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Processes with memory

Memory can determine the dynamics of a stochastic process in different ways, e.g.,

Hidden Markov process: X is a component or function of an underlying Markov process
Z. E.g., the price process in a stochastic volatility model

dS t =
√

vtS tdBt, dvt = α(vt)dt + β(vt)dWt, Z = (S , v).

Delay equations: The dynamics of X at time t depends explicitly on (Xs)t−h≤s≤t.

Memory kernel: The dynamics of X at time t depends on∫ t

−∞

K(t, s)Xsds,
∫ t

−∞

K(t, s)dXs, . . .

Special case: K(t, s) = K(t − s) (Volterra equation).

Processes with memory are the rule, not the exception!
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Plan of this course

Claim
The path signature is a universal tool for approximating functions of paths, comparable to
polynomials in finite dimensions.

1. Introduction to signatures and rough paths (time permitting).

2. Universality of signatures and signature kernels: model-free statistics for stochastic
processes.

3. Optimal stopping as an example of using signatures for stochastic optimal control of
non-Markov processes.
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Outline

1 Path signatures

2 Rough Paths

3 Universality and the signature kernel

4 Signature based representations for optimal stopping
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Paths

Paths
▶ A (d-dimensional) path is a continuous function x : I → Rd, I ⊂ R being an interval.

▶ A path x is smooth if it is C1 – more precisely, bounded variation would suffice.
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Figure: Sample of a 2d Brownian motion W.
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Figure: Path [0, 1] ∋ t 7→ 1
4 (sin(8πt), cos(8πt)).
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Controlled differential equations – iterated integrals as polynomials on path space

Controlled differential equation

Let x : [0,T ]→ Rd be a smooth path, V : Re → Re×d smooth, y0 ∈ R
e, and consider

dy(t) = V(y(t)) dx(t), t ∈ [0,T ], y(0) = y0.

▶ y solves an ODE: ẏ(t) = V(y(t))ẋ(t), but difficult to generalize to rough paths.
▶ First order expansion: For s < u < t, y(u) = y(s) + H.O.T., implying that

V(y(u)) = V(y(s))+H.O.T., and hence y(t) = y(s) + V(y(s))xs,t + H.O.T., xs,t B x(t) − x(s).

▶ Second order expansion: y(u) = y(s) + V(y(s))xs,u + H.O.T., implying that

V(y(u)) = V(y(s)) + DV(y(s))V(y(s))xs,u, y(t) = y(s) + V(y(s))xs,t + DV(y(s))V(y(s))xs,t + H.O.T.

x
(i, j)
s,t B

∫ t

s
xi

s,udx j(u) =
∫

s<t1<t2<t
dxi(t1) dx j(t2), i, j = 1, . . . , d.

▶ Third order expansion: involves iterated integrals of order three...
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Path signature

Path signature

Given a (smooth) path x : [s, t]→ Rd, the associated signature x<∞s,t is the collection of all

iterated integrals, i.e., x<∞s,t B
(
x=n

s,t

)∞
n=0

, where

x=0
s,t B 1, x=n

s,t B
(
x

(i1,...,in)
s,t

)
(i1,...,in)∈{ 1,...,d }n

, x(i1,...,in)
s,t B

∫
s<t1<···<tn<t

dxi1(t1) · · · dxin(tn).

The signature is parameterization-invariant: i.e., for γ : [u, v]→ [s, t] increasing and C1,
the change of variables formula – with r = γ(r) – implies that∫ v

u
f (γ(r))dx(γ(r)) =

∫ v

u
f (γ(r))ẋ(γ(r))γ̇(r)dr =

∫ t

s
f (r)ẋ(r)dr =

∫ t

s
f (r)dx(r).

Hence, denoting z ◦ γ = x, we have z<∞u,v = x
<∞
s,t .
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Paths are characterized by their signature

Theorem (Chen 1958, Hambly and Lyons 2010)

A (smooth) path x is uniquely determined by its initial value and its signature – up to
re-parameterization and tree-like excursions.

▶ The theorem was proved by Chen for C1-paths in 1958 and extended to
bounded-variation paths by Hambly and Lyons in 2010.

▶ Extended to (weakly geometric) rough paths.

▶ Tree-like paths are essentially paths, which start and end in the same point and
“completely re-trace their history”. These paths have trivial signatures.

Open problem
How can we computationally and efficiently recover the path (with unit speed) from its
signature?
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Tensor algebra

Tensor algebra

Given a (finite-dimensional) vector space V, let V⊗0 B R, V⊗(n+1) B V⊗n ⊗ V, and denote

T (V) B
∞⊕

n=0

V⊗n, T ((V)) B
∞∏

n=0

V⊗n, T N(V) B
N⊕

n=0

V⊗n

Both T (V) and T ((V)) (and, with obvious modifications, the truncated tensor algebra
T N(V)) are algebras with usual addition and the product

a ⊗ b B
( ∑

i+ j=n

ai ⊗ b j

)∞
n=0

, where a = (an)∞n=0, b = (bn)∞n=0.

Recall that a = (an)∞n=0 ∈ T ((V)) is contained in T (V) iff an = 0 ∈ V⊗n for all but finitely
many n.
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Signatures as elements of the tensor algebra

▶ Let e1, . . . , ed denote a basis of Rd, and x : [s, t]→ Rd a smooth path with
x(u) =

∑d
i=1 xi(u)ei C xi(u)ei.

▶ Recall that
{

ei1 ⊗ · · · ⊗ ein

∣∣∣ (i1, . . . , in) ∈ { 1, . . . , d }n
}

is a basis of (Rd)⊗n.

▶ We denote the basis of (Rd)⊗0 ≃ R by 1 – which we identify with (1, 0, . . .) ∈ T ((Rd)).
Note that 1 is the neutral element of the algebra T ((Rd)) w.r.t. ⊗.

Definition (Path signature)

We define the signature x<∞s,t ∈ T ((Rd)) by setting

x<∞s,t B 1 +
∞∑

n=1

∑
(i1,...,in)∈{ 1,...,d }n

x
(i1,...,in)
s,t ei1 ⊗ · · · ⊗ ein C 1 +

∞∑
n=1

∫
s<t1<···<tn<t

dx(t1) ⊗ · · · ⊗ dx(tn),

as well as its truncated version x≤N
s,t ∈ T N(Rd) by truncation at level N.
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Chen’s identity

Theorem (Chen’s identity)

Given a (smooth) path x : [r, t]→ Rd, then for any r < s < t we have

x<∞r,t = x
<∞
r,s ⊗ x

<∞
s,t .

▶ Given two paths x : [a, b]→ Rd and y : [c, e]→ Rd, define their concatenation product
z B x ◦ y : [a, b + (e − c)]→ Rd by

z(u) B

x(u), a ≤ u ≤ b,

y(u − b + c) − y(c) + x(b), b < u ≤ b + (e − c).

