight.

Given a rough process X taking values in ﬁp, p>1.Thenforany f € C(ﬁp;R) and e > 0

thereis £ € Wy,q st P(|f(§) - <€, X§?>| > e) <e
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Variations on the notion of convergence X“g’}

Theorem (Stone — Weierstrass theorem; Giles’71)

Let X be a eempact metric space and consider a subalgebra A ¢ Cy(X;R) that is
point-separating and vanishes nowhere. Then A c C,(X;R) is dense w.r.t. the strict
topology.

> The strict topology on C,(X;R) is the topology generated by the seminorms

Pu(f) =sup,x | f(Y(x)l, f € Cp(X;R), indexed by the functions ¢ : X — R vanishing
at infinity.
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Variations on the notion of convergence z@’}

Theorem (Stone — Weierstrass theorem; Giles’71)

Let X be a eempact metric space and consider a subalgebra A c Cyp(X;R) that is
point-separating and vanishes nowhere. Then A c Cy(X;R) is dense w.r.t. the strict
topology.

> The strict topology on C,(X;R) is the topology generated by the seminorms

pu(f) =supx | f(XY(x)l, f € Cp(X;R), indexed by the functions ¢ : X — R vanishing
at infinity.

» Replace the (unbounded) functions x <€, 'szgc;) by the bounded functions
¥ (€ AGS)) for a tensor normalization A : T((RY)) — T((RY)).

» Tensor normalizations are continuous, injective maps A s.t. A(a) is in a bounded ball in
T((R?)) and A(a) = §@ya for some 1 : T((RY)) — R.
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Separating hyperplanes

> Consider data x; € E for a

(finite-dimensional) space E, with labels =27

vie{-1,+1},i=1,..., M.

> Classify data points by a separating 4

hyperplane, i.e., findwe Eand b € R

st.foralli=1,...,M: o —6-

y,-=+1 — (W, x,-)E—b>O,

vi=-1 < W, xjp)p—b<0.

—-10 1

10
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Separating hyperplanes

> Consider data x; € E for a
(finite-dimensional) space E, with labels
vie{-1,+1},i=1,..., M.

> Classify data points by a separating
hyperplane, i.e., findwe Eand b e R
st.foralli=1,...,M:

y,-=+1 — (W, x,-)E—b>O,
vi=-1 < W, xjp)p—b<0.
> If at all possible, there will be infinitely

many solutions. Hence, we try to find
the best solution.

—-10 1

10
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Support vector machine %

—24
, EI’EJII)IER — ||w||E subject to
Viel{l,...,M}: yi(w, x)p —b) > 1. e N

-10 e ¥ ¢
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Support vector machine

min = ||w||% subject to
i 2 Il subi

Vie{l,...,M}:y,-((w,x,-)E—b)zl. e

> What if separation by hyperplanes is o
not possible, or data lives in a
non-linear space X?

> Lift data x; — ®(x;) using a non-linear 10 T
feature map @ : X — H for some *e
(infinite-dimensional) Hilbert space H.

» Which ®? Evaluation very expensive!? Xo
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RKHS Lok

Definition

A reproducing kernel Hilbert space (RKHS) is a Hilbert space H of functions f : X - R
s.t. for all x € X, the evaluation functional ev, : H — R, f + f(x) is continuous.
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RKHS Lok

Definition

A reproducing kernel Hilbert space (RKHS) is a Hilbert space H of functions f : X —» R
s.t. for all x € X, the evaluation functional ev, : H — R, f +— f(x) is continuous.

> By Riesz representation, for every x € X we can find k, € H such that

er(]"{: er(f) = <an f)?{
> Define k: Xx X — R, k(x,y) = (k. k), called the kernel.
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RKHS Lok

Definition

A reproducing kernel Hilbert space (RKHS) is a Hilbert space H of functions f : X —» R
s.t. for all x € X, the evaluation functional ev, : H — R, f +— f(x) is continuous.

> By Riesz representation, for every x € X we can find k, € H such that
VfE(]"{: er(f) = (ky, f)?(

> Definek: XXX = R, k(x,y) = <kx, k«">w called the kernel.

