N

Weierstrass Institute for
Applied Analysis and Stochastics

Signatures and applications in finance

Christian Bayer

Memory can determine the dynamics of a stochastic process in different ways, e.g., Hidden Markov process: X is a component or function of an underlying Markov process
Z. E.g., the price process in a stochastic volatility model

$$
\mathrm{d} S_{t}=\sqrt{v_{t}} S_{t} \mathrm{~d} B_{t}, \quad \mathrm{~d} v_{t}=\alpha\left(v_{t}\right) \mathrm{d} t+\beta\left(v_{t}\right) \mathrm{d} W_{t}, \quad Z=(S, v)
$$

Delay equations: The dynamics of X at time t depends explicitly on $\left(X_{s}\right)_{t-h \leq s \leq t}$.
Memory kernel: The dynamics of X at time t depends on

$$
\int_{-\infty}^{t} K(t, s) X_{s} \mathrm{~d} s, \quad \int_{-\infty}^{t} K(t, s) \mathrm{d} X_{s}, \ldots
$$

Special case: $K(t, s)=K(t-s)$ (Volterra equation).
Processes with memory are the rule, not the exception!

Claim

The path signature is a universal tool for approximating functions of paths, comparable to polynomials in finite dimensions.

1. Introduction to signatures and rough paths (time permitting).
2. Universality of signatures and signature kernels: model-free statistics for stochastic processes.
3. Optimal stopping as an example of using signatures for stochastic optimal control of non-Markov processes.

1 Path signatures

2 Rough Paths

3 Universality and the signature kernel

4 Signature based representations for optimal stopping

Paths

Paths

- A (d-dimensional) path is a continuous function $x: I \rightarrow \mathbb{R}^{d}, I \subset \mathbb{R}$ being an interval.

Paths

- A (d-dimensional) path is a continuous function $x: I \rightarrow \mathbb{R}^{d}, I \subset \mathbb{R}$ being an interval.
- A path x is smooth if it is C^{1} - more precisely, bounded variation would suffice.

Figure: Sample of a $2 d$ Brownian motion W.

Figure: Path $[0,1] \ni t \mapsto \frac{1}{4}(\sin (8 \pi t), \cos (8 \pi t))$.

Controlled differential equations - iterated integrals as polynomials on path space

Controlled differential equation

Let $x:[0, T] \rightarrow \mathbb{R}^{d}$ be a smooth path, $V: \mathbb{R}^{e} \rightarrow \mathbb{R}^{e x d}$ smooth, $y_{0} \in \mathbb{R}^{e}$, and consider

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), \quad t \in[0, T], \quad y(0)=y_{0} .
$$

Controlled differential equations - iterated integrals as polynomials on path space

Controlled differential equation

Let $x:[0, T] \rightarrow \mathbb{R}^{d}$ be a smooth path, $V: \mathbb{R}^{e} \rightarrow \mathbb{R}^{e \times d}$ smooth, $y_{0} \in \mathbb{R}^{e}$, and consider

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), \quad t \in[0, T], \quad y(0)=y_{0} .
$$

- y solves an ODE: $\dot{y}(t)=V(y(t)) \dot{x}(t)$, but difficult to generalize to rough paths.

Controlled differential equation

Let $x:[0, T] \rightarrow \mathbb{R}^{d}$ be a smooth path, $V: \mathbb{R}^{e} \rightarrow \mathbb{R}^{e \times d}$ smooth, $y_{0} \in \mathbb{R}^{e}$, and consider

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), \quad t \in[0, T], \quad y(0)=y_{0} .
$$

- y solves an ODE: $\dot{y}(t)=V(y(t)) \dot{x}(t)$, but difficult to generalize to rough paths.
- First order expansion: For $s<u<t, y(u)=y(s)+$ H.O.T., implying that

$$
V(y(u))=V(y(s))+\text { H.O.T., and hence } y(t)=y(s)+V(y(s)) x_{s, t}+\text { H.O.T., } x_{s, t}:=x(t)-x(s) \text {. }
$$

Controlled differential equation

Let $x:[0, T] \rightarrow \mathbb{R}^{d}$ be a smooth path, $V: \mathbb{R}^{e} \rightarrow \mathbb{R}^{e x d}$ smooth, $y_{0} \in \mathbb{R}^{e}$, and consider

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), \quad t \in[0, T], \quad y(0)=y_{0} .
$$

- y solves an ODE: $\dot{y}(t)=V(y(t)) \dot{x}(t)$, but difficult to generalize to rough paths.
- First order expansion: For $s<u<t, y(u)=y(s)+$ H.O.T., implying that

$$
V(y(u))=V(y(s))+\text { H.O.T., and hence } y(t)=y(s)+V(y(s)) x_{s, t}+\text { H.O.T., } x_{s, t}:=x(t)-x(s) .
$$

- Second order expansion: $y(u)=y(s)+V(y(s)) x_{s, u}+$ H.O.T., implying that

$$
\begin{aligned}
& V(y(u))=V(y(s))+D V(y(s)) V(y(s)) x_{s, u}, y(t)=y(s)+V(y(s)) x_{s, t}+D V(y(s)) V(y(s)) \mathbb{x}_{s, t}+\text { H.O.T. } \\
& \qquad \mathbb{x}_{s, t}^{(i, j)}:=\int_{s}^{t} x_{s, u}^{i} \mathrm{~d} x^{j}(u)=\int_{s<t_{1}<t_{2}<t} \mathrm{~d} x^{i}\left(t_{1}\right) \mathrm{d} x^{j}\left(t_{2}\right), i, j=1, \ldots, d .
\end{aligned}
$$

Controlled differential equation

Let $x:[0, T] \rightarrow \mathbb{R}^{d}$ be a smooth path, $V: \mathbb{R}^{e} \rightarrow \mathbb{R}^{e x d}$ smooth, $y_{0} \in \mathbb{R}^{e}$, and consider

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), \quad t \in[0, T], \quad y(0)=y_{0} .
$$

- y solves an ODE: $\dot{y}(t)=V(y(t)) \dot{x}(t)$, but difficult to generalize to rough paths.
- First order expansion: For $s<u<t, y(u)=y(s)+$ H.O.T., implying that

$$
V(y(u))=V(y(s))+\text { H.O.T., and hence } y(t)=y(s)+V(y(s)) x_{s, t}+\text { H.O.T., } x_{s, t}:=x(t)-x(s) .
$$

- Second order expansion: $y(u)=y(s)+V(y(s)) x_{s, u}+$ H.O.T., implying that

$$
\begin{aligned}
& V(y(u))=V(y(s))+D V(y(s)) V(y(s)) x_{s, u}, y(t)=y(s)+V(y(s)) x_{s, t}+D V(y(s)) V(y(s)) \mathbb{x}_{s, t}+\text { H.O.T. } \\
& \qquad \mathbb{x}_{s, t}^{(i, j)}:=\int_{s}^{t} x_{s, u}^{i} \mathrm{~d} x^{j}(u)=\int_{s<t_{1}<t_{2}<t} \mathrm{~d} x^{i}\left(t_{1}\right) \mathrm{d} x^{j}\left(t_{2}\right), i, j=1, \ldots, d .
\end{aligned}
$$

- Third order expansion: involves iterated integrals of order three...

Path signature

Given a (smooth) path $x:[s, t] \rightarrow \mathbb{R}^{d}$, the associated signature $\mathbb{x}_{s, t}^{<\infty}$ is the collection of all iterated integrals, i.e., $\mathbb{x}_{s, t}^{<\infty}:=\left(\mathbb{x}_{s, t}^{=n}\right)_{n=0}^{\infty}$, where

$$
\mathbb{X}_{s, t}^{=0}:=1, \mathbb{x}_{s, t}^{=n}:=\left(\mathbb{x}_{s, t}^{\left(i_{1}, \ldots, i_{n}\right)}\right)_{\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, d\}^{n}}, \mathbb{x}_{s, t}^{\left(i_{1}, \ldots, i_{n}\right)}:=\int_{s<t_{1}<\cdots<t_{n}<t} \mathrm{~d} x^{i_{1}}\left(t_{1}\right) \cdots \mathrm{d} x^{i_{n}}\left(t_{n}\right) .
$$

Path signature

Given a (smooth) path $x:[s, t] \rightarrow \mathbb{R}^{d}$, the associated signature $\mathbb{x}_{s, t}^{<\infty}$ is the collection of all iterated integrals, i.e., $\mathbb{x}_{s, t}^{<\infty}:=\left(\mathbb{x}_{s, t}^{=n}\right)_{n=0}^{\infty}$, where

$$
\mathbb{x}_{s, t}^{=0}:=1, \mathbb{x}_{s, t}^{=n}:=\left(\mathbb{x}_{s, t}^{\left(i_{1}, \ldots, i_{n}\right)}\right)_{\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, d\}^{n}}, \mathbb{x}_{s, t}^{\left(i_{1}, \ldots, i_{n}\right)}:=\int_{s<t_{1}<\cdots<t_{n}<t} \mathrm{~d} x^{i_{1}}\left(t_{1}\right) \cdots \mathrm{d} x^{i_{n}}\left(t_{n}\right) .
$$

The signature is parameterization-invariant: i.e., for $\gamma:[u, v] \rightarrow[s, t]$ increasing and C^{1}, the change of variables formula - with $r=\gamma(\bar{r})$ - implies that

$$
\int_{u}^{v} f(\gamma(\bar{r})) \mathrm{d} x(\gamma(\bar{r}))=\int_{u}^{v} f(\gamma(\bar{r})) \dot{x}(\gamma(\bar{r})) \dot{\gamma}(\bar{r}) \mathrm{d} \bar{r}=\int_{s}^{t} f(r) \dot{x}(r) \mathrm{d} r=\int_{s}^{t} f(r) \mathrm{d} x(r) .
$$

Hence, denoting $z \circ \gamma=x$, we have $\mathbb{z}_{u, v}^{<\infty}=\mathbb{x}_{s, t}^{<\infty}$.

Theorem (Chen 1958, Hambly and Lyons 2010)

A (smooth) path x is uniquely determined by its initial value and its signature - up to re-parameterization and tree-like excursions.

Theorem (Chen 1958, Hambly and Lyons 2010)

A (smooth) path x is uniquely determined by its initial value and its signature - up to re-parameterization and tree-like excursions.

- The theorem was proved by Chen for C^{1}-paths in 1958 and extended to bounded-variation paths by Hambly and Lyons in 2010.
- Extended to (weakly geometric) rough paths.
- Tree-like paths are essentially paths, which start and end in the same point and "completely re-trace their history". These paths have trivial signatures.

Theorem (Chen 1958, Hambly and Lyons 2010)

A (smooth) path x is uniquely determined by its initial value and its signature - up to re-parameterization and tree-like excursions.

- The theorem was proved by Chen for C^{1}-paths in 1958 and extended to bounded-variation paths by Hambly and Lyons in 2010.
- Extended to (weakly geometric) rough paths.
- Tree-like paths are essentially paths, which start and end in the same point and "completely re-trace their history". These paths have trivial signatures.

Open problem

How can we computationally and efficiently recover the path (with unit speed) from its signature?

Tensor algebra

Given a (finite-dimensional) vector space V, let $V^{\otimes 0}:=\mathbb{R}, V^{\otimes(n+1)}:=V^{\otimes n} \otimes V$, and denote

$$
T(V):=\bigoplus_{n=0}^{\infty} V^{\otimes n}, \quad T((V)):=\prod_{n=0}^{\infty} V^{\otimes n}, \quad T^{N}(V):=\bigoplus_{n=0}^{N} V^{\otimes n}
$$

Both $T(V)$ and $T((V))$ (and, with obvious modifications, the truncated tensor algebra $\left.T^{N}(V)\right)$ are algebras with usual addition and the product

$$
\mathbf{a} \otimes \mathbf{b}:=\left(\sum_{i+j=n} a_{i} \otimes b_{j}\right)_{n=0}^{\infty}, \text { where } \mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}, \mathbf{b}=\left(b_{n}\right)_{n=0}^{\infty}
$$

Recall that $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty} \in T((V))$ is contained in $T(V)$ iff $a_{n}=0 \in V^{\otimes n}$ for all but finitely many n.

- Let e_{1}, \ldots, e_{d} denote a basis of \mathbb{R}^{d}, and $x:[s, t] \rightarrow \mathbb{R}^{d}$ a smooth path with $x(u)=\sum_{i=1}^{d} x^{i}(u) e_{i}=: x^{i}(u) e_{i}$.
- Recall that $\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{n}} \mid\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, d\}^{n}\right\}$ is a basis of $\left(\mathbb{R}^{d}\right)^{\otimes n}$.
- We denote the basis of $\left(\mathbb{R}^{d}\right)^{\otimes 0} \simeq \mathbb{R}$ by $\mathbf{1}$ - which we identify with $(1,0, \ldots) \in T\left(\left(\mathbb{R}^{d}\right)\right)$. Note that $\mathbf{1}$ is the neutral element of the algebra $T\left(\left(\mathbb{R}^{d}\right)\right)$ w.r.t. \otimes.
- Let e_{1}, \ldots, e_{d} denote a basis of \mathbb{R}^{d}, and $x:[s, t] \rightarrow \mathbb{R}^{d}$ a smooth path with $x(u)=\sum_{i=1}^{d} x^{i}(u) e_{i}=: x^{i}(u) e_{i}$.
- Recall that $\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{n}} \mid\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, d\}^{n}\right\}$ is a basis of $\left(\mathbb{R}^{d}\right)^{\otimes n}$.
- We denote the basis of $\left(\mathbb{R}^{d}\right)^{\otimes 0} \simeq \mathbb{R}$ by $\mathbf{1}$ - which we identify with $(1,0, \ldots) \in T\left(\left(\mathbb{R}^{d}\right)\right)$. Note that $\mathbf{1}$ is the neutral element of the algebra $T\left(\left(\mathbb{R}^{d}\right)\right)$ w.r.t. \otimes.