By Chen’s identity (and re-parameterization invariance), z<∞a,b+(e−c) = x
<∞
a,b ⊗ y

<∞
c,e .

▶ Let←−x the time-reversal of x, so z B x ◦ ←−x is tree-like, z<∞r,t = 1. Hence,←−x<∞
s,t = (x<∞r,s )−1.
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Some tools for book-keeping

▶ Consider all words w in the letters { 1, . . . , d }, endowed with the concatenation product.

▶ LetWd denote the linear span of all such words: For words w1, . . . , wk, a typical
element ℓ ∈ Wd is of the form ℓ = λ1w1 + · · · + λkwk, λ1, . . . , λk ∈ R.

▶ Extending the concatenation product in a distributive way toWd, we obtain an algebra,
including the empty word ∅ as neutral element w.r.t. multiplication (i.e., concatenation).

▶ Note thatWd is isomorphic to the algebra T (Rd), and, hence, (trivially) T ((Rd)∗).

Definition (Duality pairing)

Define a bi-linear map ⟨·, ·⟩ :Wd × T ((Rd))→ R: For a word ℓ = i1 · · · ik ∈ Wd, and for

T ((Rd)) ∋ a = a∅1 +
∞∑

n=1

∑
(i1,...,in)∈{ 1,...,d }n

a(i1,...,in)ei1 ⊗ · · · ⊗ ein ,

set ⟨i1 · · · ik, a⟩ B a(i1,...,ik), and extend bi-linearly toWd in the first argument.
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including the empty word ∅ as neutral element w.r.t. multiplication (i.e., concatenation).

▶ Note thatWd is isomorphic to the algebra T (Rd), and, hence, (trivially) T ((Rd)∗).

Definition (Duality pairing)

Define a bi-linear map ⟨·, ·⟩ :Wd × T ((Rd))→ R: For a word ℓ = i1 · · · ik ∈ Wd, and for

T ((Rd)) ∋ a = a∅1 +
∞∑

n=1

∑
(i1,...,in)∈{ 1,...,d }n

a(i1,...,in)ei1 ⊗ · · · ⊗ ein ,

set ⟨i1 · · · ik, a⟩ B a(i1,...,ik), and extend bi-linearly toWd in the first argument.
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Shuffle identity

Definition (Shuffle product)

Define a commutative product� onWd as follows: For words w, v and letters i, j define

w� ∅ B ∅� w B w, wi� vj B (w� vj)i + (wi� v)j,

and extend toWd by bi-linearity.

Example: 12� 34 = 1234 + 1324 + 1342 + 3124 + 3142 + 3412.

Theorem (Shuffle identity)

Given a smooth path x : [s, t]→ Rd and ℓ1, ℓ2 ∈ Wd, we have〈
ℓ1, x

<∞
s,t

〉 〈
ℓ2, x

<∞
s,t

〉
=

〈
ℓ1 � ℓ2, x

<∞
s,t

〉
.
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Remarks on the shuffle identity

▶ Follows from the chain rule, hence relies on smoothness of paths.

▶ Example: Let ℓ1 = ℓ2 = i. Then, by definition, i� i = 2ii. Hence,

〈
ℓ1 � ℓ2, x

<∞
s,t

〉
= 2

〈
ii, x<∞s,t

〉
= 2

∫ t

s
(xi(u)−xi(s))dxi(u) = 2

∫ t

s
xi(u)ẋi(u)︸     ︷︷     ︸
= 1

2
d

du (xi(u))2

du−2xi(s)xi
s,t

= (xi(t))2−(xi(s))2−2xi(s)xi(t)+2(xi(s))2 = (xi
s,t)

2 =
〈
i, x<∞s,t

〉2
=

〈
ℓ1, x

<∞
s,t

〉 〈
ℓ2, x

<∞
s,t

〉
.

Note the redundancies in the signature!

▶ Given p ∈ R[x] (e.g., p(x) = λ0 + λ1x + · · · + λnxn) and ℓ ∈ Wd, there is p�(ℓ) ∈ Wd ,
s.t.,

p
(〈
ℓ, X<∞s,t

〉)
=

〈
p�(ℓ), X<∞s,t

〉
, p�(ℓ) B λ0∅ + λ1ℓ + · · · + λnℓ

�n ∈ Wd.

Polynomials in the signature are linear functionals in the signature.
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Lie-group

Recall that signatures are invertible w.r.t. the tensor multiplication. Do they form a group?

Definition (Group-like elements)

G(Rd) B
{

a ∈ T ((Rd))
∣∣∣ ∀ℓ1, ℓ2 ∈ Wd : ⟨ℓ1, a⟩ ⟨ℓ2, a⟩ = ⟨ℓ1 � ℓ2, a⟩

}

▶ From the shuffle-identity, for any smooth path x : [s, t]→ Rd, x<∞s,t ∈ G(Rd).

▶ If a ∈ G(Rd), then a = 1 + ã (with ⟨∅, ã⟩ = 0), and a−1 =
∑∞

k=0(−1)kã⊗k.

▶ We can also define a group GN(Rd) ⊂ T N(Rd) by truncation. GN(Rd) is a Lie group.
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∑∞

k=0(−1)kã⊗k.
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Lie algebra

Define exp : T ((Rd))→ T ((Rd)) and log :
{

a ∈ T ((Rd))
∣∣∣ ⟨∅, a⟩ = 1

}
→ T ((Rd)) by

exp(a) B 1 +
∞∑

k=1

1
k!

a⊗k, log(a) B
∞∑

k=1

(−1)k+1

k
ã⊗k, with a = 1 + ã.

Lie algebra

g(Rd) B log(G(Rd)) is a Lie algebra under the commutator [a,b] B a ⊗ b − b ⊗ a. In fact, it
is the free Lie algebra generated by e1, . . . , ed. Similarly, define gN(Rd).

▶ Note that exp : g(Rd)→ G(Rd) and log : G(Rd)→ g(Rd) are both bijective, and the
same holds, mutatis mutandis, for the truncated versions GN(Rd), gN(Rd). Hence,
gN(Rd) is a global chart of the Lie group GN(Rd).

▶ dim gN(Rd) grows much slower than dim T N(Rd). E.g., for d = 3 and N = 4:
dim T N(Rd) = 120, dim gN(Rd) = 32. Hence, the Lie algebra removes many
redundancies (at the cost of the shuffle identity).
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Log-signatures

Definition (Log-signature)

Given a smooth path x : [s, t]→ Rd, define the (truncated) log-signature by
l<∞s,t B log(x<∞s,t ) ∈ g(Rd) – and similarly its truncated version l≤N

s,t ∈ g
N(Rd).