1. By the analogue properties of (-, -)4, k is symmetric and positive definite, i.e.,
Vxi, ..., xe € X, the matrix (k(x;, x,)) € RPK is positive definite.

2. ke(y) = evy(ky) = (ky, k) g = kOry), e forany x € X, k, = k(x, ).
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RKHS X@

Definition

A reproducing kernel Hilbert space (RKHS) is a Hilbert space H of functions f : X —» R
s.t. for all x € X, the evaluation functional ev, : H — R, f +— f(x) is continuous.

> By Riesz representation, for every x € X we can find k, € H such that
VfeH: evuf) = ke -

> Definek: XXX = R, k(x,y) = <kx, k«">w called the kernel.

1. By the analogue properties of (-, -)4, k is symmetric and positive definite, i.e.,
Vxi, ..., xe € X, the matrix (k(x;, x,)) € RPK is positive definite.

2. ke(y) = evy(ky) = (ky, k) g = kOny), e forany x € X, ky = k(x, ).

3. Conversely, given a symmetric, positive definite kernel k : X x X — R, we obtain a
RKHS as completion of 7 := ({ k(x,") | x € X }) with (k(x, ), k(y,")).5; = k(x,y).
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Kernel trick

Given data x; € X, choose a RKHS H on X and features ®(x) := k(x, ) € H. )
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Kernel trick %

Given data x; € X, choose a RKHS H on X and features ®(x) := k(x, -) € H. J

o1 . .
. min_ 5||w||,2H subjectto Vie {1,...,M}: yi({w, ®(x;))y —b) > 1.

> By the representer theorem, w € ({ k(x;,) |i=1,...,M }), i.e.,

M M
JaeRM: w= Z a;k(x;, ), hence ||W||(2H =Y o' Ko, K = (k(x;, xj))%zl € RM*M,
i=1 i=1
M
> Similarly, (v, ©(i))y = ) a; (k(xj. ), k(i) = @ K,
j=1
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Kernel trick zﬁgy

Given data x; € X, choose a RKHS H on X and features ®(x) := k(x, -) € H. J

N S . .
we%,nl;eR Ellwllﬂ subjectto Vie {1,...,M}: y; ({w, ®(x;))gy — b) > 1.

> By the representer theorem, w € ({ k(x;,) |i=1,...,M }), i.e.,

M M
G e RM: w =) aik(x;, ), hence Iwlly, = " aTKa, K = (k(xi, x;)}"_; € R,

i=1 i=1
M
> Similarly, (w, ©(i)y = ) a; (k(xj. ), k(xi,),, = @ K,
j=1
> Need evaluations of the kernel k (for the Gram matrix K), but not of ® — kernel trick.
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Signature kernel %

Let X/ :={ x € €' ([0, T]:R) | T > 0, x(0) = 0} - and similarly X.
Goal: Define an appropriate kernel for paths / time series.

Definition

Given x,y € X| defined on [0, ], [0, s], respectively. We define

Ksig(x, y) = <xa‘:°’ 3"0 s Z Z XO tyOS
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Signature kernel z@’}

Let X; := { x € €17([0, T];RY) | T > 0, x(0) = 0 | - and similarly X.
Goal: Define an appropriate kernel for paths / time series.

Definition

Given x,y € X| defined on [0, ], [0, s], respectively. We define

keigr. ) = {352, 75) Z D, X,

> Itis easy to see that ‘x:”

o < I ”‘ v« therefore the sum is finite.
» The definition can easily be extended to rough paths or time series — e.g., by
piecewise-linear interpolation.
> Extension: For a kernel « : RY x R? — R, first lift 1 = x(1) — &, = 1 > «(x(1),) € H,
then compute the signature kernel of the lifted path kgig(x,, «y).
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Computation of the signature kernel z@’}

Direct computation is impossible, due to the exponential growth of the signature — recall
that x € (R%)®", i.e., has d" terms. However, a recursive construction exists —
comparable to the Horner scheme for polynomials. Even more powerful:

Theorem [Salvi et al., "21]

Assume that x,y € C', and let Ky y(u,v) = Ksig (xlf0,41, Yl[o,7) for u € [0,1], v € [0, s]. Then
K., solves the PDE

82

gy Koy @ V) = (2, 3O)) Kiy(u,v), - Ksy(0,) = Kiy(-,0) = 1.
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Application: Computable MMD on pathspace %

Ksig (x, X" )uu(dx)u(dx) + f Ksig(y, ¥ )v(dy)v(dy’)

X1><X1

MMDsig (1, v) = [ f

X1XX1
1/2

2 f Keig (%, Pa(dx)v(dy)
X]XXl

> Given K C )/(\1 compact, then MMDyq is characteristic for #;(K), the probability
measures supported on K, i.e., MMDgjq(11,v) =0 &= pu=v.
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Application: Computable MMD on pathspace zﬁ@

Ksig (x, X" )uu(dx)u(dx) + f Ksig(y, ¥ )v(dy)v(dy’)

X1><X1

MMDyig (i, v) = [ f

X1XX1
1/2

2 f Keig (%, Pa(dx)v(dy)
X1XX1

> Given K C 5(\1 compact, then MMDyq is characteristic for £ (K), the probability
measures supported on K, i.e., MMDgjg(1,v) =0 & u=v.

> In the compact case, MMDygjq is a metric for weak convergence.
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Application: Computable MMD on pathspace %

Mw%mw:u;xawwwmwwnjﬁ keig(ys Y W(dy)v(dy’)

X1><X1
1/2
2 [ gCnyuova)
X1xXj

> Given K C 5(\1 compact, then MMDyq is characteristic for £ (K), the probability
measures supported on K, i.e., MMDgjg(1,v) =0 & u=v.

> In the compact case, MMDgjq is a metric for weak convergence.

> For 501()/(\1) we obtain a metric by switching to normalized signatures, as discussed
earlier. However, convergence under MMDyg;q does not imply weak convergence.
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Outline

B Signature based representations for optimal stopping
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Non-Markovian stochastic optimal control %

Given a d-dimensional stochastic process (X;):0,r] controlled by . Goal: maximize some
reward function.

Markovian case: If X is a Markov process, the optimal control satisfies a; = o*(z, X;).
Popular methods include:

> Solving the (deterministic) Hamilton—Jacobi—Belman PDE for the value function.
» Approximate o* in some parametric class of functions on R¢ and optimize the reward.

» Least squares Monte Carlo, involving computations of conditional expectations
E[Virar | X1
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Non-Markovian stochastic optimal control zﬁg’}

Given a d-dimensional stochastic process (X;):[0,r] controlled by . Goal: maximize some
reward function.

Markovian case: If X is a Markov process, the optimal control satisfies a; = a*(z, X,).
Popular methods include:

> Solving the (deterministic) Hamilton—Jacobi—Belman PDE for the value function.
» Approximate o* in some parametric class of functions on R¢ and optimize the reward.

> Least squares Monte Carlo, involving computations of conditional expectations
E[Vt+Al | Xz]-

Non-Markovian case: Now we can only expect «; to be 7;-measurable, i.e.,

a; = a’(t,(X;)s<:)- For all methods above, we are left with approximations in spaces of

functions of paths.

Signatures and applications in finance - March 1st - 8th 2024 - Page 46 (64)



Signature methods for stochastic optimal control

Lot

Following [Kalsi, Lyons, Perez Arribas ’20], a general recipe for solving stochastic optimal
control problems using path signatures can be described as follows:

1. Assume that controls «a; are continuous functions ¢(Y|[o,,]) of the path and, hence, of
the signature 0(X ") — and similarly for the loss function Ly(X;7).
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Signature methods for stochastic optimal control zﬁ@

Following [Kalsi, Lyons, Perez Arribas ’20], a general recipe for solving stochastic optimal
control problems using path signatures can be described as follows:

1. Assume that controls «a; are continuous functions ¢(5(\|[0,,]) of the path and, hence, of
the signature 0(X7") — and similarly for the loss function Lg(X5%).