Definition (Path signature)

We define the signature $\mathbb{x}_{s, t}^{<\infty} \in T\left(\left(\mathbb{R}^{d}\right)\right)$ by setting
$\mathbb{x}_{s, t}^{<\infty}:=\mathbf{1}+\sum_{n=1}^{\infty} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, d\}^{n}} \mathbb{X}_{s, t}^{\left(i_{1}, \ldots, i_{n}\right)} e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}=: \mathbf{1}+\sum_{n=1}^{\infty} \int_{s<t_{1}<\cdots<t_{n}<t} \mathrm{~d} x\left(t_{1}\right) \otimes \cdots \otimes \mathrm{d} x\left(t_{n}\right)$,
as well as its truncated version $\mathbb{x}_{s, t}^{\leq N} \in T^{N}\left(\mathbb{R}^{d}\right)$ by truncation at level N.

Theorem (Chen's identity)

Given a (smooth) path $x:[r, t] \rightarrow \mathbb{R}^{d}$, then for any $r<s<t$ we have

$$
\mathbb{x}_{r, t}^{<\infty}=\mathbb{X}_{r, s}^{<\infty} \otimes \mathbb{X}_{S, t}^{<\infty}
$$

Theorem (Chen's identity)

Given a (smooth) path $x:[r, t] \rightarrow \mathbb{R}^{d}$, then for any $r<s<t$ we have

$$
\mathbb{x}_{r, t}^{<\infty}=\mathbb{x}_{r, s}^{<\infty} \otimes \mathbb{X}_{s, t}^{<\infty} .
$$

- Formally, Chen's identity follows easily from the differential equation satisfied by the signature:

$$
\mathrm{d} \mathbb{x}_{s, t}^{<\infty}=\mathbb{X}_{s, t}^{<\infty} \otimes \mathrm{d} x(t), \quad \mathbb{x}_{s, s}^{<\infty}=\mathbf{1} \in T\left(\left(\mathbb{R}^{d}\right)\right) .
$$

- Chen's identity is a consequence of linearity of the integral. Hence, it is a fundamental property valid for all notions of signatures, including for rough paths.

Theorem (Chen's identity)

Given a (smooth) path $x:[r, t] \rightarrow \mathbb{R}^{d}$, then for any $r<s<t$ we have

$$
\mathbb{x}_{r, t}^{<\infty}=\mathbb{x}_{r, s}^{<\infty} \otimes \mathbb{X}_{s, t}^{<\infty} .
$$

- Given two paths $x:[a, b] \rightarrow \mathbb{R}^{d}$ and $y:[c, e] \rightarrow \mathbb{R}^{d}$, define their concatenation product $z:=x \circ y:[a, b+(e-c)] \rightarrow \mathbb{R}^{d}$ by

$$
z(u):= \begin{cases}x(u), & a \leq u \leq b \\ y(u-b+c)-y(c)+x(b), & b<u \leq b+(e-c)\end{cases}
$$

By Chen's identity (and re-parameterization invariance), $\mathbb{Z}_{a, b+(e-c)}^{<\infty}=\mathbb{x}_{a, b}^{<\infty} \otimes \mathbb{y}_{c, e}^{<\infty}$.

- Let \overleftarrow{x} the time-reversal of x, so $z:=x \circ \overleftarrow{x}$ is tree-like, $\mathbb{Z}_{r, t}^{<\infty}=\mathbf{1}$. Hence, $\overleftarrow{z}_{s, t}^{<\infty}=\left(\mathbb{x}_{r, s}^{<\infty}\right)^{-1}$.
- Consider all words w in the letters $\{1, \ldots, d\}$, endowed with the concatenation product.
- Consider all words w in the letters $\{1, \ldots, \mathrm{~d}\}$, endowed with the concatenation product.
- Let \mathcal{W}_{d} denote the linear span of all such words: For words w_{1}, \ldots, w_{k}, a typical element $\ell \in \mathcal{W}_{d}$ is of the form $\ell=\lambda_{1} W_{1}+\cdots+\lambda_{k} W_{\mathrm{k}}, \quad \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$.
- Extending the concatenation product in a distributive way to \mathcal{W}_{d}, we obtain an algebra, including the empty word \varnothing as neutral element w.r.t. multiplication (i.e., concatenation).
- Consider all words w in the letters $\{1, \ldots, d\}$, endowed with the concatenation product.
- Let \mathcal{W}_{d} denote the linear span of all such words: For words w_{1}, \ldots, w_{k}, a typical element $\ell \in \mathcal{W}_{d}$ is of the form $\ell=\lambda_{1} \mathrm{~W}_{1}+\cdots+\lambda_{k} \mathrm{~W}_{\mathrm{k}}, \quad \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$.
- Extending the concatenation product in a distributive way to \mathcal{W}_{d}, we obtain an algebra, including the empty word \varnothing as neutral element w.r.t. multiplication (i.e., concatenation).
- Note that \mathcal{W}_{d} is isomorphic to the algebra $T\left(\mathbb{R}^{d}\right)$, and, hence, (trivially) $T\left(\left(\mathbb{R}^{d}\right)^{*}\right)$.
- Consider all words w in the letters $\{1, \ldots, d\}$, endowed with the concatenation product.
- Let \mathcal{W}_{d} denote the linear span of all such words: For words w_{1}, \ldots, w_{k}, a typical element $\ell \in \mathcal{W}_{d}$ is of the form $\ell=\lambda_{1} \mathrm{~W}_{1}+\cdots+\lambda_{k} \mathrm{~W}_{\mathrm{k}}, \quad \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$.
- Extending the concatenation product in a distributive way to \mathcal{W}_{d}, we obtain an algebra, including the empty word \varnothing as neutral element w.r.t. multiplication (i.e., concatenation).
- Note that \mathcal{W}_{d} is isomorphic to the algebra $T\left(\mathbb{R}^{d}\right)$, and, hence, (trivially) $T\left(\left(\mathbb{R}^{d}\right)^{*}\right)$.

Definition (Duality pairing)

Define a bi-linear map $\langle\cdot, \cdot\rangle: \mathcal{W}_{d} \times T\left(\left(\mathbb{R}^{d}\right)\right) \rightarrow \mathbb{R}$: For a word $\ell=\mathrm{i}_{1} \cdots \mathrm{i}_{\mathrm{k}} \in \mathcal{W}_{d}$, and for

$$
T\left(\left(\mathbb{R}^{d}\right)\right) \ni \mathbf{a}=a^{\varnothing} \mathbf{1}+\sum_{n=1}^{\infty} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, d\}^{n}} a^{\left(i_{1}, \ldots, i_{n}\right)} e_{i_{1}} \otimes \cdots \otimes e_{i_{n}},
$$

set $\left\langle i_{1} \cdots i_{k}, \mathbf{a}\right\rangle:=a^{\left(i_{1}, \ldots, i_{k}\right)}$, and extend bi-linearly to \mathcal{W}_{d} in the first argument.

Definition (Shuffle product)

Define a commutative product $ш$ on \mathcal{W}_{d} as follows: For words w, v and letters i, j define

$$
\text { w Ш } \varnothing:=\varnothing \text { Ш w := w, wi Шvj :=(w Ш vj)i + (wi Ш v)j, }
$$

and extend to \mathcal{W}_{d} by bi-linearity.

Definition (Shuffle product)

Define a commutative product $ш$ on \mathcal{W}_{d} as follows: For words w, v and letters i, j define

$$
\text { w Ш } \varnothing:=\varnothing \text { Ш w := w, wi Шvj :=(w Ш vj)i + (wi Ш v)j, }
$$

and extend to \mathcal{W}_{d} by bi-linearity.
Example: 12 ш $34=1234+1324+1342+3124+3142+3412$.

Definition (Shuffile product)

Define a commutative product $ш$ on \mathcal{W}_{d} as follows: For words w, v and letters i, j define

$$
\text { w Ш } \varnothing:=\varnothing Ш \text { w := w, wi Шvj := (w Ш vj)i + (wi Шv)j, }
$$

and extend to \mathcal{W}_{d} by bi-linearity.
Example: 12 Ш $34=1234+1324+1342+3124+3142+3412$.

Theorem (Shuffle identity)

Given a smooth path $x:[s, t] \rightarrow \mathbb{R}^{d}$ and $\ell_{1}, \ell_{2} \in \mathcal{W}_{d}$, we have

$$
\left\langle\ell_{1}, \mathbb{x}_{s, t}^{<\infty}\right\rangle\left\langle\ell_{2}, \mathbb{x}_{s, t}^{<\infty}\right\rangle=\left\langle\ell_{1} Ш \ell_{2}, \mathbb{x}_{s, t}^{<\infty}\right\rangle
$$

- Follows from the chain rule, hence relies on smoothness of paths.
- Follows from the chain rule, hence relies on smoothness of paths.
- Example: Let $\ell_{1}=\ell_{2}=\mathrm{i}$. Then, by definition, $\mathrm{i} \mathrm{m} \mathrm{i}=2 \mathrm{ii}$. Hence,

$$
\begin{aligned}
& \left\langle\ell_{1} ш \ell_{2}, \mathbb{x}_{s, t}^{<\infty}\right\rangle=2\left\langle\mathrm{ii}, \mathbb{x}_{s, t}^{<\infty}\right\rangle=2 \int_{s}^{t}\left(x^{i}(u)-x^{i}(s)\right) \mathrm{d} x^{i}(u)=2 \int_{s}^{t} \underbrace{x^{i}(u) \dot{x}^{i}(u)}_{\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} u}\left(x^{i}(u)\right)^{2}} \mathrm{~d} u-2 x^{i}(s) x_{s, t}^{i} \\
= & \left(x^{i}(t)\right)^{2}-\left(x^{i}(s)\right)^{2}-2 x^{i}(s) x^{i}(t)+2\left(x^{i}(s)\right)^{2}=\left(x_{s, t}^{i}\right)^{2}=\left\langle i, \mathbb{x}_{s, t}^{<\infty}\right\rangle^{2}=\left\langle\ell_{1}, \mathbb{x}_{s, t}^{<\infty}\right\rangle\left\langle\ell_{2}, \mathbb{x}_{s, t}^{<\infty}\right\rangle .
\end{aligned}
$$

Note the redundancies in the signature!

- Follows from the chain rule, hence relies on smoothness of paths.
- Example: Let $\ell_{1}=\ell_{2}=$ i. Then, by definition, i $\mathrm{i} \mathrm{i}=2 \mathrm{ii}$. Hence,

$$
\begin{aligned}
& \left\langle\ell_{1} ш \ell_{2}, \mathbb{x}_{s, t}^{<\infty}\right\rangle=2\left\langle\mathrm{ii}, \mathbb{x}_{s, t}^{<\infty}\right\rangle=2 \int_{s}^{t}\left(x^{i}(u)-x^{i}(s)\right) \mathrm{d} x^{i}(u)=2 \int_{s}^{t} \underbrace{x^{i}(u) \dot{x}^{i}(u)}_{\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} u}\left(x^{i}(u)\right)^{2}} \mathrm{~d} u-2 x^{i}(s) x_{s, t}^{i} \\
= & \left(x^{i}(t)\right)^{2}-\left(x^{i}(s)\right)^{2}-2 x^{i}(s) x^{i}(t)+2\left(x^{i}(s)\right)^{2}=\left(x_{s, t}^{i}\right)^{2}=\left\langle i, \mathbb{x}_{s, t}^{<\infty}\right\rangle^{2}=\left\langle\ell_{1}, \mathbb{x}_{s, t}^{<\infty}\right\rangle\left\langle\ell_{2}, \mathbb{x}_{s, t}^{<\infty}\right\rangle .
\end{aligned}
$$

Note the redundancies in the signature!

- Given $p \in \mathbb{R}[x]$ (e.g., $p(x)=\lambda_{0}+\lambda_{1} x+\cdots+\lambda_{n} x^{n}$) and $\ell \in \mathcal{W}_{d}$, there is $p^{\amalg}(\ell) \in \mathcal{W}_{d}$, s.t.,

$$
p\left(\left\langle\ell, \mathbb{X}_{s, t}^{<\infty}\right\rangle\right)=\left\langle p^{Ш}(\ell), \mathbb{X}_{s, t}^{<\infty}\right\rangle, \quad p^{Ш}(\ell):=\lambda_{0} \varnothing+\lambda_{1} \ell+\cdots+\lambda_{n} \ell^{Ш n} \in \mathcal{W}_{d}
$$

Polynomials in the signature are linear functionals in the signature.

Recall that signatures are invertible w.r.t. the tensor multiplication. Do they form a group?