Example: N = 2

▶ A basis of g2(Rd) is given by ei, i = 1, . . . , d, together with [ei, e j], 1 ≤ i < j ≤ d.

▶ By the definition of log applied to x≤2
s,t = 1 + xi

s,tei + x
(i, j)
s,t ei ⊗ e j, we get

logx≤2
s,t = (x≤2

s,t − 1) − 1
2 (x≤1

s,t − 1)⊗2 = xi
s,tei +

(
x

(i, j)
s,t −

1
2 xi

s,t x
j
s,t

)
ei ⊗ e j.

▶ Note that x(i, j)
s,t + x

( j,i)
s,t =

∫
s<t1<t2<t dxi(t1)dx j(t2) +

∫
s<t2<t1<t dxi(t1)dx j(t2) =∫ t

s

∫ t
s dxi(t1)dx j(t2) = xi

s,t x
j
s,t. Hence, x(i,i)

s,t −
1
2 (xi

s,t)
2 = 0, x(i, j)

s,t −
1
2 xi

s,t x
j
s,t =

1
2 (x(i, j)

s,t − x
( j,i)
s,t ).

▶ In total: logx≤2
s,t =

d∑
i=1

xi
s,tei +

∑
1≤i< j≤d

1
2

(x(i, j)
s,t − x

( j,i)
s,t )[ei, e j] C

d∑
i=1

xi
s,tei +

∑
1≤i< j≤d

a
(i, j)
s,t .
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Example: Signatures and areas of x(t) =
(
α cosh(θ1t) − α, cos(θ2t)

)
, d = 2

0.0 0.2 0.4 0.6 0.8
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x2

Figure: The path – up to re-parameterization.
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Figure: The shuffle identity x(1,2)
s,t + x

(2,1)
s,t = x1

s,t x
2
s,t
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Figure: Interpretation of Lévy’s area
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Example: Signatures and areas of x(t) =
(
α cosh(θ1t) − α, cos(θ2t)

)
, d = 2
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Figure: The path and the induced area path t 7→ a0,t.
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Example: Signatures and areas of x(t) =
(
α cosh(θ1t) − α, cos(θ2t)

)
, d = 2
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Figure: Construction of the induced area path t 7→ a0,t.
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Area of a two-dimensional Brownian motion
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Figure: Path of a two-dimensional Brownian motion
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Area of a two-dimensional Brownian motion
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Figure: Path and area of a two-dimensional Brownian motion
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Area of a two-dimensional Brownian motion
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Signatures as features for Machine Learning methods

▶ Input data: a path or, more realistically, a time series in d dimensions.

▶ Feature transformation: extract a finite dimensional projection of the path-signature.
▶ ML framework: plug the features into a standard ML framework, e.g., random forest or

deep neural network.

Examples [Terry Lyons and co-authors]

Human action recognotion Psychiatric diagnosis Chinese handwriting
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Useful path-transformations

▶ Time-extended path: Recall that the signature x<∞s,t is invariant under
re-parameterization. If this is not appropriate, extend x to x(u) B (u, x(u)) ∈ Rd+1. Its
signature x<∞s,t effectively respects the given parameterization.

▶ Interpolation in time: Given a time series (x1, x2, . . .), choose the appropriate
interpolation to construct a path. Popular choices: piece-wise linear or piece-wise
axis-parallel.

▶ Discrete time signature: Alternatively, choose discrete time signatures.

▶ Lead-lag-transform: Especially for financial time series, extend a time series
(x1, x2, x3, . . .) to ((x1, x1), (x2, x1), (x3, x2), (x4, x3), . . .). (Related to quadratic variation.)

Modern trends
▶ Neural (rough) DEs. ▶ Signature kernel methods
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Discontinuity of solutions to controlled differential equations

Can we solve dy(t) = V(y(t))dx(t) for a non-smooth path x : [0,T ]→ Rd – e.g., α-Hölder?

▶ Standard recipe: Let xn be smooth paths such that ∥xn − x∥?
n→∞
−−−−→ 0. Define y as limit

of solutions yn to dyn(t) = V(yn(t))dxn(t).

Example

▶ Let xn(t) B
(
sin(n2t)/n, cos(n2t)/n

)
, t ∈ [0, 2π], with limit x(t) ≡ 0, and the area

zn(t) B
1
2

∫ t

0
x1

n(s)dx2
n(s) −

1
2

∫ t

0
x2

n(s)dx1
n(s)

▶ Note that yn(t) B (x1
n(t), x2

n(t), zn(t)) solves controlled DE with V(y) B
( 1 0

0 1
1
2 y2 − 1

2 y1

)
.
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Euler scheme

dy(t) = V(y(t))dx(t), t ∈ [0,T ], y(0) = y0, x : [0,T ]→ Rd, 0 = t0 < · · · < tn = T.

Case: smooth path x. If x is smooth, we have
∣∣∣xti,ti+1

∣∣∣ = O(|ti+1 − ti|). By Taylor,

y(ti+1) = y(ti) + V(y(ti))xti,ti+1 + H.O.T.i, |H.O.T.i| = O(|ti+1 − ti|2) = o(|ti+1 − ti|).

Ignoring error propagation, the Euler scheme converges as
∑n−1

i=0 |H.O.T.i| = o(1), n→ ∞.

Case: α-Hölder path x, α > 1
2 . We have

∣∣∣xti,ti+1

∣∣∣ = O(|ti+1 − ti|α). By Taylor,

y(ti+1) = y(ti) + V(y(ti))xti,ti+1 + H.O.T.i, |H.O.T.i| = O(|ti+1 − ti|2α) = o(|ti+1 − ti|).

Ignoring error propagation, the Euler scheme converges as
∑n−1

i=0 |H.O.T.i| = o(1), n→ ∞.

Remark: (Young ’30s)
∫ T

0 f (s)dg(s) well-defined for f α-Hölder, g β-Hölder iff α + β > 1.
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Extended Euler scheme

dy(t) = V(y(t))dx(t), t ∈ [0,T ], y(0) = y0, x : [0,T ]→ Rd, 0 = t0 < · · · < tn = T.

Now consider x to be α-Hölder with 1
3 < α ≤

1
2 . By the previous calculation, the Euler

scheme diverges. Recall the formal second order expansion:

y(ti+1) + V(y(ti))xti,ti+1 + DV(y(ti))V(y(ti))x=2
ti,ti+1
+ H.O.T.i.

Key observation

Assume that we could define x=2
ti,ti+1
=

(∫ ti+1

ti
x j

ti,sdxk(s)
)

j,k=1,...,d
. Then we would expect∣∣∣xti,ti+1

∣∣∣ = O(|ti+1 − ti|α),
∣∣∣x=2

ti,ti+1

∣∣∣ = O(|ti+1 − ti|2α), |H.O.T.i| = O(|ti+1 − ti|3α) = o(|ti+1 − ti|).