2. As continuous functions, o, = 6(35%) ~ <€H, X§f°> LoX5) ~ <fL(&,), Xg‘;") for some
Ly, fL(Ly) € W, — by universality.
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Signature methods for stochastic optimal control zﬁg’}

Following [Kalsi, Lyons, Perez Arribas ’20], a general recipe for solving stochastic optimal
control problems using path signatures can be described as follows:

1. Assume that controls «a; are continuous functions ¢(5(\|[0,,]) of the path and, hence, of
the signature 0(X7") — and similarly for the loss function Lg(X5%).

2. As continuous functions, a; = G(Xg‘;" ~ <€9, Xg‘;") L()(X&O;) ~ <fL(€9), Xg°;> for some
ly, fL(Ly) € W, — by universality.
3. Interchange expectation and truncate the signature at level N:

E Lo ~ E|(fulto), X53)| = (fulo), BZ5]) = (futto), B|ZSY]).
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Signature methods for stochastic optimal control z@’}

Following [Kalsi, Lyons, Perez Arribas ’20], a general recipe for solving stochastic optimal
control problems using path signatures can be described as follows:

1. Assume that controls «a; are continuous functions ¢(5(\|[0,,]) of the path and, hence, of
the signature 0(X7") — and similarly for the loss function Lg(X5%).

2. As continuous functions, @, = G(Xg;") ~ <€9, Xg‘;") LQ(X&O;) ~ <fL(€9), Xa";> for some
ly, fL(Ly) € W, — by universality.

3. Interchange expectation and truncate the signature at level N:
E|LoKs)] ~ E|(fullo), X53)] = (fullo), BIXGY]) = (futto), B|XSY]).

4. Optimize ¢y — <f14(€9), E [Xf)]t\’p — a fully deterministic optimization problem.
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Signature methods for stochastic optimal control X“(;’}

Following [Kalsi, Lyons, Perez Arribas ’20], a general recipe for solving stochastic optimal
control problems using path signatures can be described as follows:

1. Assume that controls «a; are continuous functions ¢(5(\|[0,,]) of the path and, hence, of
the signature 0(X7") — and similarly for the loss function Lg(X5%).

2. As continuous functions, «a; = G(Xg;") ~ <€g, X&j"), LH(X&"T") = <fL(€9), Xaﬂ for some
ly, fL(Ly) € W, — by universality.

3. Interchange expectation and truncate the signature at level N:
E[LoE5)] ~ E[(fullo). X55)] = (fullo). E[X5]) ~ (futto). E[XEY])-

4. Optimize £y — <fL(€9), E [Xg?’p — a fully deterministic optimization problem.

No convergence result known so far, but pathwise density for steps 1 + 2 with high

probability is proved in [Kalsi, Lyons, Perez Arribas '20]. Problem: discontinuity of
(optimal) controls.
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Optimal stopping

Optimal stopping problem

Given a stochastic reward process (Y;)[0,7) adapted to a filtration (7;)c0.7) generated by
a d-dimensional stochastic process (X;).o,7]- Let S denote the set of (;):c[0,71—Stopping
times. Compute sup,.q E[Y-].
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Optimal stopping

Optimal stopping problem

Given a stochastic reward process (Y;)«[0,7) adapted to a filtration (7).cj0.7] generated by
a d-dimensional stochastic process (X;):c0,r1- Let S denote the set of (7;):c0,r1—Stopping

times. Compute sup,.g E [Y-].

> Optimal stopping times are generally hitting times
of sets, hence discontinuous functions on
path-space.

1.4

0.8
0.61
0.4r

02k 7

% 2 4 6 8
Figure: Discontinuity of hitting times
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Optimal stopping z@’}

Optimal stopping problem

Given a stochastic reward process (Y;)«[0,7) adapted to a filtration (7).cj0.7] generated by
a d-dimensional stochastic process (X;).c0,r1- Let S denote the set of (;).c0,r1—Stopping
times. Compute sup,.g E [Y-].