Definition (Group-like elements)

$$
G\left(\mathbb{R}^{d}\right):=\left\{\mathbf{a} \in T\left(\left(\mathbb{R}^{d}\right)\right) \mid \forall \ell_{1}, \ell_{2} \in \mathcal{W}_{d}:\left\langle\ell_{1}, \mathbf{a}\right\rangle\left\langle\ell_{2}, \mathbf{a}\right\rangle=\left\langle\ell_{1} ш \ell_{2}, \mathbf{a}\right\rangle\right\}
$$

Recall that signatures are invertible w.r.t. the tensor multiplication. Do they form a group?

Definition (Group-Iike elements)

$$
G\left(\mathbb{R}^{d}\right):=\left\{\mathbf{a} \in T\left(\left(\mathbb{R}^{d}\right)\right) \mid \forall \ell_{1}, \ell_{2} \in \mathcal{W}_{d}:\left\langle\ell_{1}, \mathbf{a}\right\rangle\left\langle\ell_{2}, \mathbf{a}\right\rangle=\left\langle\ell_{1} ш \ell_{2}, \mathbf{a}\right\rangle\right\}
$$

- From the shuffle-identity, for any smooth path $x:[s, t] \rightarrow \mathbb{R}^{d}, \mathbb{x}_{s, t}^{<\infty} \in G\left(\mathbb{R}^{d}\right)$.
- If $\mathbf{a} \in G\left(\mathbb{R}^{d}\right)$, then $\mathbf{a}=\mathbf{1}+\tilde{\mathbf{a}}$ (with $\langle\varnothing, \tilde{\mathbf{a}}\rangle=0$), and $\mathbf{a}^{-1}=\sum_{k=0}^{\infty}(-1)^{k} \tilde{\mathbf{a}}^{\otimes k}$.

Recall that signatures are invertible w.r.t. the tensor multiplication. Do they form a group?

Definition (Group-Iike elements)

$$
G\left(\mathbb{R}^{d}\right):=\left\{\mathbf{a} \in T\left(\left(\mathbb{R}^{d}\right)\right) \mid \forall \ell_{1}, \ell_{2} \in \mathcal{W}_{d}:\left\langle\ell_{1}, \mathbf{a}\right\rangle\left\langle\ell_{2}, \mathbf{a}\right\rangle=\left\langle\ell_{1} ш \ell_{2}, \mathbf{a}\right\rangle\right\}
$$

- From the shuffle-identity, for any smooth path $x:[s, t] \rightarrow \mathbb{R}^{d}, \mathbb{x}_{s, t}^{<\infty} \in G\left(\mathbb{R}^{d}\right)$.
- If $\mathbf{a} \in G\left(\mathbb{R}^{d}\right)$, then $\mathbf{a}=\mathbf{1}+\tilde{\mathbf{a}}$ (with $\langle\varnothing, \tilde{\mathbf{a}}\rangle=0$), and $\mathbf{a}^{-1}=\sum_{k=0}^{\infty}(-1)^{k} \tilde{\mathbf{a}}^{\otimes k}$.
- We can also define a group $G^{N}\left(\mathbb{R}^{d}\right) \subset T^{N}\left(\mathbb{R}^{d}\right)$ by truncation. $G^{N}\left(\mathbb{R}^{d}\right)$ is a Lie group.

Define $\exp : T\left(\left(\mathbb{R}^{d}\right)\right) \rightarrow T\left(\left(\mathbb{R}^{d}\right)\right)$ and $\log :\left\{\mathbf{a} \in T\left(\left(\mathbb{R}^{d}\right)\right) \mid\langle\varnothing, \mathbf{a}\rangle=1\right\} \rightarrow T\left(\left(\mathbb{R}^{d}\right)\right)$ by

$$
\exp (\mathbf{a}):=\mathbf{1}+\sum_{k=1}^{\infty} \frac{1}{k!} \mathbf{a}^{\otimes k}, \quad \log (\mathbf{a}):=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \tilde{\mathbf{a}}^{\otimes k}, \quad \text { with } \mathbf{a}=\mathbf{1}+\tilde{\mathbf{a}} .
$$

Define $\exp : T\left(\left(\mathbb{R}^{d}\right)\right) \rightarrow T\left(\left(\mathbb{R}^{d}\right)\right)$ and $\log :\left\{\mathbf{a} \in T\left(\left(\mathbb{R}^{d}\right)\right) \mid\langle\varnothing, \mathbf{a}\rangle=1\right\} \rightarrow T\left(\left(\mathbb{R}^{d}\right)\right)$ by

$$
\exp (\mathbf{a}):=\mathbf{1}+\sum_{k=1}^{\infty} \frac{1}{k!} \mathbf{a}^{\otimes k}, \quad \log (\mathbf{a}):=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \tilde{\mathbf{a}}^{\otimes k}, \quad \text { with } \mathbf{a}=\mathbf{1}+\tilde{\mathbf{a}} .
$$

Lie algebra

$\mathrm{g}\left(\mathbb{R}^{d}\right):=\log \left(G\left(\mathbb{R}^{d}\right)\right)$ is a Lie algebra under the commutator $[\mathbf{a}, \mathbf{b}]:=\mathbf{a} \otimes \mathbf{b}-\mathbf{b} \otimes \mathbf{a}$. In fact, it is the free Lie algebra generated by e_{1}, \ldots, e_{d}. Similarly, define $g^{N}\left(\mathbb{R}^{d}\right)$.

Define $\exp : T\left(\left(\mathbb{R}^{d}\right)\right) \rightarrow T\left(\left(\mathbb{R}^{d}\right)\right)$ and $\log :\left\{\mathbf{a} \in T\left(\left(\mathbb{R}^{d}\right)\right) \mid\langle\varnothing, \mathbf{a}\rangle=1\right\} \rightarrow T\left(\left(\mathbb{R}^{d}\right)\right)$ by

$$
\exp (\mathbf{a}):=\mathbf{1}+\sum_{k=1}^{\infty} \frac{1}{k!} \tilde{a}^{\otimes k}, \quad \log (\mathbf{a}):=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \tilde{\mathbf{a}}^{\otimes k}, \quad \text { with } \mathbf{a}=\mathbf{1}+\tilde{\mathbf{a}} .
$$

Lie algebra

$\mathfrak{g}\left(\mathbb{R}^{d}\right):=\log \left(G\left(\mathbb{R}^{d}\right)\right)$ is a Lie algebra under the commutator $[\mathbf{a}, \mathbf{b}]:=\mathbf{a} \otimes \mathbf{b}-\mathbf{b} \otimes \mathbf{a}$. In fact, it is the free Lie algebra generated by e_{1}, \ldots, e_{d}. Similarly, define $g^{N}\left(\mathbb{R}^{d}\right)$.

- Note that exp : $\mathfrak{g}\left(\mathbb{R}^{d}\right) \rightarrow G\left(\mathbb{R}^{d}\right)$ and $\log : G\left(\mathbb{R}^{d}\right) \rightarrow \mathfrak{g}\left(\mathbb{R}^{d}\right)$ are both bijective, and the same holds, mutatis mutandis, for the truncated versions $G^{N}\left(\mathbb{R}^{d}\right), \mathrm{g}^{N}\left(\mathbb{R}^{d}\right)$. Hence, $\mathrm{g}^{N}\left(\mathbb{R}^{d}\right)$ is a global chart of the Lie group $G^{N}\left(\mathbb{R}^{d}\right)$.

Define $\exp : T\left(\left(\mathbb{R}^{d}\right)\right) \rightarrow T\left(\left(\mathbb{R}^{d}\right)\right)$ and $\log :\left\{\mathbf{a} \in T\left(\left(\mathbb{R}^{d}\right)\right) \mid\langle\varnothing, \mathbf{a}\rangle=1\right\} \rightarrow T\left(\left(\mathbb{R}^{d}\right)\right)$ by

$$
\exp (\mathbf{a}):=\mathbf{1}+\sum_{k=1}^{\infty} \frac{1}{k!} \mathbf{a}^{\otimes k}, \quad \log (\mathbf{a}):=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \tilde{\mathbf{a}}^{\otimes k}, \quad \text { with } \mathbf{a}=\mathbf{1}+\tilde{\mathbf{a}} .
$$

Lie algebra

$\mathfrak{g}\left(\mathbb{R}^{d}\right):=\log \left(G\left(\mathbb{R}^{d}\right)\right)$ is a Lie algebra under the commutator $[\mathbf{a}, \mathbf{b}]:=\mathbf{a} \otimes \mathbf{b}-\mathbf{b} \otimes \mathbf{a}$. In fact, it is the free Lie algebra generated by e_{1}, \ldots, e_{d}. Similarly, define $g^{N}\left(\mathbb{R}^{d}\right)$.

- Note that exp : $\mathfrak{g}\left(\mathbb{R}^{d}\right) \rightarrow G\left(\mathbb{R}^{d}\right)$ and $\log : G\left(\mathbb{R}^{d}\right) \rightarrow \mathfrak{g}\left(\mathbb{R}^{d}\right)$ are both bijective, and the same holds, mutatis mutandis, for the truncated versions $G^{N}\left(\mathbb{R}^{d}\right), g^{N}\left(\mathbb{R}^{d}\right)$. Hence, $\mathrm{g}^{N}\left(\mathbb{R}^{d}\right)$ is a global chart of the Lie group $G^{N}\left(\mathbb{R}^{d}\right)$.
$-\operatorname{dim} \mathrm{g}^{N}\left(\mathbb{R}^{d}\right)$ grows much slower than $\operatorname{dim} T^{N}\left(\mathbb{R}^{d}\right)$. E.g., for $d=3$ and $N=4$: $\operatorname{dim} T^{N}\left(\mathbb{R}^{d}\right)=120, \operatorname{dim} \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right)=32$. Hence, the Lie algebra removes many redundancies (at the cost of the shuffle identity).

Definition (Log-signature)

Given a smooth path $x:[s, t] \rightarrow \mathbb{R}^{d}$, define the (truncated) log-signature by $\mathbb{1}_{s, t}^{<\infty}:=\log \left(\mathbb{X}_{s, t}^{<\infty}\right) \in \mathfrak{g}\left(\mathbb{R}^{d}\right)$ - and similarly its truncated version $\mathbb{1}_{s, t}^{\leq N} \in \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right)$.

Definition (Log-signature)

Given a smooth path $x:[s, t] \rightarrow \mathbb{R}^{d}$, define the (truncated) log-signature by $\mathbb{1}_{s, t}^{<\infty}:=\log \left(\mathbb{x}_{s, t}^{<\infty}\right) \in \mathfrak{g}\left(\mathbb{R}^{d}\right)$ - and similarly its truncated version $\mathbb{1}_{s, t}^{\leq N} \in \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right)$.

Example: $N=2$

- A basis of $\mathfrak{g}^{2}\left(\mathbb{R}^{d}\right)$ is given by $e_{i}, i=1, \ldots, d$, together with $\left[e_{i}, e_{j}\right], 1 \leq i<j \leq d$.

Definition (Log-signature)

Given a smooth path $x:[s, t] \rightarrow \mathbb{R}^{d}$, define the (truncated) log-signature by $\mathbb{1}_{s, t}^{<\infty}:=\log \left(\mathbb{x}_{s, t}^{<\infty}\right) \in \mathfrak{g}\left(\mathbb{R}^{d}\right)$ - and similarly its truncated version $\mathbb{1}_{s, t}^{\leq N} \in \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right)$.

Example: $N=2$

- A basis of $\mathfrak{g}^{2}\left(\mathbb{R}^{d}\right)$ is given by $e_{i}, i=1, \ldots, d$, together with $\left[e_{i}, e_{j}\right], 1 \leq i<j \leq d$.
- By the definition of log applied to $\mathbb{x}_{s, t}^{\leq 2}=\mathbf{1}+x_{s, t}^{i} e_{i}+\mathbb{x}_{s, t}^{(i, j)} e_{i} \otimes e_{j}$, we get

$$
\log \mathbb{x}_{s, t}^{\leq 2}=\left(\mathbb{x}_{s, t}^{\leq 2}-\mathbf{1}\right)-\frac{1}{2}\left(\mathbb{x}_{s, t}^{\leq 1}-\mathbf{1}\right)^{\otimes 2}=x_{s, t}^{i} e_{i}+\left(\mathbb{x}_{s, t}^{(i, j)}-\frac{1}{2} x_{s, t}^{i} x_{s, t}^{j}\right) e_{i} \otimes e_{j} .
$$

- Note that $\mathbb{x}_{s, t}^{(i, j)}+\mathbb{x}_{s, t}^{(j, i)}=\int_{s<t_{1}<t_{2}<t} \mathrm{~d} x^{i}\left(t_{1}\right) \mathrm{d} x^{j}\left(t_{2}\right)+\int_{s<t_{2}<t_{1}<t} \mathrm{~d} x^{i}\left(t_{1}\right) \mathrm{d} x^{j}\left(t_{2}\right)=$ $\int_{s}^{t} \int_{s}^{t} \mathrm{~d} x^{i}\left(t_{1}\right) \mathrm{d} x^{j}\left(t_{2}\right)=x_{s, t}^{i} x_{s, t}^{j}$. Hence, $\mathbb{x}_{s, t}^{(i, i)}-\frac{1}{2}\left(x_{s, t}^{i}\right)^{2}=0, \mathbb{x}_{s, t}^{(i, j)}-\frac{1}{2} x_{s, t}^{i} x_{s, t}^{j}=\frac{1}{2}\left(\mathbb{x}_{s, t}^{(i, j)}-\mathbb{x}_{s, t}^{(j, i)}\right)$.
- In total: $\log \mathbb{x}_{s, t}^{\leq 2}=\sum_{i=1}^{d} x_{s, t}^{i} e_{i}+\sum_{1 \leq i<j \leq d} \frac{1}{2}\left(\mathbb{x}_{s, t}^{(i, j)}-\mathbb{x}_{s, t}^{(j, i)}\right)\left[e_{i}, e_{j}\right]=: \sum_{i=1}^{d} x_{s, t}^{i} e_{i}+\sum_{1 \leq i<j \leq d} a_{s, t}^{(i, j)}$.