Hence, we expect convergence of the extended Euler scheme

yi+1 = yi + V(yi)xti,ti+1 + DV(yi)V(yi)x
=2
ti,ti+1

.
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Definition of rough paths

Definition (α-Hölder rough paths)

Let 1
3 < α ≤

1
2 . An α-Hölder rough path on Rd is a pair x = (x,x), x : [0,T ]→ Rd,

x : [0,T ]2 → Rd ⊗Rd, continuous, such that Chen’s identity (truncated to N = 2) holds and

sup
s,t

∣∣∣xs,t
∣∣∣

|t − s|α
< ∞, sup

s,t

∣∣∣xs,t
∣∣∣

|t − s|2α
< ∞.

▶ The definition can be extended to general α > 0, by providing ⌊1/α⌋ iterated integrals.

▶ Every α-Hölder path can be extended to an α-Hölder rough path, but the extension is
generally not unique. (N.b.: If x is smooth, there is a canonical choice.)

▶ The theory of rough paths was developed by Terry Lyons starting from 1994. Important
re-formulations and generalizations were due to Massimiliano Gubinelli (controlled
rough paths) and Martin Hairer (regularity structures).
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Lyons’ universal limit theorem

Universal limit theorem
Given an α-Hölder rough path x, and V ∈ Cγ for γ ≥ 1/α. Then there is a unique solution
of the rough differential equation

dy(t) = V(y(t))dx(t), y(0) = y0.

The map (y0,V, x)→ y is locally Lipschitz continuous – w.r.t. appropriate topologies.

▶ As the signature solves the RDE dx<∞s,t = x
<∞
s,t ⊗ dx(t),

x<∞s,s = 1, this implies that every rough path has a uniquely
defined signature.

▶ The solution y depends on the rough path x, i.e., the choice
of extension of x.

Rough path principle

x Φ //

ψ
��

y

x

Ψ

88
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Brownian rough path

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L2

or almost sure sense) as follows

▶ W(i, j),Ito
s,t B

∫ t

s
W i

s,udW j
u, W

=2,Ito
s,t B

∑
1≤i, j≤d

W
(i, j),Ito
s,t ei ⊗ e j,

▶ W(i, j),Strat
s,t B

∫ t

s
W i

s,u◦dW j
u, W

=2,Strat
s,t B

∑
1≤i, j≤d

W
(i, j),Strat
s,t ei ⊗ e j.

▶ Both WIto(ω) and WStrat(ω) are a.s. α-Hölder rough paths, for any α < 1
2 .

▶ Solutions of RDEs driven by WIto coincide (a.s.) with the corresp. Ito-SDE solutions.

▶ Solutions of RDEs driven by WStrat coincide (a.s.) with the corresp. Stratonovich-SDE
solutions.

▶ ω 7→WIto/Strat(ω) is discontinuous, the solution map in WIto/Strat(ω) is continuous.

▶ Note thatW<∞,Strat satisfies the shuffle identity, butW<∞,Ito does not.
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The space of rough paths

Let C α([0,T ];Rd) denote the space of α-Hölder rough paths.

▶ While C α([0,T ];Rd) is not a linear space, it is a complete metric space with the
appropriate Hölder-distance.

Given a smooth path x : [0,T ]→ Rd, construct a corresponding α-Hölder rough path x by

x = (x,x), xs,t B x(t) − x(s), x
(i, j)
s,t B

∫ t

s
xi(u)dx j(u).

Let C α
g ([0,T ];Rd) ⊂ C α([0,T ];Rd) denote the closure of smooth rough paths in

C α([0,T ];Rd). x ∈ C α
g ([0,T ];Rd) is called geometric.

▶ The signature x<∞s,t of a geometric rough path x ∈ C α
g satisfies the shuffle identity.

Symbolically,
∀x ∈ C α

g ([0,T ];Rd), ∀0 ≤ s ≤ t ≤ T : x<∞s,t ∈ G(Rd).
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Setting of bounded variation paths revisited

W.l.o.g., all paths start at 0, i.e., x(0) = 0.

▶ Let Ω1 B C 1−var([0,T ]; V) denote the space of bounded variation functions taking
values in a (finite-dimensional) Banach space V with the norm
∥x∥1−var B |x(0)| + |x|1−var, where

|x|1−var B sup
N∈N

sup
0≤t0<t1<···<tN≤T

N∑
i=1

|x(ti+1) − x(ti)| .

▶ Given x ∈ C 1−var([0,T ];Rd), we obtain t 7→ x≤N
0,t ∈ C

1−var
(
[0,T ]; T N(Rd)

)
and the lift

x 7→ x≤N
0,· is continuous:

∥∥∥∥x≤N
0,·

∥∥∥∥
1−var

≤ |x|1−var – provided that V B GN(Rd) is equipped
with the Carnot-Caratheodory metric.

▶ Given x ∈ C 1−var([0,T ];Rd), we define x̂(t) B (t, x(t)) ∈ R1+d and denote
Ω̂1 B

{
x̂
∣∣∣ x ∈ Ω1

}
. Note that x̂ is uniquely determined by its signature x̂<∞0,T and x̂(0)!
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Universal approximation

Theorem
Let A B { fℓ | ℓ ∈ W1+d } where for any ℓ ∈ W1+d we set

fℓ : Ω̂1 → R, x̂ 7→
〈
ℓ, x̂<∞0,T

〉
.

Then A ⊂ C(Ω̂1;R) is dense w.r.t. uniform convergence on compacts.

The proof is based on the classical Stone – Weierstrass theorem. We give a sufficient
version below:

Theorem (Stone – Weierstrass)
Let X be a compact metric space and consider a subalgebra A ⊂ C(X;R) that is
point-separating and vanishes nowhere. Then A ⊂ C(X;R) is dense w.r.t. uniform
convergence.
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Variations on the setting

▶ We can replace Ω̂1 by P1, the set of bounded variation paths modulo
re-parameterization and tree-like excursion.

▶ We can immediately generalize the theorem to the rough setting, i.e., by replacing Ω1

and Ω̂1 by their rough analogues for p > 1:

Ωp B C 1/p
g ([0,T ];Rd), Ω̂p B

{
x = (x,x) ∈ C 1/p

g ([0,T ];R1+d)
∣∣∣∣ ∀t ∈ [0,T ] : x0(t) = t

}
.

▶ Unlike C 1/p([0,T ];Rd), C 1/p
g ([0,T ];Rd) is separable, hence a Polish space. Any rough

process defined as a random variable taking values in Ωp or Ω̂p, respectively, is tight.