> Optimal stopping times are generally hitting times
of sets, hence discontinuous functions on

path-space.
0.8
» Example: X models a stock price — possibly with

additional factors such as stochastic volatilities —
and Y; = h(X;) for some payoff function .

0.61

0.4

ook
» Example: X = Y = WH . _fractional Brownian ’

motion

% 2 4 6 8
Figure: Discontinuity of hitting times

W\
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Incorporating history into the present state X“g’}

[Becker, Cheredito, Jentzen ’19] consider the optimal stopping problem for fractional
Brownian motion. In the general setting, their strategy is as follows:

1. Fixatime-grid 0 =19 < --- < t; = T and define a (discrete time) (J + 1)d-dimensional
Markov process (Z j)fzo by
Zy = (X4,,0,...,0),
Z) = (X, Xy,,0,...,0),
Zy = (X4, X1y, X1y, 0, ..., 0),
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Incorporating history into the present state

[Becker, Cheredito, Jentzen ’19] consider the optimal stopping problem for fractional
Brownian motion. In the general setting, their strategy is as follows:

1. Fixatime-grid 0 =19 < --- < t; = T and define a (discrete time) (J + 1)d-dimensional
Markov process (Z j)]’.:O by
Zy = (X4,,0,...,0),
Z) = (X, Xy,,0,...,0),
Zy = (X4, X1y, X1y, 0, ..., 0),

2. Solve the discrete-time Markovian optimal stopping problem. [Becker, Cheredito,
Jentzen '19] use deep neural networks to approximate stopping decisions
fi(Z;) ~ DNN/(Z;; 0) — “stop at time ¢; unless stopped earlier”.
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Stopped rough paths @

How can we construct stopping times and adapted processes using rough paths?

Stopped rough paths

Let Q7 = {x € CK;/”([O, fl; R1+4) ’ xl(s)=s } The space of stopped rough paths is defined
as AT = UZ‘E[O,T] ﬁf
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Stopped rough paths zﬁ@

How can we construct stopping times and adapted processes using rough paths?
Stopped rough paths

Let Q7 = {x € €,'7([0,1];R'*9) l xl(s) = s } The space of stopped rough paths is defined
as AT = UZ‘E[O,T] ﬁf

> Ar is a Polish space with a Dupire type metric.

» We can now define adapted processes or stopping times as functionals on Ay.
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Stopped rough paths X“(;’}

How can we construct stopping times and adapted processes using rough paths?

Stopped rough paths

Let Q7 = {x € €,'7([0,1];R'*9) l xl(s) = s } The space of stopped rough paths is defined
as Az = Usepo,r 9 -

> Ar is a Polish space with a Dupire type metric.
» We can now define adapted processes or stopping times as functionals on Ay.

Rough stochastic processes

Given a probability space (Q, F,P), a rough stochastic process is a random variable X
taking values in Q‘T’. We further define the natural filtration generated by X, i.e.,
Fri=0Xos:0<s<1).
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Signature stopping rules

Given ¢ € ‘W.4, define a signature stopping rule 7, € S as
we=inf{re0,77] (6 X5y > 1),

Note that 7, is the first hitting time of a hyperplane in T((R'*%)).
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Signature stopping rules
Given ¢ € ‘W.4, define a signature stopping rule 7, € S as
=inf{re 0,71 {6 X5) =1},

Note that 7, is the first hitting time of a hyperplane in T((R'*%)).

Given an (7;)«c[0,r)—adapted continuous reward process (Y;)«cjo.r] With E [|Y||., < oo, then

SUpE[Y:ar] = sup E[Yrar]
€S teWia
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Signature stopping rules
Given ¢ € ‘W.4, define a signature stopping rule 7, € S as
=inf{re 0,71 {6 X5) =1},

Note that 7, is the first hitting time of a hyperplane in T((R'*%)).