Example: Signatures and areas of $x(t)=\left(\alpha \cosh \left(\theta_{1} t\right)-\alpha, \cos \left(\theta_{2} t\right)\right), d=2$

Figure: The path - up to re-parameterization.

Example: Signatures and areas of $x(t)=\left(\alpha \cosh \left(\theta_{1} t\right)-\alpha, \cos \left(\theta_{2} t\right)\right), d=2$

Figure: The shuffle identity $\mathbb{x}_{s, t}^{(1,2)}+\mathbb{x}_{s, t}^{(2,1)}=x_{s, t}^{1} x_{s, t}^{2}$

Example: Signatures and areas of $x(t)=\left(\alpha \cosh \left(\theta_{1} t\right)-\alpha, \cos \left(\theta_{2} t\right)\right), d=2$

Figure: Interpretation of Lévy's area

Example: Signatures and areas of $x(t)=\left(\alpha \cosh \left(\theta_{1} t\right)-\alpha, \cos \left(\theta_{2} t\right)\right), d=2$

Figure: The path and the induced area path $t \mapsto \mathrm{a}_{0, t}$.

Example: Signatures and areas of $x(t)=\left(\alpha \cosh \left(\theta_{1} t\right)-\alpha, \cos \left(\theta_{2} t\right)\right), d=2$

Figure: Construction of the induced area path $t \mapsto \mathrm{a}_{0, t}$.

Example: Signatures and areas of $x(t)=\left(\alpha \cosh \left(\theta_{1} t\right)-\alpha, \cos \left(\theta_{2} t\right)\right), d=2$

Figure: Construction of the induced area path $t \mapsto \mathrm{a}_{0, t}$.

Example: Signatures and areas of $x(t)=\left(\alpha \cosh \left(\theta_{1} t\right)-\alpha, \cos \left(\theta_{2} t\right)\right), d=2$

Figure: Construction of the induced area path $t \mapsto \mathrm{a}_{0, t}$.

Example: Signatures and areas of $x(t)=\left(\alpha \cosh \left(\theta_{1} t\right)-\alpha, \cos \left(\theta_{2} t\right)\right), d=2$

Figure: Construction of the induced area path $t \mapsto \mathrm{a}_{0, t}$.

Example: Signatures and areas of $x(t)=\left(\alpha \cosh \left(\theta_{1} t\right)-\alpha, \cos \left(\theta_{2} t\right)\right), d=2$

Figure: Construction of the induced area path $t \mapsto \mathrm{a}_{0, t}$.

Example: Signatures and areas of $x(t)=\left(\alpha \cosh \left(\theta_{1} t\right)-\alpha, \cos \left(\theta_{2} t\right)\right), d=2$

Figure: Construction of the induced area path $t \mapsto \mathrm{a}_{0, t}$.

Figure: Path of a two-dimensional Brownian motion

Figure: Path and area of a two-dimensional Brownian motion

Figure: Path of W and non-trivial entries of $\mathbb{W}_{0, t}^{\leq 2}$ - note that $\mathbb{W}_{0, t}^{(i, i)}=\frac{1}{2}\left(W_{0, t}^{i}\right)^{2}$.

- Input data: a path or, more realistically, a time series in d dimensions.
- Input data: a path or, more realistically, a time series in d dimensions.
- Feature transformation: extract a finite dimensional projection of the path-signature.
- ML framework: plug the features into a standard ML framework, e.g., random forest or deep neural network.
- Input data: a path or, more realistically, a time series in d dimensions.
- Feature transformation: extract a finite dimensional projection of the path-signature.
- ML framework: plug the features into a standard ML framework, e.g., random forest or deep neural network.

Examples [Terry Lyons and co-authors]

Human action recognotion

Psychiatric diagnosis

Chinese handwriting

- Time-extended path: Recall that the signature $\mathbb{x}_{s, t}^{<\infty}$ is invariant under re-parameterization. If this is not appropriate, extend x to $\bar{x}(u):=(u, x(u)) \in \mathbb{R}^{d+1}$. Its signature $\overline{\mathbb{x}}_{s, t}^{<\infty}$ effectively respects the given parameterization.
- Time-extended path: Recall that the signature $\mathbb{x}_{s, t}^{<\infty}$ is invariant under re-parameterization. If this is not appropriate, extend x to $\bar{x}(u):=(u, x(u)) \in \mathbb{R}^{d+1}$. Its signature $\overline{\mathbb{x}}_{s, t}^{<\infty}$ effectively respects the given parameterization.
- Interpolation in time: Given a time series $\left(x_{1}, x_{2}, \ldots\right)$, choose the appropriate interpolation to construct a path. Popular choices: piece-wise linear or piece-wise axis-parallel.
- Discrete time signature: Alternatively, choose discrete time signatures.
- Time-extended path: Recall that the signature $\mathbb{x}_{s, t}^{<\infty}$ is invariant under re-parameterization. If this is not appropriate, extend x to $\bar{x}(u):=(u, x(u)) \in \mathbb{R}^{d+1}$. Its signature $\overline{\mathbb{x}}_{s, t}^{<\infty}$ effectively respects the given parameterization.
- Interpolation in time: Given a time series $\left(x_{1}, x_{2}, \ldots\right)$, choose the appropriate interpolation to construct a path. Popular choices: piece-wise linear or piece-wise axis-parallel.
- Discrete time signature: Alternatively, choose discrete time signatures.
- Lead-lag-transform: Especially for financial time series, extend a time series $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ to $\left(\left(x_{1}, x_{1}\right),\left(x_{2}, x_{1}\right),\left(x_{3}, x_{2}\right),\left(x_{4}, x_{3}\right), \ldots\right)$. (Related to quadratic variation.)
- Time-extended path: Recall that the signature $x_{s, t}^{<\infty}$ is invariant under re-parameterization. If this is not appropriate, extend x to $\bar{x}(u):=(u, x(u)) \in \mathbb{R}^{d+1}$. Its signature $\overline{\bar{x}}_{s, t}^{<\infty}$ effectively respects the given parameterization.
- Interpolation in time: Given a time series $\left(x_{1}, x_{2}, \ldots\right)$, choose the appropriate interpolation to construct a path. Popular choices: piece-wise linear or piece-wise axis-parallel.
- Discrete time signature: Alternatively, choose discrete time signatures.
- Lead-lag-transform: Especially for financial time series, extend a time series $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ to $\left(\left(x_{1}, x_{1}\right),\left(x_{2}, x_{1}\right),\left(x_{3}, x_{2}\right),\left(x_{4}, x_{3}\right), \ldots\right)$. (Related to quadratic variation.)

Modern trends

- Neural (rough) DEs.

图 K.-T. Chen. Iterated integrals and exponential homomorphisms, Proceedings of the London Mathematical Society 3(1):502-512, 1954.

冨 I. Chevyrev, A. Kormilitzin. A primer on the signature method in machine learning, arXiv:1603.03788, 2016.
(M. Fliess. Fonctionnelles causales non linéaires et indéterminées non commutatives, Bulletin de la société mathématique de France 109:3-40, 1981.
(P.K. Friz, B. Nicolas. Multidimensional stochastic processes as rough paths: theory and applications, Vol. 120. Cambridge University Press, 2010.

Figure: Kuo-Tsai Chen (1923-1987)

1 Path signatures

2 Rough Paths

3 Universality and the signature kernel

4 Signature based representations for optimal stopping

Can we solve $\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t)$ for a non-smooth path $x:[0, T] \rightarrow \mathbb{R}^{d}-$ e.g., α-Hölder?

Can we solve $\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t)$ for a non-smooth path $x:[0, T] \rightarrow \mathbb{R}^{d}-$ e.g., α-Hölder?

- Standard recipe: Let x_{n} be smooth paths such that $\left\|x_{n}-x\right\|_{?} \xrightarrow{n \rightarrow \infty} 0$. Define y as limit of solutions y_{n} to $\mathrm{d} y_{n}(t)=V\left(y_{n}(t)\right) \mathrm{d} x_{n}(t)$.

Can we solve $\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t)$ for a non-smooth path $x:[0, T] \rightarrow \mathbb{R}^{d}-$ e.g., α-Hölder?

- Standard recipe: Let x_{n} be smooth paths such that $\left\|x_{n}-x\right\|_{?} \xrightarrow{n \rightarrow \infty} 0$. Define y as limit of solutions y_{n} to $\mathrm{d} y_{n}(t)=V\left(y_{n}(t)\right) \mathrm{d} x_{n}(t)$.

Example

- Let $x_{n}(t):=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), t \in[0,2 \pi]$, with limit $x(t) \equiv 0$, and the area

$$
z_{n}(t):=\frac{1}{2} \int_{0}^{t} x_{n}^{1}(s) \mathrm{d} x_{n}^{2}(s)-\frac{1}{2} \int_{0}^{t} x_{n}^{2}(s) \mathrm{d} x_{n}^{1}(s)
$$

Can we solve $\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t)$ for a non-smooth path $x:[0, T] \rightarrow \mathbb{R}^{d}-$ e.g., α-Hölder?

- Standard recipe: Let x_{n} be smooth paths such that $\left\|x_{n}-x\right\|_{?} \xrightarrow{n \rightarrow \infty} 0$. Define y as limit of solutions y_{n} to $\mathrm{d} y_{n}(t)=V\left(y_{n}(t)\right) \mathrm{d} x_{n}(t)$.

Example

- Let $x_{n}(t):=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), t \in[0,2 \pi]$, with limit $x(t) \equiv 0$, and the area

$$
\begin{aligned}
z_{n}(t) & :=\frac{1}{2} \int_{0}^{t} x_{n}^{1}(s) \mathrm{d} x_{n}^{2}(s)-\frac{1}{2} \int_{0}^{t} x_{n}^{2}(s) \mathrm{d} x_{n}^{1}(s) \\
& =-\frac{1}{2}\left(\int_{0}^{t} \sin \left(n^{2} s\right)^{2} \mathrm{~d} s+\int_{0}^{t} \cos \left(n^{2} s\right)^{2} \mathrm{~d} s\right)
\end{aligned}
$$

Can we solve $\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t)$ for a non-smooth path $x:[0, T] \rightarrow \mathbb{R}^{d}-$ e.g., α-Hölder?

- Standard recipe: Let x_{n} be smooth paths such that $\left\|x_{n}-x\right\|_{?} \xrightarrow{n \rightarrow \infty} 0$. Define y as limit of solutions y_{n} to $\mathrm{d} y_{n}(t)=V\left(y_{n}(t)\right) \mathrm{d} x_{n}(t)$.

Example

- Let $x_{n}(t):=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), t \in[0,2 \pi]$, with limit $x(t) \equiv 0$, and the area

$$
\begin{aligned}
z_{n}(t) & :=\frac{1}{2} \int_{0}^{t} x_{n}^{1}(s) \mathrm{d} x_{n}^{2}(s)-\frac{1}{2} \int_{0}^{t} x_{n}^{2}(s) \mathrm{d} x_{n}^{1}(s) \\
& =-\frac{1}{2} \int_{0}^{t} 1 \mathrm{~d} s=-\frac{1}{2} t \nrightarrow 0=z(t) \text { as } n \rightarrow \infty
\end{aligned}
$$

Can we solve $\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t)$ for a non-smooth path $x:[0, T] \rightarrow \mathbb{R}^{d}-$ e.g., α-Hölder?

- Standard recipe: Let x_{n} be smooth paths such that $\left\|x_{n}-x\right\|_{?} \xrightarrow{n \rightarrow \infty} 0$. Define y as limit of solutions y_{n} to $\mathrm{d} y_{n}(t)=V\left(y_{n}(t)\right) \mathrm{d} x_{n}(t)$.

Example

- Let $x_{n}(t):=\left(\sin \left(n^{2} t\right) / n, \cos \left(n^{2} t\right) / n\right), t \in[0,2 \pi]$, with limit $x(t) \equiv 0$, and the area

$$
\begin{aligned}
z_{n}(t) & :=\frac{1}{2} \int_{0}^{t} x_{n}^{1}(s) \mathrm{d} x_{n}^{2}(s)-\frac{1}{2} \int_{0}^{t} x_{n}^{2}(s) \mathrm{d} x_{n}^{1}(s) \\
& =-\frac{1}{2} \int_{0}^{t} 1 \mathrm{~d} s=-\frac{1}{2} t \nrightarrow 0=z(t) \text { as } n \rightarrow \infty
\end{aligned}
$$

- Note that $y_{n}(t):=\left(x_{n}^{1}(t), x_{n}^{2}(t), z_{n}(t)\right)$ solves controlled DE with $V(y):=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ \frac{1}{2} y^{2} & -\frac{1}{2} y^{1}\end{array}\right)$.