Corollary

Given a rough process X̂ taking values in Ω̂p, p > 1. Then for any f ∈ C
(
Ω̂p;R

)
and ϵ > 0

there is ℓ ∈ W1+d s.t.
P

(∣∣∣∣ f (X̂) −
〈
ℓ, X̂<∞0,T

〉∣∣∣∣ > ϵ) < ϵ.
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g ([0,T ];Rd) is separable, hence a Polish space. Any rough

process defined as a random variable taking values in Ωp or Ω̂p, respectively, is tight.

Corollary

Given a rough process X̂ taking values in Ω̂p, p > 1. Then for any f ∈ C
(
Ω̂p;R

)
and ϵ > 0

there is ℓ ∈ W1+d s.t.
P

(∣∣∣∣ f (X̂) −
〈
ℓ, X̂<∞0,T

〉∣∣∣∣ > ϵ) < ϵ.
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Variations on the notion of convergence

Theorem (Stone – Weierstrass theorem; Giles’71)
Let X be a compact metric space and consider a subalgebra A ⊂ Cb(X;R) that is
point-separating and vanishes nowhere. Then A ⊂ Cb(X;R) is dense w.r.t. the strict
topology.

▶ The strict topology on Cb(X;R) is the topology generated by the seminorms
pψ( f ) B supx∈X | f (x)ψ(x)|, f ∈ Cb(X;R), indexed by the functions ψ : X → R vanishing
at infinity.

▶ Replace the (unbounded) functions x̂ 7→
〈
ℓ, x̂<∞0,T

〉
by the bounded functions

x̂ 7→
〈
ℓ, Λ(x̂<∞0,T )

〉
for a tensor normalization Λ : T ((Rd))→ T ((Rd)).

▶ Tensor normalizations are continuous, injective maps Λ s.t. Λ(a) is in a bounded ball in
T ((Rd)) and Λ(a) = δλ(a)a for some λ : T ((Rd))→ R.
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Separating hyperplanes

▶ Consider data xi ∈ E for a
(finite-dimensional) space E, with labels
yi ∈ { −1,+1 }, i = 1, . . . ,M.

▶ Classify data points by a separating
hyperplane, i.e., find w ∈ E and b ∈ R
s.t. for all i = 1, . . . ,M:

yi = +1 ⇐⇒ ⟨w, xi⟩E − b > 0,

yi = −1 ⇐⇒ ⟨w, xi⟩E − b < 0.

▶ If at all possible, there will be infinitely
many solutions. Hence, we try to find
the best solution.

4 5 6 7 8 9 10
x0
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6

4

2

x 1
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Support vector machine

Solution

min
w∈E, b∈R

1
2
∥w∥2E subject to

∀i ∈ { 1, . . . ,M } : yi (⟨w, xi⟩E − b) ≥ 1.

▶ What if separation by hyperplanes is
not possible, or data lives in a
non-linear space X?

▶ Lift data xi 7→ Φ(xi) using a non-linear
feature map Φ : X → H for some
(infinite-dimensional) Hilbert space H .

▶ Which Φ? Evaluation very expensive!?
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RKHS

Definition
A reproducing kernel Hilbert space (RKHS) is a Hilbert space H of functions f : X → R
s.t. for all x ∈ X, the evaluation functional evx : H → R, f 7→ f (x) is continuous.

▶ By Riesz representation, for every x ∈ X we can find kx ∈ H such that

∀ f ∈ H : evx( f ) = ⟨kx, f ⟩H .

▶ Define k : X × X → R, k(x, y) B
〈
kx, ky

〉
H

called the kernel.

1. By the analogue properties of ⟨·, ·⟩H , k is symmetric and positive definite, i.e.,
∀x1, . . . , xk ∈ X, the matrix (k(xi, x j)) ∈ Rk×k is positive definite.

2. kx(y) = evy(kx) =
〈
ky, kx

〉
H
= k(x, y), i.e., for any x ∈ X, kx = k(x, ·).

3. Conversely, given a symmetric, positive definite kernel k : X × X → R, we obtain a
RKHS as completion of H̃ B ⟨{ k(x, ·) | x ∈ X }⟩ with ⟨k(x, ·), k(y, ·)⟩

H̃
B k(x, y).
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Kernel trick

Given data xi ∈ X, choose a RKHS H on X and features Φ(x) B k(x, ·) ∈ H .

min
w∈H , b∈R

1
2
∥w∥2

H
subject to ∀i ∈ { 1, . . . ,M } : yi

(
⟨w, Φ(xi)⟩H − b

)
≥ 1.

▶ By the representer theorem, w ∈ ⟨{ k(xi, ·) | i = 1, . . . ,M }⟩, i.e.,

∃α ∈ RM : w =
M∑

i=1

αik(xi, ·), hence ∥w∥2
H
=

M∑
i=1

α⊤Kα,K B (k(xi, x j))M
i, j=1 ∈ R

M×M.

▶ Similarly, ⟨w, Φ(xi)⟩H =
M∑
j=1

α j
〈
k(x j, ·), k(xi, ·)

〉
H
= (α⊤K)i.

▶ Need evaluations of the kernel k (for the Gram matrix K), but not of Φ – kernel trick.
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Signature kernel

Let X1 B
{

x ∈ C 1−var([0,T ];Rd)
∣∣∣ T > 0, x(0) = 0

}
– and similarly X̂1.

Goal: Define an appropriate kernel for paths / time series.

Definition
Given x, y ∈ X1 defined on [0, t], [0, s], respectively. We define

ksig(x, y) B
〈
x<∞0,t , y

<∞
0,s

〉
B

∞∑
n=0

∑
α∈{ 1,...,d }n

xα0,ty
α
0,s.

▶ It is easy to see that
∣∣∣∣x=n

[0,t]

∣∣∣∣ ≤ ∥x∥n1−var
n! , therefore the sum is finite.

▶ The definition can easily be extended to rough paths or time series – e.g., by
piecewise-linear interpolation.

▶ Extension: For a kernel κ : Rd × Rd → R, first lift t 7→ x(t)→ κx B t 7→ κ(x(t), ·) ∈ H ,
then compute the signature kernel of the lifted path ksig(κx, κy).
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Computation of the signature kernel

Direct computation is impossible, due to the exponential growth of the signature – recall
that x=n ∈ (Rd)⊗n, i.e., has dn terms. However, a recursive construction exists –
comparable to the Horner scheme for polynomials. Even more powerful:

Theorem [Salvi et al., ’21]

Assume that x, y ∈ C1, and let Kx,y(u, v) B ksig
(
x|[0,u], y|[0,v]

)
for u ∈ [0, t], v ∈ [0, s]. Then

Kx,y solves the PDE

∂2

∂u∂v
Kx,y(u, v) = ⟨ẋ(u), ẏ(v)⟩Kx,y(u, v), Kx,y(0, ·) = Kx,y(·, 0) = 1.
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Application: Computable MMD on pathspace

MMDsig(µ, ν) B
[∫
X1×X1

ksig(x, x′)µ(dx)µ(dx′) +
∫
X1×X1

ksig(y, y′)ν(dy)ν(dy′)

− 2
∫
X1×X1

ksig(x, y)µ(dx)ν(dy)
]1/2

▶ Given K ⊂ X̂1 compact, then MMDsig is characteristic for P1(K), the probability
measures supported on K , i.e., MMDsig(µ, ν) = 0 ⇐⇒ µ = ν.