Given an (7;)«c[0,r)—adapted continuous reward process (Y;).cjo.r] With E [|Y]|, < oo, then

SUpE[Yrar] = sup E[Yrar].
TeS teWiia

> While optimal stopping times 7 € S typically exist, we do not expect an optimizer
" € Wi,y to exist.
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Elements of the proof I: Continuous stopping rules

Given 6 € C (Ar,R) define a continuous stopping rule by

t
Ty = inf{ te[0,T] ‘ f H(XI[(),‘,])zds > 1 }
0

sup E [YTGAT] = supE [Yra7]
0eC(Ar,R) 7€S

Proof of the Lemma is based on approximation of measurable by continuous functions.
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Elements of the proof Il: Randomization @

> |If a continuous stopping rule 74 was continuous as a function of the signature, we could
approximate it by signature stopping rules:

inf{ te[0,T]

j{: 0(Xl(0,5)°ds > 1 } ~ inf{ tel0,T] | <€, X(Tﬁ 1 }

» Unfortunately, this is just not the case.
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Elements of the proof Il: Randomization zﬁgy

> |f a continuous stopping rule 7y was continuous as a function of the signature, we could
approximate it by signature stopping rules:

inf{ te[0,T]

ft 0(Xl(0,5)°ds > 1 } ~ inf{ tel0,T] | <€, chﬁ 1 }
0

» Unfortunately, this is just not the case.
» Randomization: Replace the fixed level 1 above by an (independent) random level Z.

> Interpretation: If Z ~ Exp(1), stop at the first jump time of a pure jump process with
intensity 8(Xlj0.5))>.
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Elements of the proof Il: Randomization

> |f a continuous stopping rule 7y was continuous as a function of the signature, we could
approximate it by signature stopping rules:

inf{ 1 €[0,T] ft 0Xl0.)%ds > 1 } ~inf{1€[0,T] | (6.X5) =1}
0

» Unfortunately, this is just not the case.

» Randomization: Replace the fixed level 1 above by an (independent) random level Z.

> Interpretation: If Z ~ Exp(1), stop at the first jump time of a pure jump process with
intensity 9(§|[0’5])2.

Let Z > 0 be a r.v. independent of X with (smooth) c.d.f. F.

5 ! = ' e z
7 ::inf{ze[o,T]'fe(xho,s])zdszz},r; ::inf{te[O,T]lfo<{f, X57) dsZZ}.
0
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Elements of the proof lll: Randomization (continued) X“g’}

sup ]E[YT(;,\T]= sup E[Yrar], sup ]E[YT;AT]: sup E[Yrar].
9eC(A7.R) 9eC(A7,R) CeWira teWiiq

Proof: Formal proof by dominated convergence. Informally: The buyer of an American
option may very well randomize her exercise decision.
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Elements of the proof lll: Randomization (continued) zﬁ@

sup E[YT(;,\T]= sup E[Yrar], sup E[YT;AT]: sup E[Yrar].
0eC(AT,R) 0eC(AT,R) fE(WH.d €€(W1+d

Proof: Formal proof by dominated convergence. Informally: The buyer of an American
option may very well randomize her exercise decision.

Lemma (Regularization by randomization)

Let F(1) = Fz( fote(’X\l[o’s])ds), then E| Y7 | X| = L ' Y, dF(t) + Yr(1 — F(T)).

> Note that the R.H.S. is a smooth function of X.
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Elements of the proof IV: Stone-Weierstrass zﬁg’}

For every ¢ > 0 there is a compact set K C ﬁ’; st. P(X € K) > 1 — ¢ and for every
0 € C(Ar,R) there is a sequence ¢, € Wi.q4 S.t.

n—o00

sup ‘Qﬂ[m]) <5m X4 > —0
xe¥K; t€[0,T]

The above Stone—Weierstrass theorem implies that (randomized) continuous stopping
rules can be approximated by (randomized) signature stopping rules, given that

E[Y] < E[IlY]lw] < .
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Linearization

Let, for simplicity, Z ~ Exp(1). Then we end up with

T '
supE [Yoar] = Yo+ sup E[f exp (—f <£, Xa‘;"y ds) dYt].
0 0

7eS l E(W,H 1
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Linearization @

Let, for simplicity, Z ~ Exp(1). Then we end up with

T o,
SupE [Yoar] = Yo+ sup E[]O‘ exp(—j(; <€, X&‘:’> ds)dYt].