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), t \in[0, T], y(0)=y_{0}, x:[0, T] \rightarrow \mathbb{R}^{d}, 0=t_{0}<\cdots<t_{n}=T
$$

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), t \in[0, T], y(0)=y_{0}, x:[0, T] \rightarrow \mathbb{R}^{d}, 0=t_{0}<\cdots<t_{n}=T
$$

Case: smooth path x. If x is smooth, we have $\left|x_{t_{i}, t_{i+1}}\right|=O\left(\left|t_{i+1}-t_{i}\right|\right)$. By Taylor,

$$
y\left(t_{i+1}\right)=y\left(t_{i}\right)+V\left(y\left(t_{i}\right)\right) x_{t_{i}, t_{i+1}}+\text { H.O.T. } \cdot i, \quad \mid \text { H.O.T. } \cdot i \mid=O\left(\left|t_{i+1}-t_{i}\right|^{2}\right)=o\left(\left|t_{i+1}-t_{i}\right|\right)
$$

Ignoring error propagation, the Euler scheme converges as $\sum_{i=0}^{n-1} \mid$ H.O.T. ${ }_{.} \mid=o(1), n \rightarrow \infty$.

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), t \in[0, T], y(0)=y_{0}, x:[0, T] \rightarrow \mathbb{R}^{d}, 0=t_{0}<\cdots<t_{n}=T
$$

Case: smooth path x. If x is smooth, we have $\left|x_{t_{i}, t_{i+1}}\right|=O\left(\left|t_{i+1}-t_{i}\right|\right)$. By Taylor,

$$
y\left(t_{i+1}\right)=y\left(t_{i}\right)+V\left(y\left(t_{i}\right)\right) x_{t_{i}, t_{i+1}}+\text { H.O.T. }_{i}, \quad \mid \text { H.O.T. }_{i} \mid=O\left(\left|t_{i+1}-t_{i}\right|^{2}\right)=o\left(\left|t_{i+1}-t_{i}\right|\right)
$$

Ignoring error propagation, the Euler scheme converges as $\sum_{i=0}^{n-1} \mid$ H.O.T. $\mid=o(1), n \rightarrow \infty$.
Case: α-Hölder path $x, \alpha>\frac{1}{2}$. We have $\left|x_{t_{i}, t_{i+1}}\right|=O\left(\left|t_{i+1}-t_{i}\right|^{\alpha}\right)$. By Taylor,

$$
y\left(t_{i+1}\right)=y\left(t_{i}\right)+V\left(y\left(t_{i}\right)\right) x_{t_{i}, t_{i+1}}+\text { H.O.T. }, \quad \mid \text { H.O.T. }{ }_{i} \mid=O\left(\left|t_{i+1}-t_{i}\right|^{2 \alpha}\right)=o\left(\left|t_{i+1}-t_{i}\right|\right) .
$$

Ignoring error propagation, the Euler scheme converges as $\sum_{i=0}^{n-1} \mid$ H.O.T. ${ }_{\cdot} \mid=o(1), n \rightarrow \infty$.

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), t \in[0, T], y(0)=y_{0}, x:[0, T] \rightarrow \mathbb{R}^{d}, 0=t_{0}<\cdots<t_{n}=T
$$

Case: smooth path x. If x is smooth, we have $\left|x_{t_{i}, t_{i+1}}\right|=O\left(\left|t_{i+1}-t_{i}\right|\right)$. By Taylor,

$$
y\left(t_{i+1}\right)=y\left(t_{i}\right)+V\left(y\left(t_{i}\right)\right) x_{t_{i}, t_{i+1}}+\text { H.O.T. }_{i}, \quad \mid \text { H.O.T. }_{i} \mid=O\left(\left|t_{i+1}-t_{i}\right|^{2}\right)=o\left(\left|t_{i+1}-t_{i}\right|\right)
$$

Ignoring error propagation, the Euler scheme converges as $\sum_{i=0}^{n-1} \mid$ H.O.T. $\mid=o(1), n \rightarrow \infty$.
Case: α-Hölder path $x, \alpha>\frac{1}{2}$. We have $\left|x_{t_{i}, t_{i+1}}\right|=O\left(\left|t_{i+1}-t_{i}\right|^{\alpha}\right)$. By Taylor,

$$
y\left(t_{i+1}\right)=y\left(t_{i}\right)+V\left(y\left(t_{i}\right)\right) x_{t_{i}, t_{i+1}}+\text { H.O.T. }, \quad \mid \text { H.O.T. }{ }_{i} \mid=O\left(\left|t_{i+1}-t_{i}\right|^{2 \alpha}\right)=o\left(\left|t_{i+1}-t_{i}\right|\right) .
$$

Ignoring error propagation, the Euler scheme converges as $\sum_{i=0}^{n-1}\left|\mathrm{H} . \mathrm{O} . \mathrm{T}_{\cdot i}\right|=o(1), n \rightarrow \infty$.
Remark: (Young '30s) $\int_{0}^{T} f(s) \mathrm{d} g(s)$ well-defined for $f \alpha$-Hölder, $g \beta$-Hölder iff $\alpha+\beta>1$.

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), t \in[0, T], y(0)=y_{0}, x:[0, T] \rightarrow \mathbb{R}^{d}, 0=t_{0}<\cdots<t_{n}=T
$$

Now consider x to be α-Hölder with $\frac{1}{3}<\alpha \leq \frac{1}{2}$. By the previous calculation, the Euler scheme diverges. Recall the formal second order expansion:

$$
y\left(t_{i+1}\right)+V\left(y\left(t_{i}\right)\right) x_{t_{i}, t_{i+1}}+D V\left(y\left(t_{i}\right)\right) V\left(y\left(t_{i}\right)\right) \mathbb{x}_{t_{i}, t_{i+1}}^{=2}+\text { H.O.T. }{ }_{i} .
$$

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} x(t), t \in[0, T], y(0)=y_{0}, x:[0, T] \rightarrow \mathbb{R}^{d}, 0=t_{0}<\cdots<t_{n}=T
$$

Now consider x to be α-Hölder with $\frac{1}{3}<\alpha \leq \frac{1}{2}$. By the previous calculation, the Euler scheme diverges. Recall the formal second order expansion:

$$
y\left(t_{i+1}\right)+V\left(y\left(t_{i}\right)\right) x_{t_{i}, t_{i+1}}+D V\left(y\left(t_{i}\right)\right) V\left(y\left(t_{i}\right)\right) \mathbb{x}_{t_{i}, t_{i+1}}^{=2}+\text { H.O.T. }{ }_{i} .
$$

Key observation

Assume that we could define $\mathbb{X}_{t_{i}, t_{i+1}}^{=2}=\left(\int_{t_{i}}^{t_{i+1}} x_{t_{i}, s}^{j} \mathrm{~d} x^{k}(s)\right)_{j, k=1, \ldots, d}$. Then we would expect

$$
\left|x_{t_{i}, t_{i+1}}\right|=O\left(\left|t_{i+1}-t_{i}\right|^{\alpha}\right), \quad\left|\overline{\mathbb{x}_{i, i}=t_{i+1}} z^{2}\right|=O\left(\left|t_{i+1}-t_{i}\right|^{2 \alpha}\right), \quad \mid \text { H.O.T. } \cdot i \mid=O\left(\left|t_{i+1}-t_{i}\right|^{3 \alpha}\right)=o\left(\left|t_{i+1}-t_{i}\right|\right) .
$$

Hence, we expect convergence of the extended Euler scheme

$$
\bar{y}_{i+1}=\bar{y}_{i}+V\left(\bar{y}_{i}\right) x_{t_{i}, t_{i+1}}+D V\left(\bar{y}_{i}\right) V\left(\bar{y}_{i}\right) \mathbb{x}_{t_{i}, t_{i+1}}^{=2} .
$$

Definition (α-Hölder rough paths)

Let $\frac{1}{3}<\alpha \leq \frac{1}{2}$. An α-Hölder rough path on \mathbb{R}^{d} is a pair $\mathbf{x}=(x, \mathbb{x}), x:[0, T] \rightarrow \mathbb{R}^{d}$, $\mathbb{x}:[0, T]^{2} \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$, continuous, such that Chen's identity (truncated to $N=2$) holds and

$$
\sup _{s \neq t} \frac{\left|x_{s, t}\right|}{|t-s|^{\alpha}}<\infty, \quad \sup _{s \neq t} \frac{\left|\mathbb{x}_{s, t}\right|}{|t-s|^{2 \alpha}}<\infty .
$$

Definition (α-Hölder rough paths)

Let $\frac{1}{3}<\alpha \leq \frac{1}{2}$. An α-Hölder rough path on \mathbb{R}^{d} is a pair $\mathbf{x}=(x, \mathbb{x}), x:[0, T] \rightarrow \mathbb{R}^{d}$, $\mathbb{x}:[0, T]^{2} \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$, continuous, such that Chen's identity (truncated to $N=2$) holds and

$$
\sup _{s \neq t} \frac{\left|x_{s, t}\right|}{|t-s|^{\alpha}}<\infty, \quad \sup _{s \neq t} \frac{\left|\mathbb{x}_{s, t}\right|}{|t-s|^{2 \alpha}}<\infty
$$

- The definition can be extended to general $\alpha>0$, by providing $\lfloor 1 / \alpha\rfloor$ iterated integrals.

Definition (α-Hölder rough paths)

Let $\frac{1}{3}<\alpha \leq \frac{1}{2}$. An α-Hölder rough path on \mathbb{R}^{d} is a pair $\mathbf{x}=(x, \mathbb{x}), x:[0, T] \rightarrow \mathbb{R}^{d}$, $\mathbb{x}:[0, T]^{2} \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$, continuous, such that Chen's identity (truncated to $N=2$) holds and

$$
\sup _{s \neq t} \frac{\left|x_{s, t}\right|}{|t-s|^{\alpha}}<\infty, \quad \sup _{s \neq t} \frac{\left|\mathbb{x}_{s, t}\right|}{|t-s|^{2 \alpha}}<\infty .
$$

- The definition can be extended to general $\alpha>0$, by providing $\lfloor 1 / \alpha\rfloor$ iterated integrals.
- Every α-Hölder path can be extended to an α-Hölder rough path, but the extension is generally not unique. (N.b.: If x is smooth, there is a canonical choice.)

Definition (α-Hölder rough paths)

Let $\frac{1}{3}<\alpha \leq \frac{1}{2}$. An α-Hölder rough path on \mathbb{R}^{d} is a pair $\mathbf{x}=(x, \mathbb{x}), x:[0, T] \rightarrow \mathbb{R}^{d}$, $\mathbb{x}:[0, T]^{2} \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$, continuous, such that Chen's identity (truncated to $N=2$) holds and

$$
\sup _{s \neq t} \frac{\left|x_{s, t}\right|}{|t-s|^{\alpha}}<\infty, \quad \sup _{s \neq t} \frac{\left|\mathbb{x}_{s, t}\right|}{|t-s|^{2 \alpha}}<\infty .
$$

- The definition can be extended to general $\alpha>0$, by providing $\lfloor 1 / \alpha\rfloor$ iterated integrals.
- Every α-Hölder path can be extended to an α-Hölder rough path, but the extension is generally not unique. (N.b.: If x is smooth, there is a canonical choice.)
- The theory of rough paths was developed by Terry Lyons starting from 1994. Important re-formulations and generalizations were due to Massimiliano Gubinelli (controlled rough paths) and Martin Hairer (regularity structures).

Universal limit theorem

Given an α-Hölder rough path \mathbf{x}, and $V \in C^{\gamma}$ for $\gamma \geq 1 / \alpha$. Then there is a unique solution of the rough differential equation

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} \mathbf{x}(t), \quad y(0)=y_{0} .
$$

The map $\left(y_{0}, V, \mathbf{x}\right) \rightarrow y$ is locally Lipschitz continuous - w.r.t. appropriate topologies.

Universal limit theorem

Given an α-Hölder rough path \mathbf{x}, and $V \in C^{\gamma}$ for $\gamma \geq 1 / \alpha$. Then there is a unique solution of the rough differential equation

$$
\mathrm{d} y(t)=V(y(t)) \mathrm{d} \mathbf{x}(t), \quad y(0)=y_{0} .
$$

The map $\left(y_{0}, V, \mathbf{x}\right) \rightarrow y$ is locally Lipschitz continuous - w.r.t. appropriate topologies.

- As the signature solves the RDE $\mathrm{dx}_{s, t}^{<\infty}=\mathbb{x}_{s, t}^{<\infty} \otimes \mathrm{d} \mathbf{x}(t)$, $\mathrm{x}_{s, s}^{<\infty}=\mathbf{1}$, this implies that every rough path has a uniquely defined signature.
- The solution y depends on the rough path \mathbf{x}, i.e., the choice of extension of x.