▶ In the compact case, MMDsig is a metric for weak convergence.

▶ For P1(X̂1) we obtain a metric by switching to normalized signatures, as discussed
earlier. However, convergence under MMDsig does not imply weak convergence.
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Non-Markovian stochastic optimal control

Setting

Given a d-dimensional stochastic process (Xt)t∈[0,T ] controlled by α. Goal: maximize some
reward function.

Markovian case: If X is a Markov process, the optimal control satisfies α∗t = α
∗(t, Xt).

Popular methods include:

▶ Solving the (deterministic) Hamilton–Jacobi–Belman PDE for the value function.

▶ Approximate α∗ in some parametric class of functions on Rd and optimize the reward.

▶ Least squares Monte Carlo, involving computations of conditional expectations
E[Vt+∆t | Xt].

Non-Markovian case: Now we can only expect α∗t to be Ft-measurable, i.e.,
α∗t = α

∗(t, (Xs)s≤t). For all methods above, we are left with approximations in spaces of
functions of paths.
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Signature methods for stochastic optimal control

Following [Kalsi, Lyons, Perez Arribas ’20], a general recipe for solving stochastic optimal
control problems using path signatures can be described as follows:

1. Assume that controls αt are continuous functions ϕ(X̂|[0,t]) of the path and, hence, of
the signature θ(X̂<∞0,t ) – and similarly for the loss function Lθ(X̂<∞0,T ).

2. As continuous functions, αt = θ(X̂<∞0,t ) ≈
〈
ℓθ, X̂

<∞
0,t

〉
, Lθ(X̂<∞0,T ) ≈

〈
fL(ℓθ), X̂<∞0,T

〉
for some

ℓθ, fL(ℓθ) ∈ Wd – by universality.
3. Interchange expectation and truncate the signature at level N:

E
[
Lθ(X̂<∞0,T )

]
≈ E

[〈
fL(ℓθ), X̂<∞0,T

〉]
=

〈
fL(ℓθ), E

[
X̂<∞0,t

]〉
≈

〈
fL(ℓθ), E

[
X̂≤N

0,t

]〉
.

4. Optimize ℓθ 7→
〈

fL(ℓθ), E
[
X̂≤N

0,t

]〉
– a fully deterministic optimization problem.

No convergence result known so far, but pathwise density for steps 1 + 2 with high
probability is proved in [Kalsi, Lyons, Perez Arribas ’20]. Problem: discontinuity of
(optimal) controls.
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the signature θ(X̂<∞0,t ) – and similarly for the loss function Lθ(X̂<∞0,T ).

2. As continuous functions, αt = θ(X̂<∞0,t ) ≈
〈
ℓθ, X̂

<∞
0,t

〉
, Lθ(X̂<∞0,T ) ≈

〈
fL(ℓθ), X̂<∞0,T

〉
for some

ℓθ, fL(ℓθ) ∈ Wd – by universality.

3. Interchange expectation and truncate the signature at level N:
E

[
Lθ(X̂<∞0,T )

]
≈ E

[〈
fL(ℓθ), X̂<∞0,T

〉]
=

〈
fL(ℓθ), E

[
X̂<∞0,t

]〉
≈

〈
fL(ℓθ), E

[
X̂≤N

0,t

]〉
.

4. Optimize ℓθ 7→
〈

fL(ℓθ), E
[
X̂≤N

0,t

]〉
– a fully deterministic optimization problem.

No convergence result known so far, but pathwise density for steps 1 + 2 with high
probability is proved in [Kalsi, Lyons, Perez Arribas ’20]. Problem: discontinuity of
(optimal) controls.
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Optimal stopping

Optimal stopping problem

Given a stochastic reward process (Yt)t∈[0,T ] adapted to a filtration (Ft)t∈[0,T ] generated by
a d-dimensional stochastic process (Xt)t∈[0,T ]. Let S denote the set of (Ft)t∈[0,T ]–stopping
times. Compute supτ∈S E [Yτ].

▶ Optimal stopping times are generally hitting times
of sets, hence discontinuous functions on
path-space.

▶ Example: X models a stock price – possibly with
additional factors such as stochastic volatilities –
and Yt = h(Xt) for some payoff function h.

▶ Example: X = Y = WH . . . fractional Brownian
motion 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure: Discontinuity of hitting times
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Incorporating history into the present state

[Becker, Cheredito, Jentzen ’19] consider the optimal stopping problem for fractional
Brownian motion. In the general setting, their strategy is as follows:

1. Fix a time-grid 0 = t0 < · · · < tJ = T and define a (discrete time) (J + 1)d-dimensional
Markov process (Z j)J

j=0 by

Z0 B (Xt0 , 0, . . . , 0),

Z1 B (Xt0 , Xt1 , 0, . . . , 0),

Z2 B (Xt0 , Xt1 , Xt2 , 0, . . . , 0),
...

2. Solve the discrete-time Markovian optimal stopping problem. [Becker, Cheredito,
Jentzen ’19] use deep neural networks to approximate stopping decisions
f j(Z j) ≈ DNN j(Z j; θ) – “stop at time t j unless stopped earlier”.

Signatures and applications in finance · March 1st - 8th 2024 · Page 49 (64)



Incorporating history into the present state

[Becker, Cheredito, Jentzen ’19] consider the optimal stopping problem for fractional
Brownian motion. In the general setting, their strategy is as follows:

1. Fix a time-grid 0 = t0 < · · · < tJ = T and define a (discrete time) (J + 1)d-dimensional
Markov process (Z j)J

j=0 by

Z0 B (Xt0 , 0, . . . , 0),

Z1 B (Xt0 , Xt1 , 0, . . . , 0),

Z2 B (Xt0 , Xt1 , Xt2 , 0, . . . , 0),
...

2. Solve the discrete-time Markovian optimal stopping problem. [Becker, Cheredito,
Jentzen ’19] use deep neural networks to approximate stopping decisions
f j(Z j) ≈ DNN j(Z j; θ) – “stop at time t j unless stopped earlier”.

Signatures and applications in finance · March 1st - 8th 2024 · Page 49 (64)



Stopped rough paths

How can we construct stopping times and adapted processes using rough paths?

Stopped rough paths

Let Ω̂p
t B

{
x ∈ C 1/p

g ([0, t];R1+d)
∣∣∣∣ x1(s) = s

}
. The space of stopped rough paths is defined

as ΛT B
⋃

t∈[0,T ] Ω̂
p
t .