€8S teWyn

> Recalling that X\S = (s5,Xy), we have

fl (6.5 ds = ft (e Ty ds = ((Cw o1, X5)
0 0
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Linearization zﬁgy

Let, for simplicity, Z ~ Exp(1). Then we end up with
T o,
SupE [Yoar] = Yo+ sup E[f exp(—f <€, Xg‘:’> ds)dY,].
€8S teWay 0 0 ’

> Recalling that X\S = (s5,Xy), we have

ft (6. 5> ds = ft (ewe, X5 )ds = ((Cw 01, X57)
0 0

> Approximate exp by polynomials, giving the exponential shuffle exp™(¢) == >, %f“”.

> Often, Y can also be approximated by a linear functional on X<=. Otherwise, consider
a RP extending t — (1, X;, Y;). E.g.,inthe case d = 1, Y = X, we obtain

E [Yrar] = (exp™(-(¢ w 0)1)2, B[X53]) ~ (exp™(-c w O)1)2, E[X5Y]).
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Full linearization z@;,}

LetE[||Y]le] < 0. Given k > 0, define the stopping time o = o by
o= inf{r>0 ‘ K llpvargon = € } A T. Then,

Oy .
supE[Y;pr] = E[Yo] + lim lim lim  sup E[ f (exp“(-(£w O)), nglV)dY,].
€S K—00 K_)OON_)OO\fHdeg([)SK 0 >

Signatures and applications in finance - March 1st - 8th 2024 - Page 57 (64)



Full linearization X“é’}

LetE[||Y]le] < 0. Given k > 0, define the stopping time o = o by
o= inf{r>0 ‘ K llpvargon = € } A T. Then,

T -
supE [Y;p7] = E[Yo] + lim lim lim  sup E[ f (exp“(—(£w O)1), X5V) dY,].
78 k=00 K—00 N—00 711 deg(£)<K 0 ’

If Y is a linear functional ofX<°°, this formula can be further simplified. E.g., ifd = 1 and
Y = X, then

SUpE [Yrar] = E[Yo] + lim lim lim  sup <expm(—(€|_|_| H1)2, E[Xéﬁ >
T€S K—00 K—00 N—oo |0]+deg(O)<K O«
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Remarks %

1. Optimal stopping of Brownian motion X: By Fawcett’s formula,
<o 1
E[XO,T] =exp|T|e + §e2®e2 .

We immediately see that <expL”(—(€ w12, B [Xgl}’ > = 0.
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Remarks @
1. Optimal stopping of Brownian motion X: By Fawcett’s formula,
oo 1
E[XO’T] =exp|T |e1 + 562@82 .

We immediately see that <expm(—(£ w12, B [X(ﬁ)]; > =0.
2. Obtain approximately optimal strategy, not just approximation to value function. Let
" =,y an optimizer in the theorem. Construct

o =inf{re [0,71] (¢ wey, Xy > 7).
> B[Ye | ~ EYo] + {exp (= w ¢)1)2, E[X5Y |) » ilelgE [Yenr]

> Obviously, E Yy, | < supE [Yra7].
€S
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Remarks

1. Optimal stopping of Brownian motion X: By Fawcett’s formula,
oo 1
E[XO’T] =exp|T |e1 + 562@82 .

We immediately see that <expm(—(£ w12, B [X(ﬁ)]; > =0.
2. Obtain approximately optimal strategy, not just approximation to value function. Let
" = x y an optimizer in the theorem. Construct

o =inf{re [0,71] (¢ wey, Xy > 7).

> E Yy |~ BIYo] + (exp™(—(¢" w £91)2, E|X5N |) ~ sugE [Yerr]
TE.
> Obviously, E|Ye | < supE [Year].