Rough path principle

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L^{2} or almost sure sense) as follows

- $\mathbb{W}_{s, t}^{(i, j), \text { Ito }}:=\int_{s}^{t} W_{s, u}^{i} \mathrm{~d} W_{u}^{j}, \quad \mathbb{W}_{s, t}^{=2, \text { Ito }}:=\sum_{1 \leq i, j \leq d} \mathbb{W}_{s, t}^{(i, j), \text { lto }} e_{i} \otimes e_{j}$,
$\checkmark \mathbb{W}_{s, t}^{(i, j), \text { Strat }}:=\int_{s}^{t} W_{s, u}^{i} \circ \mathrm{~d} W_{u}^{j}, \quad \mathbb{W}_{s, t}^{=2, \text { Strat }}:=\sum_{1 \leq i, j \leq d} \mathbb{W}_{s, t}^{(i, j), \text { Strat }} e_{i} \otimes e_{j}$.

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L^{2} or almost sure sense) as follows

- $\mathbb{W}_{s, t}^{(i, j), \text { Ito }}:=\int_{s}^{t} W_{s, u}^{i} \mathrm{~d} W_{u}^{j}, \quad \mathbb{W}_{s, t}^{=2, \text { Ito }}:=\sum_{1 \leq i, j \leq d} \mathbb{W}_{s, t}^{(i, j), \text { lto }} e_{i} \otimes e_{j}$,
- $\mathbb{W}_{s, t}^{(i, j), \text { Strat }}:=\int_{s}^{t} W_{s, u}^{i} \circ \mathrm{~d} W_{u}^{j}, \quad \mathbb{W}_{s, t}^{=2, \text { Strat }}:=\sum_{1 \leq i, j \leq d} \mathbb{W}_{s, t}^{(i, j), \text { Strat }} e_{i} \otimes e_{j}$.
- Both $\mathbf{W}^{\text {lto }}(\omega)$ and $\mathbf{W}^{\text {Strat }}(\omega)$ are a.s. α-Hölder rough paths, for any $\alpha<\frac{1}{2}$.

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L^{2} or almost sure sense) as follows

- $\mathbb{W}_{s, t}^{(i, j) \text {,lo }}:=\int_{s}^{t} W_{s, u}^{i} \mathrm{~d} W_{u}^{j}, \quad \mathbb{W}_{s, t}^{=2, \text { lto }}:=\sum_{1 \leq i, j \leq d} \mathbb{W}_{s, t}^{(i, j) \text {,lo }} e_{i} \otimes e_{j}$,
$\triangleright \mathbb{W}_{s, t}^{(i, j), \text { Strat }}:=\int_{s}^{t} W_{s, u}^{i} \circ \mathrm{~d} W_{u}^{j}, \quad \mathbb{W}_{s, t}^{=2, \text { Strat }}:=\sum_{1 \leq i, j \leq d} \mathbb{W}_{s, t}^{(i, j), \text { Strat }} e_{i} \otimes e_{j}$.
- Both $\mathbf{W}^{\text {lto }}(\omega)$ and $\mathbf{W}^{\text {Strat }}(\omega)$ are a.s. α-Hölder rough paths, for any $\alpha<\frac{1}{2}$.
- Solutions of RDEs driven by $\mathbf{W}^{\text {Ito }}$ coincide (a.s.) with the corresp. Ito-SDE solutions.
- Solutions of RDEs driven by $\mathbf{W}^{\text {Strat }}$ coincide (a.s.) with the corresp. Stratonovich-SDE solutions.

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L^{2} or almost sure sense) as follows
$\triangleright \mathbb{W}_{s, t}^{(i, j), \text { Ito }}:=\int_{s}^{t} W_{s, u}^{i} \mathrm{~d} W_{u}^{j}, \quad \mathbb{W}_{s, t}^{=2, \text { Ito }}:=\sum_{1 \leq i, j \leq d} \mathbb{W}_{s, t}^{(i, j), \text { lto }} e_{i} \otimes e_{j}$,

- $\mathbb{W}_{s, t}^{(i, j), \text { Strat }}:=\int_{s}^{t} W_{s, u}^{i} \circ \mathrm{~d} W_{u}^{j}, \quad \mathbb{W}_{s, t}^{=2, \text { Strat }}:=\sum_{1 \leq i, j \leq d} \mathbb{W}_{s, t}^{(i, j), \text { Strat }} e_{i} \otimes e_{j}$.
- Both $\mathbf{W}^{\text {lto }}(\omega)$ and $\mathbf{W}^{\text {Strat }}(\omega)$ are a.s. α-Hölder rough paths, for any $\alpha<\frac{1}{2}$.
- Solutions of RDEs driven by $\mathbf{W}^{\text {lto }}$ coincide (a.s.) with the corresp. Ito-SDE solutions.
- Solutions of RDEs driven by $\mathbf{W}^{\text {Strat }}$ coincide (a.s.) with the corresp. Stratonovich-SDE solutions.
- $\omega \mapsto \mathbf{W}^{\text {lto/Strat }}(\omega)$ is discontinuous, the solution map in $\mathbf{W}^{\text {lto/Strat }}(\omega)$ is continuous.

Given a d-dimensional Brownian motion W. We can construct iterated integrals (in an L^{2} or almost sure sense) as follows
$\triangleright \mathbb{W}_{s, t}^{(i, j), \text { Ito }}:=\int_{s}^{t} W_{s, u}^{i} \mathrm{~d} W_{u}^{j}, \quad \mathbb{W}_{s, t}^{=2, \text { Ito }}:=\sum_{1 \leq i, j \leq d} \mathbb{W}_{s, t}^{(i, j), \text { lto }} e_{i} \otimes e_{j}$,

- $\mathbb{W}_{s, t}^{(i, j), \text { Strat }}:=\int_{s}^{t} W_{s, u}^{i} \circ \mathrm{~d} W_{u}^{j}, \quad \mathbb{W}_{s, t}^{=2, \text { Strat }}:=\sum_{1 \leq i, j \leq d} \mathbb{W}_{s, t}^{(i, j), \text { Strat }} e_{i} \otimes e_{j}$.
- Both $\mathbf{W}^{\text {lto }}(\omega)$ and $\mathbf{W}^{\text {Strat }}(\omega)$ are a.s. α-Hölder rough paths, for any $\alpha<\frac{1}{2}$.
- Solutions of RDEs driven by $\mathbf{W}^{\text {lto }}$ coincide (a.s.) with the corresp. Ito-SDE solutions.
- Solutions of RDEs driven by $\mathbf{W}^{\text {Strat }}$ coincide (a.s.) with the corresp. Stratonovich-SDE solutions.
- $\omega \mapsto \mathbf{W}^{\mathrm{Ito} / \text { Strat }}(\omega)$ is discontinuous, the solution map in $\mathbf{W}^{\text {lto/Strat }}(\omega)$ is continuous.
- Note that $\mathbb{W}^{<\infty, S t r a t ~ s a t i s f i e s ~ t h e ~ s h u f f l e ~ i d e n t i t y, ~ b u t ~} \mathbb{W}<\infty$,lto does not.

Let $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ denote the space of α-Hölder rough paths.

Let $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ denote the space of α-Hölder rough paths.

- While $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ is not a linear space, it is a complete metric space with the appropriate Hölder-distance.

Let $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ denote the space of α-Hölder rough paths.

- While $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ is not a linear space, it is a complete metric space with the appropriate Hölder-distance.
Given a smooth path $x:[0, T] \rightarrow \mathbb{R}^{d}$, construct a corresponding α-Hölder rough path \mathbf{x} by

$$
\mathbf{x}=(x, \mathbb{x}), \quad x_{s, t}:=x(t)-x(s), \quad \mathbb{x}_{s, t}^{(i, j)}:=\int_{s}^{t} x^{i}(u) \mathrm{d} x^{j}(u)
$$

Let $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ denote the space of α-Hölder rough paths.

- While $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ is not a linear space, it is a complete metric space with the appropriate Hölder-distance.
Given a smooth path $x:[0, T] \rightarrow \mathbb{R}^{d}$, construct a corresponding α-Hölder rough path \mathbf{x} by

$$
\mathbf{x}=(x, \mathrm{x}), \quad x_{s, t}:=x(t)-x(s), \quad \mathbb{x}_{s, t}^{(i, j)}:=\int_{s}^{t} x^{i}(u) \mathrm{d} x^{j}(u) .
$$

Let $\mathscr{C}_{g}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right) \subset \mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ denote the closure of smooth rough paths in $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right) . \mathbf{x} \in \mathscr{C}_{g}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ is called geometric.

Let $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ denote the space of α-Hölder rough paths.

- While $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ is not a linear space, it is a complete metric space with the appropriate Hölder-distance.
Given a smooth path $x:[0, T] \rightarrow \mathbb{R}^{d}$, construct a corresponding α-Hölder rough path \mathbf{x} by

$$
\mathbf{x}=(x, \mathbb{x}), \quad x_{s, t}:=x(t)-x(s), \quad \mathbb{x}_{s, t}^{(i, j)}:=\int_{s}^{t} x^{i}(u) \mathrm{d} x^{j}(u) .
$$

Let $\mathscr{C}_{g}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right) \subset \mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ denote the closure of smooth rough paths in $\mathscr{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right) . \mathbf{x} \in \mathscr{C}_{g}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ is called geometric.

- The signature $\mathbb{x}_{s, t}^{<\infty}$ of a geometric rough path $\mathbf{x} \in \mathscr{C}_{g}^{\alpha}$ satisfies the shuffle identity. Symbolically,

$$
\forall \mathbf{x} \in \mathscr{C}_{g}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right), \forall 0 \leq s \leq t \leq T: \mathbb{x}_{s, t}^{<\infty} \in G\left(\mathbb{R}^{d}\right)
$$

國 P.K. Friz, M. Hairer. A course on rough paths, Springer International Publishing, 2020.
(-i P.K. Friz, N. Victoir. Multidimensional stochastic processes as rough paths: theory and applications, Vol. 120. Cambridge University Press, 2010.
T. Lyons. Differential equations driven by rough signals, Revista Matemática Iberoamericana 14(2):215-310, 1998.

Figure: Terry Lyons

1 Path signatures

2 Rough Paths

3 Universality and the signature kernel

4 Signature based representations for optimal stopping
W.I.o.g., all paths start at 0 , i.e., $x(0)=0$.

- Let $\Omega_{1}:=\mathscr{C}^{1-\mathrm{var}}([0, T] ; V)$ denote the space of bounded variation functions taking values in a (finite-dimensional) Banach space V with the norm $\|x\|_{1-\mathrm{var}}:=|x(0)|+|x|_{1-\mathrm{var}}$, where

$$
|x|_{1-\mathrm{var}}:=\sup _{N \in \mathbb{N}} \sup _{0 \leq t_{0}<t_{1}<\cdots<t_{N} \leq T} \sum_{i=1}^{N}\left|x\left(t_{i+1}\right)-x\left(t_{i}\right)\right| .
$$

W.I.o.g., all paths start at 0 , i.e., $x(0)=0$.

- Let $\Omega_{1}:=\mathscr{C}^{1-\mathrm{var}}([0, T] ; V)$ denote the space of bounded variation functions taking values in a (finite-dimensional) Banach space V with the norm $\|x\|_{1-\mathrm{var}}:=|x(0)|+|x|_{1-\mathrm{var}}$, where

$$
|x|_{1-\mathrm{var}}:=\sup _{N \in \mathbb{N}} \sup _{0 \leq t_{0}<t_{1}<\cdots<t_{N} \leq T} \sum_{i=1}^{N}\left|x\left(t_{i+1}\right)-x\left(t_{i}\right)\right| .
$$

- Given $x \in \mathscr{C}^{1-\operatorname{var}}\left([0, T] ; \mathbb{R}^{d}\right)$, we obtain $t \mapsto \mathbb{x}_{0, t}^{\leq N} \in C^{1-\operatorname{var}}\left([0, T] ; T^{N}\left(\mathbb{R}^{d}\right)\right)$ and the lift $x \mapsto \mathbb{x}_{0, *}^{\leq N}$ is continuous: $\left\|\mathbb{X}_{0, *}^{\leq N}\right\|_{1-\mathrm{var}} \leq|x|_{1-\mathrm{var}}$ - provided that $V:=G^{N}\left(\mathbb{R}^{d}\right)$ is equipped with the Carnot-Caratheodory metric.
W.I.o.g., all paths start at 0 , i.e., $x(0)=0$.
- Let $\Omega_{1}:=\mathscr{C}^{1-\mathrm{var}}([0, T] ; V)$ denote the space of bounded variation functions taking values in a (finite-dimensional) Banach space V with the norm $\|x\|_{1-\mathrm{var}}:=|x(0)|+|x|_{1-\mathrm{var}}$, where

$$
|x|_{1-\mathrm{var}}:=\sup _{N \in \mathbb{N}} \sup _{0 \leq t_{0}<t_{1}<\cdots<t_{N} \leq T} \sum_{i=1}^{N}\left|x\left(t_{i+1}\right)-x\left(t_{i}\right)\right| .
$$

- Given $x \in \mathscr{C}^{1-\mathrm{var}}\left([0, T] ; \mathbb{R}^{d}\right)$, we obtain $t \mapsto \mathbb{x}_{0, t}^{\leq N} \in C^{1-\mathrm{var}}\left([0, T] ; T^{N}\left(\mathbb{R}^{d}\right)\right)$ and the lift $x \mapsto \mathbb{x}_{0, *}^{\leq N}$ is continuous: $\left\|\mathbb{x}_{0, *}^{\leq N}\right\|_{1-\mathrm{var}} \leq|x|_{1-\mathrm{var}}$ - provided that $V:=G^{N}\left(\mathbb{R}^{d}\right)$ is equipped with the Carnot-Caratheodory metric.
- Given $x \in \mathscr{C}^{1-\mathrm{var}}\left([0, T] ; \mathbb{R}^{d}\right)$, we define $\widehat{x}(t):=(t, x(t)) \in \mathbb{R}^{1+d}$ and denote $\widehat{\Omega}_{1}:=\left\{\widehat{x} \mid x \in \Omega_{1}\right\}$. Note that \widehat{x} is uniquely determined by its signature $\widehat{\mathbb{x}}_{0, T}^{<\infty}$ and $\widehat{x}(0)$!