▶ ΛT is a Polish space with a Dupire type metric.
▶ We can now define adapted processes or stopping times as functionals on ΛT .

Rough stochastic processes

Given a probability space (Ω,F ,P), a rough stochastic process is a random variable X̂
taking values in Ω̂p

T . We further define the natural filtration generated by X̂, i.e.,
Ft B σ

(
X0,s : 0 ≤ s ≤ t

)
.

Signatures and applications in finance · March 1st - 8th 2024 · Page 50 (64)



Stopped rough paths

How can we construct stopping times and adapted processes using rough paths?

Stopped rough paths

Let Ω̂p
t B

{
x ∈ C 1/p

g ([0, t];R1+d)
∣∣∣∣ x1(s) = s

}
. The space of stopped rough paths is defined

as ΛT B
⋃

t∈[0,T ] Ω̂
p
t .

▶ ΛT is a Polish space with a Dupire type metric.
▶ We can now define adapted processes or stopping times as functionals on ΛT .

Rough stochastic processes

Given a probability space (Ω,F ,P), a rough stochastic process is a random variable X̂
taking values in Ω̂p

T . We further define the natural filtration generated by X̂, i.e.,
Ft B σ

(
X0,s : 0 ≤ s ≤ t

)
.

Signatures and applications in finance · March 1st - 8th 2024 · Page 50 (64)



Stopped rough paths

How can we construct stopping times and adapted processes using rough paths?

Stopped rough paths

Let Ω̂p
t B

{
x ∈ C 1/p

g ([0, t];R1+d)
∣∣∣∣ x1(s) = s

}
. The space of stopped rough paths is defined

as ΛT B
⋃

t∈[0,T ] Ω̂
p
t .

▶ ΛT is a Polish space with a Dupire type metric.
▶ We can now define adapted processes or stopping times as functionals on ΛT .

Rough stochastic processes

Given a probability space (Ω,F ,P), a rough stochastic process is a random variable X̂
taking values in Ω̂p

T . We further define the natural filtration generated by X̂, i.e.,
Ft B σ

(
X0,s : 0 ≤ s ≤ t

)
.

Signatures and applications in finance · March 1st - 8th 2024 · Page 50 (64)



Signature stopping rules

Given ℓ ∈ W1+d, define a signature stopping rule τℓ ∈ S as

τℓ B inf
{

t ∈ [0,T ]
∣∣∣∣ 〈ℓ, X̂<∞0,t

〉
≥ 1

}
.

Note that τℓ is the first hitting time of a hyperplane in T ((R1+d)).

Theorem
Given an (Ft)t∈[0,T ]–adapted continuous reward process (Yt)t∈[0,T ] with E ∥Y∥∞ < ∞, then

sup
τ∈S

E [Yτ∧T ] = sup
ℓ∈W1+d

E
[
Yτℓ∧T

]
.

▶ While optimal stopping times τ∗ ∈ S typically exist, we do not expect an optimizer
ℓ∗ ∈ W1+d to exist.
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Elements of the proof I: Continuous stopping rules

Given θ ∈ C (ΛT ,R) define a continuous stopping rule by

τθ B inf
{

t ∈ [0,T ]

∣∣∣∣∣∣
∫ t

0
θ(X̂|[0,s])2ds ≥ 1

}
.

Lemma

sup
θ∈C(ΛT ,R)

E
[
Yτθ∧T

]
= sup

τ∈S

E [Yτ∧T ]

Proof of the Lemma is based on approximation of measurable by continuous functions.
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Elements of the proof II: Randomization

▶ If a continuous stopping rule τθ was continuous as a function of the signature, we could
approximate it by signature stopping rules:

inf
{

t ∈ [0,T ]

∣∣∣∣∣∣
∫ t

0
θ(X̂|[0,s])2ds ≥ 1

}
≈ inf

{
t ∈ [0,T ]

∣∣∣∣ 〈ℓ, X̂<∞0,t

〉
≥ 1

}
.

▶ Unfortunately, this is just not the case.

▶ Randomization: Replace the fixed level 1 above by an (independent) random level Z.
▶ Interpretation: If Z ∼ Exp(1), stop at the first jump time of a pure jump process with

intensity θ(X̂|[0,s])2.

Let Z ≥ 0 be a r.v. independent of X̂ with (smooth) c.d.f. FZ .

τr
θ B inf

{
t ∈ [0,T ]

∣∣∣∣∣∣
∫ t

0
θ
(
X̂|[0,s]

)2
ds ≥ Z

}
, τr

ℓ B inf
{

t ∈ [0,T ]

∣∣∣∣∣∣
∫ t

0

〈
ℓ, X̂<∞0,t

〉2
ds ≥ Z

}
.
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Elements of the proof III: Randomization (continued)

Lemma

sup
θ∈C(ΛT ,R)

E
[
Yτr

θ∧T
]
= sup

θ∈C(ΛT ,R)
E

[
Yτθ∧T

]
, sup

ℓ∈W1+d

E
[
Yτr

ℓ
∧T

]
= sup

ℓ∈W1+d

E
[
Yτℓ∧T

]
.

Proof: Formal proof by dominated convergence. Informally: The buyer of an American
option may very well randomize her exercise decision.

Lemma (Regularization by randomization)

Let F̃(t) B FZ
(∫ t

0 θ
(
X̂|[0,s]

)
ds

)
, then E

[
Yτr

θ∧T | X̂
]
=

∫ T

0
YtdF̃(t) + YT (1 − F̃(T )).

▶ Note that the R.H.S. is a smooth function of X̂.
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Elements of the proof IV: Stone–Weierstrass

Lemma

For every ε > 0 there is a compact set K ⊂ Ω̂p
T s.t. P (X ∈ K) > 1 − ε and for every

θ ∈ C(ΛT ,R) there is a sequence ℓn ∈ W1+d s.t.

sup
x∈K ; t∈[0,T ]

∣∣∣∣θ(̂x|[0,t]) − 〈
ℓn, x

<∞
0,t

〉∣∣∣∣ n→∞
−−−−→ 0.

The above Stone–Weierstrass theorem implies that (randomized) continuous stopping
rules can be approximated by (randomized) signature stopping rules, given that

E[Yτ] ≤ E
[
∥Y∥∞

]
< ∞.
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Linearization

Let, for simplicity, Z ∼ Exp(1). Then we end up with

sup
τ∈S

E [Yτ∧T ] = Y0 + sup
ℓ∈Wd+1

E

[∫ T

0
exp

(
−

∫ t

0

〈
ℓ, X̂<∞0,s

〉2
ds

)
dYt

]
.