7€eS
3. Dual method based on minimization of martingales.
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Signature vs. log-signature as feature

Recall that L := log X € a(RY) and L5} = log X5} € g (RY).
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Signature vs. log-signature as feature %

Recall that Ly = log X5 € g(RY) and LY := log X5V € gV (RY).

> The log-signature LV contains the same information as XV, but removes algebraic
redundancies.

» No shuffle identity holds for (truncated) log-signatures, but dim ¢"(R?) < dim 7V (RY).
E.g., ford =3, N = 6: 196 vs 1092.
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Signature vs. log-signature as feature X“(;’}

Recall that Ly := log X57° € g(RY) and L5} := log X5} € gV (RY).

> The log-signature ]Lfl," contains the same information as Xfl)’ , but removes algebraic
redundancies.

» No shuffle identity holds for (truncated) log-signatures, but dim gV (RY) <« dim TV (R).
E.g.,ford =3, N = 6: 196 vs 1092.

> Use of the shuffle identity is not free, but often translated into very high degrees of
truncation. E.g., suppose that deg = 3 contains enough information, but a polynomial of
degree 3 is to be linearized. Hence, the truncation degree N = 9 is required. (For
d = 3, this leads to a dimension dim 7°(R?) = 29524 — compare with dim 7°(R?) = 39,
dim g*(R?) = 14.)

Signatures are useful as features when their algebraic properties are efficiently used.
Otherwise, log-signatures are probably preferable. J
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Deep signature stopping rules

A class of fully connected Artificial Neural Networks

Given K, ¢, I € N and an activation function ¢ (i.e., continuous, non-polynomial), let
DNN(K, g, I; ») denote the set of fully connected artificial neural networks with 7 hidden
layers of dimension ¢, input dimension K and output dimension 1, i.e., for

©# € DNN(K, g, I; ¢) there are affine maps Ap : RK - R, Ay,...,A;_| : R? — RY,
A;:R? - R s,

D =AjopoAl_jopo---0poA.

Signatures and applications in finance - March 1st - 8th 2024 - Page 60 (64) A

s



Deep signature stopping rules

A class of fully connected Artificial Neural Networks

Given K, ¢, I € N and an activation function ¢ (i.e., continuous, non-polynomial), let
DNN(K, g, I; ¢) denote the set of fully connected artificial neural networks with 7 hidden
layers of dimension ¢, input dimension K and output dimension 1, i.e., for

¥ € DNN(K, ¢, I; ¢) there are affine maps Ap : RK - R?, Ay,...,A;_| : R? — RY,

Aj: R? - R s.t.,

D =AjopoAl_jopo---0poA.

Deep signature stopping rule
Given ¢ € DNN(K, g, I; ¢) with K = dim gV(R?) for some N, we define a deep signature

stopping rule by

t <N2
j;ﬁ(L(;’s) dle}.

Ty = inf{te [0, T]
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Universal approximation for deep sighature stopping rules %

Let Tiog = | ] DNN(dim g"(R%), g, 1; ¢).
N,g,IeN

If E[||Y]le] < o0, we have

SUpE[Yrar] = sup B|[Year)
€S 9€Tlog
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Universal approximation for deep sighature stopping rules X“g’}

Let Tiog = | J DNN(dim g"(R%),q, ;).
N,g,IeN

If E[||Y]le] < o0, we have

SUpE [Yrar] = sup B[Year|-
€S BT 10g

> Proof: Combination of the classical universal approximations theorem for neural
networks and our earlier arguments.
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Example: Optimal stopping of fractional Brownian motion (W/),¢ ; — approximate values

2.5

2.0 1

J=100
J=1000
J=10000
J=100 (BCJ)

0.0 0.2 0.4 0.6

H

1.0
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Example: Optimal stopping of fractional Brownian motion (W), ;; — sample strategy

1.0 7
— k200
0.5 k
I\ M ~
0.0 1 <i‘i‘,'.m L 150
-0.5
k100
-1.0
-154{ — t I 50
N Bf’
-2.01 Hor ” 5
—— [Bldt— [tdB! / — Je%at |
0.0 02 0.4 06 08 1.0
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