Universal approximation

Theorem

Let $A:=\left\{f_{\ell} \mid \ell \in \mathcal{W}_{1+d}\right\}$ where for any $\ell \in \mathcal{W}_{1+d}$ we set

$$
f_{\ell}: \widehat{\Omega}_{1} \rightarrow \mathbb{R}, \quad \widehat{x} \mapsto\left\langle\ell, \widetilde{\mathbb{x}_{0, T}^{<\infty}}\right\rangle
$$

Then $A \subset C\left(\widehat{\Omega}_{1} ; \mathbb{R}\right)$ is dense w.r.t. uniform convergence on compacts.

Theorem

Let $A:=\left\{f_{\ell} \mid \ell \in \mathcal{W}_{1+d}\right\}$ where for any $\ell \in \mathcal{W}_{1+d}$ we set

$$
f_{\ell}: \widehat{\Omega}_{1} \rightarrow \mathbb{R}, \quad \widehat{x} \mapsto\left\langle\ell, \widetilde{x_{0, T}^{<\infty}}\right\rangle
$$

Then $A \subset C\left(\widehat{\Omega}_{1} ; \mathbb{R}\right)$ is dense w.r.t. uniform convergence on compacts.
The proof is based on the classical Stone - Weierstrass theorem. We give a sufficient version below:

Theorem (Stone - Weierstrass)

Let X be a compact metric space and consider a subalgebra $A \subset C(X ; \mathbb{R})$ that is point-separating and vanishes nowhere. Then $A \subset C(X ; \mathbb{R})$ is dense w.r.t. uniform convergence.

- We can replace $\widehat{\Omega}_{1}$ by \mathscr{P}_{1}, the set of bounded variation paths modulo re-parameterization and tree-like excursion.
- We can replace $\widehat{\Omega}_{1}$ by \mathscr{P}_{1}, the set of bounded variation paths modulo re-parameterization and tree-like excursion.
- We can immediately generalize the theorem to the rough setting, i.e., by replacing Ω_{1} and $\widehat{\Omega}_{1}$ by their rough analogues for $p>1$:

$$
\Omega_{p}:=\mathscr{C}_{g}^{1 / p}\left([0, T] ; \mathbb{R}^{d}\right), \quad \widehat{\Omega}_{p}:=\left\{\mathbf{x}=(x, \mathbb{x}) \in \mathscr{C}_{g}^{1 / p}\left([0, T] ; \mathbb{R}^{1+d}\right) \mid \forall t \in[0, T]: x^{0}(t)=t\right\} .
$$

- We can replace $\widehat{\Omega}_{1}$ by \mathscr{P}_{1}, the set of bounded variation paths modulo re-parameterization and tree-like excursion.
- We can immediately generalize the theorem to the rough setting, i.e., by replacing Ω_{1} and $\widehat{\Omega}_{1}$ by their rough analogues for $p>1$:

$$
\Omega_{p}:=\mathscr{C}_{g}^{1 / p}\left([0, T] ; \mathbb{R}^{d}\right), \quad \widehat{\Omega}_{p}:=\left\{\mathbf{x}=(x, \mathbb{x}) \in \mathscr{C}_{g}^{1 / p}\left([0, T] ; \mathbb{R}^{1+d}\right) \mid \forall t \in[0, T]: x^{0}(t)=t\right\} .
$$

- Unlike $\mathscr{C}^{1 / p}\left([0, T] ; \mathbb{R}^{d}\right), \mathscr{C}_{g}^{1 / p}\left([0, T] ; \mathbb{R}^{d}\right)$ is separable, hence a Polish space. Any rough process defined as a random variable taking values in Ω_{p} or $\widehat{\Omega}_{p}$, respectively, is tight.

Corollary

Given a rough process $\widehat{\mathbf{X}}$ taking values in $\widehat{\Omega}_{p}, p>1$. Then for any $f \in C\left(\widehat{\Omega}_{p} ; \mathbb{R}\right)$ and $\epsilon>0$ there is $\ell \in \mathcal{W}_{1+d}$ s.t.

$$
P\left(\left|f(\widehat{\mathbf{X}})-\left\langle\ell, \widehat{\mathbb{X}}_{0, T}^{<\infty}\right\rangle\right|>\epsilon\right)<\epsilon
$$

Theorem (Stone - Weierstrass theorem; Giles'71)

Let X be a mpaet metric space and consider a subalgebra $A \subset C_{b}(X ; \mathbb{R})$ that is point-separating and vanishes nowhere. Then $A \subset C_{b}(X ; \mathbb{R})$ is dense w.r.t. the strict topology.

- The strict topology on $C_{b}(X ; \mathbb{R})$ is the topology generated by the seminorms $p_{\psi}(f):=\sup _{x \in X}|f(x) \psi(x)|, f \in C_{b}(X ; \mathbb{R})$, indexed by the functions $\psi: X \rightarrow \mathbb{R}$ vanishing at infinity.

Theorem (Stone - Weierstrass theorem; Giles'71)

Let X be a metric space and consider a subalgebra $A \subset C_{b}(X ; \mathbb{R})$ that is point-separating and vanishes nowhere. Then $A \subset C_{b}(X ; \mathbb{R})$ is dense w.r.t. the strict topology.

- The strict topology on $C_{b}(X ; \mathbb{R})$ is the topology generated by the seminorms $p_{\psi}(f):=\sup _{x \in X}|f(x) \psi(x)|, f \in C_{b}(X ; \mathbb{R})$, indexed by the functions $\psi: X \rightarrow \mathbb{R}$ vanishing at infinity.
- Replace the (unbounded) functions $\widehat{x} \mapsto\left\langle\ell, \widehat{\mathbb{x}}_{0, T}^{<\infty}\right\rangle$ by the bounded functions $\widehat{x} \mapsto\left\langle\ell, \Lambda\left(\widehat{\mathbb{x}}_{0, T}^{<\infty}\right)\right\rangle$ for a tensor normalization $\Lambda: T\left(\left(\mathbb{R}^{d}\right)\right) \rightarrow T\left(\left(\mathbb{R}^{d}\right)\right)$.
- Tensor normalizations are continuous, injective maps Λ s.t. $\Lambda(\mathbf{a})$ is in a bounded ball in $T\left(\left(\mathbb{R}^{d}\right)\right)$ and $\Lambda(\mathbf{a})=\delta_{\lambda(\mathbf{a})}$ a for some $\lambda: T\left(\left(\mathbb{R}^{d}\right)\right) \rightarrow \mathbb{R}$.
- Consider data $x_{i} \in E$ for a (finite-dimensional) space E, with labels $y_{i} \in\{-1,+1\}, i=1, \ldots, M$.
- Classify data points by a separating hyperplane, ie., find $w \in E$ and $b \in \mathbb{R}$
st. for all $i=1, \ldots, M$:

$$
\begin{aligned}
& y_{i}=+1 \Longleftrightarrow\left\langle w, x_{i}\right\rangle_{E}-b>0, \\
& y_{i}=-1 \Longleftrightarrow\left\langle w, x_{i}\right\rangle_{E}-b<0 .
\end{aligned}
$$

- Consider data $x_{i} \in E$ for a (finite-dimensional) space E, with labels $y_{i} \in\{-1,+1\}, i=1, \ldots, M$.
- Classify data points by a separating hyperplane, i.e., find $w \in E$ and $b \in \mathbb{R}$
s.t. for all $i=1, \ldots, M$:

$$
\begin{aligned}
& y_{i}=+1 \Longleftrightarrow\left\langle w, x_{i}\right\rangle_{E}-b>0 \\
& y_{i}=-1 \Longleftrightarrow\left\langle w, x_{i}\right\rangle_{E}-b<0 .
\end{aligned}
$$

- If at all possible, there will be infinitely many solutions. Hence, we try to find the best solution.

Solution

$$
\begin{gathered}
\min _{w \in E, b \in \mathbb{R}} \frac{1}{2}\|w\|_{E}^{2} \text { subject to } \\
\forall i \in\{1, \ldots, M\}: y_{i}\left(\left\langle w, x_{i}\right\rangle_{E}-b\right) \geq 1 .
\end{gathered}
$$

Solution

$$
\begin{gathered}
\min _{w \in E, b \in \mathbb{R}} \frac{1}{2}\|w\|_{E}^{2} \text { subject to } \\
\forall i \in\{1, \ldots, M\}: y_{i}\left(\left\langle w, x_{i}\right\rangle_{E}-b\right) \geq 1 .
\end{gathered}
$$

- What if separation by hyperplanes is not possible, or data lives in a non-linear space \mathcal{X} ?
- Lift data $x_{i} \mapsto \Phi\left(x_{i}\right)$ using a non-linear feature map $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ for some (infinite-dimensional) Hilbert space \mathcal{H}.
- Which Φ ? Evaluation very expensive!?

Definition

A reproducing kernel Hilbert space (RKHS) is a Hilbert space \mathcal{H} of functions $f: \mathcal{X} \rightarrow \mathbb{R}$ s.t. for all $x \in \mathcal{X}$, the evaluation functional $\mathrm{ev}_{x}: \mathcal{H} \rightarrow \mathbb{R}, f \mapsto f(x)$ is continuous.

Definition

A reproducing kernel Hilbert space (RKHS) is a Hilbert space \mathcal{H} of functions $f: \mathcal{X} \rightarrow \mathbb{R}$ s.t. for all $x \in \mathcal{X}$, the evaluation functional $\mathrm{ev}_{x}: \mathcal{H} \rightarrow \mathbb{R}, f \mapsto f(x)$ is continuous.

- By Riesz representation, for every $x \in \mathcal{X}$ we can find $k_{x} \in \mathcal{H}$ such that

$$
\forall f \in \mathcal{H}: \operatorname{ev}_{x}(f)=\left\langle k_{x}, f\right\rangle_{\mathcal{H}} .
$$

- Define $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, k(x, y):=\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}}$ called the kernel.

Definition

A reproducing kernel Hilbert space (RKHS) is a Hilbert space \mathcal{H} of functions $f: \mathcal{X} \rightarrow \mathbb{R}$ s.t. for all $x \in \mathcal{X}$, the evaluation functional $\mathrm{ev}_{x}: \mathcal{H} \rightarrow \mathbb{R}, f \mapsto f(x)$ is continuous.

- By Riesz representation, for every $x \in \mathcal{X}$ we can find $k_{x} \in \mathcal{H}$ such that

$$
\forall f \in \mathcal{H}: \operatorname{ev}_{x}(f)=\left\langle k_{x}, f\right\rangle_{\mathcal{H}} .
$$

- Define $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, k(x, y):=\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}}$ called the kernel.

1. By the analogue properties of $\langle\cdot, \cdot\rangle_{\mathcal{H}}, k$ is symmetric and positive definite, i.e., $\forall x_{1}, \ldots, x_{k} \in \mathcal{X}$, the matrix $\left(k\left(x_{i}, x_{j}\right)\right) \in \mathbb{R}^{k \times k}$ is positive definite.
2. $k_{x}(y)=\mathrm{ev}_{y}\left(k_{x}\right)=\left\langle k_{y}, k_{x}\right\rangle_{\mathcal{H}}=k(x, y)$, i.e., for any $x \in \mathcal{X}, k_{x}=k(x, \cdot)$.

Definition

A reproducing kernel Hilbert space (RKHS) is a Hilbert space \mathcal{H} of functions $f: \mathcal{X} \rightarrow \mathbb{R}$ s.t. for all $x \in \mathcal{X}$, the evaluation functional $\mathrm{ev}_{x}: \mathcal{H} \rightarrow \mathbb{R}, f \mapsto f(x)$ is continuous.

- By Riesz representation, for every $x \in \mathcal{X}$ we can find $k_{x} \in \mathcal{H}$ such that

$$
\forall f \in \mathcal{H}: \operatorname{ev}_{x}(f)=\left\langle k_{x}, f\right\rangle_{\mathcal{H}} .
$$

- Define $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, k(x, y):=\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}}$ called the kernel.