▶ Recalling that X̂s = (s, Xs), we have∫ t

0

〈
ℓ, X̂<∞0,s

〉2
ds =

∫ t

0

〈
ℓ� ℓ, X̂<∞0,s

〉
ds =

〈
(ℓ� ℓ)1, X̂<∞0,t

〉
▶ Approximate exp by polynomials, giving the exponential shuffle exp�(ℓ) B

∑∞
n=0

1
n!ℓ
�n.

▶ Often, Y can also be approximated by a linear functional on X̂<∞. Otherwise, consider
a RP extending t 7→ (t, Xt,Yt). E.g., in the case d = 1, Y ≡ X, we obtain

E
[
Yτℓ∧T

]
=

〈
exp�

(
−(ℓ� ℓ)1

)
2, E

[
X̂<∞0,T

]〉
≈

〈
exp�

(
−(ℓ� ℓ)1

)
2, E

[
X̂≤N

0,T

]〉
.
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≈

〈
exp�

(
−(ℓ� ℓ)1

)
2, E

[
X̂≤N

0,T

]〉
.
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Linearization

Let, for simplicity, Z ∼ Exp(1). Then we end up with

sup
τ∈S

E [Yτ∧T ] = Y0 + sup
ℓ∈Wd+1

E

[∫ T

0
exp

(
−

∫ t

0

〈
ℓ, X̂<∞0,s

〉2
ds

)
dYt

]
.

▶ Recalling that X̂s = (s, Xs), we have∫ t

0

〈
ℓ, X̂<∞0,s

〉2
ds =

∫ t

0

〈
ℓ� ℓ, X̂<∞0,s

〉
ds =

〈
(ℓ� ℓ)1, X̂<∞0,t

〉
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n=0

1
n!ℓ
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Full linearization

Theorem

Let E
[
∥Y∥∞

]
< ∞. Given κ > 0, define the stopping time σ = σκ by

σ B inf
{

t ≥ 0
∣∣∣∣ ∥X̂∥p−var;[0,t] ≥ κ

}
∧ T . Then,

sup
τ∈S

E [Yτ∧T ] = E [Y0] + lim
κ→∞

lim
K→∞

lim
N→∞

sup
|ℓ|+deg(ℓ)≤K

E

[∫ σκ

0

〈
exp�(−(ℓ� ℓ)1), X̂≤N

0,t

〉
dYt

]
.

If Y is a linear functional of X̂<∞, this formula can be further simplified. E.g., if d = 1 and
Y = X, then

sup
τ∈S

E [Yτ∧T ] = E [Y0] + lim
κ→∞

lim
K→∞

lim
N→∞

sup
|ℓ|+deg(ℓ)≤K

〈
exp�(−(ℓ� ℓ)1)2, E

[
X̂≤N

0,σκ

]〉
.
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Remarks

1. Optimal stopping of Brownian motion X: By Fawcett’s formula,

E
[
X̂<∞0,T

]
= exp

(
T

(
e1 +

1
2

e2 ⊗ e2

))
.

We immediately see that
〈
exp�(−(ℓ� ℓ)1)2, E

[
X̂≤N

0,T

]〉
= 0.

2. Obtain approximately optimal strategy, not just approximation to value function. Let
ℓ∗ = ℓ∗κ,K,N an optimizer in the theorem. Construct

τr
ℓ∗ B inf

{
t ∈ [0,T ]

∣∣∣∣ 〈(ℓ∗ � ℓ∗)1, X̂≤N
0,t

〉
≥ Z

}
.

▶ E
[
Yτr

ℓ∗

]
≈ E[Y0] +

〈
exp�(−(ℓ∗ � ℓ∗)1)2, E

[
X̂≤N

0,σκ

]〉
≈ sup

τ∈S

E [Yτ∧T ]

▶ Obviously, E
[
Yτr

ℓ∗

]
≤ sup

τ∈S

E [Yτ∧T ].

3. Dual method based on minimization of martingales.
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Signature vs. log-signature as feature

Recall that L<∞s,t B logX<∞s,t ∈ g(R
d) and L≤N

s,t B logX≤N
s,t ∈ g

N(Rd).

▶ The log-signature L≤N
s,t contains the same information as X≤N

s,t , but removes algebraic
redundancies.

▶ No shuffle identity holds for (truncated) log-signatures, but dim gN(Rd) ≪ dim T N(Rd).
E.g., for d = 3, N = 6: 196 vs 1092.

▶ Use of the shuffle identity is not free, but often translated into very high degrees of
truncation. E.g., suppose that deg = 3 contains enough information, but a polynomial of
degree 3 is to be linearized. Hence, the truncation degree N = 9 is required. (For
d = 3, this leads to a dimension dim T 9(R3) = 29524 – compare with dim T 3(R3) = 39,
dim g3(R3) = 14.)

Signatures are useful as features when their algebraic properties are efficiently used.
Otherwise, log-signatures are probably preferable.
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Deep signature stopping rules

A class of fully connected Artificial Neural Networks

Given K, q, I ∈ N and an activation function φ (i.e., continuous, non-polynomial), let
DNN(K, q, I;φ) denote the set of fully connected artificial neural networks with I hidden
layers of dimension q, input dimension K and output dimension 1, i.e., for
ϑ ∈ DNN(K, q, I;φ) there are affine maps A0 : RK → Rq, A1, . . . , AI−1 : Rq → Rq,
AI : Rq → R s.t.,

ϑ = AI ◦ φ ◦ AI−1 ◦ φ ◦ · · · ◦ φ ◦ A0.

Deep signature stopping rule

Given ϑ ∈ DNN(K, q, I;φ) with K = dim gN(Rd) for some N, we define a deep signature
stopping rule by

τϑ := inf
{

t ∈ [0,T ]

∣∣∣∣∣∣
∫ t

0
ϑ
(
L≤N

0,s

)2
ds ≥ 1

}
.
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Universal approximation for deep signature stopping rules

Let Tlog B
⋃

N,q,I∈N

DNN
(
dim gN(Rd), q, I;φ

)
.

Theorem
If E

[
∥Y∥∞

]
< ∞, we have

sup
τ∈S

E [Yτ∧T ] = sup
ϑ∈Tlog

E
[
Yτr

ϑ
∧T

]
.

▶ Proof: Combination of the classical universal approximations theorem for neural
networks and our earlier arguments.
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Example: Optimal stopping of fractional Brownian motion (WH
t )t∈[0,1] – approximate values

0.0 0.2 0.4 0.6 0.8 1.0
H

0.0

0.5

1.0

1.5

2.0

2.5 J = 100
J = 1000
J = 10000
J = 100 (BCJ)
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Example: Optimal stopping of fractional Brownian motion (WH
t )t∈[0,1] – sample strategy

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

t
BH

t

BH
t dt tdBH

t 0

50

100

150

200

2dt
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