1. By the analogue properties of $\langle\cdot, \cdot\rangle_{\mathcal{H}}, k$ is symmetric and positive definite, i.e., $\forall x_{1}, \ldots, x_{k} \in \mathcal{X}$, the matrix $\left(k\left(x_{i}, x_{j}\right)\right) \in \mathbb{R}^{k \times k}$ is positive definite.
2. $k_{x}(y)=\operatorname{ev}_{y}\left(k_{x}\right)=\left\langle k_{y}, k_{x}\right\rangle_{\mathcal{H}}=k(x, y)$, i.e., for any $x \in \mathcal{X}, k_{x}=k(x, \cdot)$.
3. Conversely, given a symmetric, positive definite kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, we obtain a RKHS as completion of $\widetilde{H}:=\langle\{k(x, \cdot) \mid x \in \mathcal{X}\}\rangle$ with $\langle k(x, \cdot), k(y, \cdot)\rangle_{\widetilde{\mathcal{H}}}:=k(x, y)$.

Kernel trick

Given data $x_{i} \in \mathcal{X}$, choose a RKHS \mathcal{H} on \mathcal{X} and features $\Phi(x):=k(x, \cdot) \in \mathcal{H}$.

Given data $x_{i} \in \mathcal{X}$, choose a RKHS \mathcal{H} on \mathcal{X} and features $\Phi(x):=k(x, \cdot) \in \mathcal{H}$.

$$
\min _{w \in \mathcal{H}, b \in \mathbb{R}} \frac{1}{2}\|w\|_{\mathcal{H}}^{2} \text { subject to } \forall i \in\{1, \ldots, M\}: y_{i}\left(\left\langle w, \Phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}-b\right) \geq 1
$$

- By the representer theorem, $w \in\left\langle\left\{k\left(x_{i}, \cdot\right) \mid i=1, \ldots, M\right\}\right\rangle$, i.e.,

$$
\exists \alpha \in \mathbb{R}^{M}: w=\sum_{i=1}^{M} \alpha_{i} k\left(x_{i}, \cdot\right), \text { hence }\|w\|_{\mathcal{H}}^{2}=\sum_{i=1}^{M} \alpha^{\top} K \alpha, K:=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{M} \in \mathbb{R}^{M \times M} .
$$

- Similarly, $\left\langle w, \Phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}=\sum_{j=1}^{M} \alpha_{j}\left\langle k\left(x_{j}, \cdot\right), k\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}=\left(\alpha^{\top} K\right)_{i}$.

Given data $x_{i} \in \mathcal{X}$, choose a RKHS \mathcal{H} on \mathcal{X} and features $\Phi(x):=k(x, \cdot) \in \mathcal{H}$.

$$
\min _{w \in \mathcal{H}, b \in \mathbb{R}} \frac{1}{2}\|w\|_{\mathcal{H}}^{2} \text { subject to } \forall i \in\{1, \ldots, M\}: y_{i}\left(\left\langle w, \Phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}-b\right) \geq 1
$$

- By the representer theorem, $w \in\left\langle\left\{k\left(x_{i}, \cdot\right) \mid i=1, \ldots, M\right\}\right\rangle$, i.e.,

$$
\exists \alpha \in \mathbb{R}^{M}: w=\sum_{i=1}^{M} \alpha_{i} k\left(x_{i}, \cdot\right) \text {, hence }\|w\|_{\mathcal{H}}^{2}=\sum_{i=1}^{M} \alpha^{\top} K \alpha, K:=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{M} \in \mathbb{R}^{M \times M} .
$$

- Similarly, $\left\langle w, \Phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}=\sum_{j=1}^{M} \alpha_{j}\left\langle k\left(x_{j}, \cdot\right), k\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}=\left(\alpha^{\top} K\right)_{i}$.
- Need evaluations of the kernel k (for the Gram matrix K), but not of Φ - kernel trick.

Let $\mathcal{X}_{1}:=\left\{x \in \mathscr{C}^{1-\operatorname{var}}\left([0, T] ; \mathbb{R}^{d}\right) \mid T>0, x(0)=0\right\}$ - and similarly \widehat{X}_{1}.
Goal: Define an appropriate kernel for paths / time series.

Definition

Given $x, y \in \mathcal{X}_{1}$ defined on $[0, t],[0, s]$, respectively. We define

$$
\mathrm{k}_{\mathrm{sig}}(x, y):=\left\langle\mathbb{x}_{0, t}^{<\infty}, \mathbb{y}_{0, s}^{<\infty}\right\rangle:=\sum_{n=0}^{\infty} \sum_{\alpha \in\{1, \ldots, d\}^{n}} \mathbb{x}_{0, t}^{\alpha} \mathbb{y}_{0, s}^{\alpha}
$$

Let $\mathcal{X}_{1}:=\left\{x \in \mathscr{C}^{1-\operatorname{var}}\left([0, T] ; \mathbb{R}^{d}\right) \mid T>0, x(0)=0\right\}$ - and similarly \widehat{X}_{1}.
Goal: Define an appropriate kernel for paths / time series.

Definition

Given $x, y \in \mathcal{X}_{1}$ defined on $[0, t],[0, s]$, respectively. We define

$$
\mathrm{k}_{\mathrm{sig}}(x, y):=\left\langle\mathrm{x}_{0, t}^{<\infty}, \mathbb{y}_{0, s}^{<\infty}\right\rangle:=\sum_{n=0}^{\infty} \sum_{\alpha \in\{1, \ldots, d\}^{n}} \mathrm{x}_{0, t}^{\alpha} \mathbb{y}_{0, s}^{\alpha}
$$

- It is easy to see that $\left|\mathbb{X}_{[0, t]}=n\right| \leq \frac{\|x\|_{1 \text {-var }}^{n}}{n!}$, therefore the sum is finite.
- The definition can easily be extended to rough paths or time series - e.g., by piecewise-linear interpolation.
- Extension: For a kernel $\kappa: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, first lift $t \mapsto x(t) \rightarrow \kappa_{x}:=t \mapsto \kappa(x(t), \cdot) \in \mathcal{H}$, then compute the signature kernel of the lifted path $\mathrm{k}_{\mathrm{sig}}\left(\kappa_{x}, \kappa_{y}\right)$.

Direct computation is impossible, due to the exponential growth of the signature - recall that $\mathrm{xx}^{=n} \in\left(\mathbb{R}^{d}\right)^{\otimes n}$, i.e., has d^{n} terms. However, a recursive construction exists comparable to the Horner scheme for polynomials. Even more powerful:

Theorem [Salvi et al., '21]

Assume that $x, y \in C^{1}$, and let $K_{x, y}(u, v):=\mathrm{k}_{\text {sig }}\left(\left.x\right|_{[0, u]},\left.y\right|_{[0, v]}\right)$ for $u \in[0, t], v \in[0, s]$. Then $K_{x, y}$ solves the PDE

$$
\frac{\partial^{2}}{\partial u \partial v} K_{x, y}(u, v)=\langle\dot{x}(u), \dot{y}(v)\rangle K_{x, y}(u, v), \quad K_{x, y}(0, \cdot)=K_{x, y}(\cdot, 0)=1
$$

$$
\begin{aligned}
& \operatorname{MMD}_{\text {sig }}(\mu, v):=\left[\int_{X_{1} \times X_{1}} \mathrm{k}_{\text {sig }}\left(x, x^{\prime}\right) \mu(\mathrm{d} x) \mu\left(\mathrm{d} x^{\prime}\right)+\int_{X_{1} \times X_{1}} \mathrm{k}_{\text {sig }}\left(y, y^{\prime}\right) v(\mathrm{~d} y) v\left(\mathrm{~d} y^{\prime}\right)\right. \\
&\left.-2 \int_{\mathcal{X}_{1} \times X_{1}} \mathrm{k}_{\mathrm{sig}}(x, y) \mu(\mathrm{d} x) v(\mathrm{~d} y)\right]^{1 / 2}
\end{aligned}
$$

- Given $\mathcal{K} \subset \widehat{X_{1}}$ compact, then $\mathrm{MMD}_{\text {sig }}$ is characteristic for $\mathcal{P}_{1}(\mathcal{K})$, the probability measures supported on \mathcal{K}, i.e., $\operatorname{MMD}_{\text {sig }}(\mu, v)=0 \Longleftrightarrow \mu=v$.

$$
\begin{aligned}
& \operatorname{MMD}_{\text {sig }}(\mu, v):=\left[\int_{X_{1} \times X_{1}} \mathrm{k}_{\mathrm{sig}}\left(x, x^{\prime}\right) \mu(\mathrm{d} x) \mu\left(\mathrm{d} x^{\prime}\right)+\int_{X_{1} \times X_{1}} \mathrm{k}_{\mathrm{sig}}\left(y, y^{\prime}\right) v(\mathrm{~d} y) v\left(\mathrm{~d} y^{\prime}\right)\right. \\
&\left.-2 \int_{\mathcal{X}_{1} \times X_{1}} \mathrm{k}_{\mathrm{sig}}(x, y) \mu(\mathrm{d} x) v(\mathrm{~d} y)\right]^{1 / 2}
\end{aligned}
$$

- Given $\mathcal{K} \subset \widehat{X}_{1}$ compact, then $\mathrm{MMD}_{\text {sig }}$ is characteristic for $\mathcal{P}_{1}(\mathcal{K})$, the probability measures supported on \mathcal{K}, i.e., $\operatorname{MMD}_{\text {sig }}(\mu, v)=0 \Longleftrightarrow \mu=v$.
- In the compact case, $\mathrm{MMD}_{\text {sig }}$ is a metric for weak convergence.

$$
\begin{aligned}
& \operatorname{MMD}_{\text {sig }}(\mu, v):=\left[\int_{X_{1} \times X_{1}} \mathrm{k}_{\mathrm{sig}}\left(x, x^{\prime}\right) \mu(\mathrm{d} x) \mu\left(\mathrm{d} x^{\prime}\right)+\int_{X_{1} \times X_{1}} \mathrm{k}_{\mathrm{sig}}\left(y, y^{\prime}\right) v(\mathrm{~d} y) v\left(\mathrm{~d} y^{\prime}\right)\right. \\
&\left.-2 \int_{\mathcal{X}_{1} \times X_{1}} \mathrm{k}_{\mathrm{sig}}(x, y) \mu(\mathrm{d} x) v(\mathrm{~d} y)\right]^{1 / 2}
\end{aligned}
$$

- Given $\mathcal{K} \subset \widehat{\mathcal{X}_{1}}$ compact, then $\mathrm{MMD}_{\text {sig }}$ is characteristic for $\mathcal{P}_{1}(\mathcal{K})$, the probability measures supported on \mathcal{K}, i.e., $\mathrm{MMD}_{\text {sig }}(\mu, v)=0 \Longleftrightarrow \mu=v$.
- In the compact case, $\mathrm{MMD}_{\text {sig }}$ is a metric for weak convergence.
- For $\mathcal{P}_{1}\left(\widehat{X_{1}}\right)$ we obtain a metric by switching to normalized signatures, as discussed earlier. However, convergence under $\mathrm{MMD}_{\text {sig }}$ does not imply weak convergence.

回 B．E．Boser，I．M．Guyon，V．N．Vapnik．A training algorithm for optimal margin classifiers，Proceedings of the fifth annual workshop on Computational learning theory， 144－152． 1992.
圊 B．Hambly，T．Lyons．Uniqueness for the signature of a path of bounded variation and the reduced path group， Annals of Mathematics 71（1）：109－167， 2010.
（in Lee，H．Oberhauser．The Signature Kernel，arXiv preprint arXiv：2305．04625， 2023.

Figure：Vladimir Vapnik

围 K．Muandet，K．Fukumizu，B．Sriperumbudur，B．Schölkopf．Kernel mean embedding of distributions：A review and beyond，Foundations and Trends $®$ ® in Machine Learning 10（1－2）：1－141， 2017.

Outline

1 Path signatures

2 Rough Paths

3 Universality and the signature kernel

4 Signature based representations for optimal stopping

Setting

Given a d-dimensional stochastic process $\left(X_{t}\right)_{t \in[0, T]}$ controlled by α. Goal: maximize some reward function.

Markovian case: If X is a Markov process, the optimal control satisfies $\alpha_{t}^{*}=\alpha^{*}\left(t, X_{t}\right)$.
Popular methods include:

- Solving the (deterministic) Hamilton-Jacobi-Belman PDE for the value function.
- Approximate α^{*} in some parametric class of functions on \mathbb{R}^{d} and optimize the reward.
- Least squares Monte Carlo, involving computations of conditional expectations $E\left[V_{t+\Delta t} \mid X_{t}\right]$.

Setting

Given a d-dimensional stochastic process $\left(X_{t}\right)_{t \in[0, T]}$ controlled by α. Goal: maximize some reward function.

Markovian case: If X is a Markov process, the optimal control satisfies $\alpha_{t}^{*}=\alpha^{*}\left(t, X_{t}\right)$.
Popular methods include:

- Solving the (deterministic) Hamilton-Jacobi-Belman PDE for the value function.
- Approximate α^{*} in some parametric class of functions on \mathbb{R}^{d} and optimize the reward.
- Least squares Monte Carlo, involving computations of conditional expectations $E\left[V_{t+\Delta t} \mid X_{t}\right]$.

Non-Markovian case: Now we can only expect α_{t}^{*} to be \mathcal{F}_{t}-measurable, i.e., $\alpha_{t}^{*}=\alpha^{*}\left(t,\left(X_{s}\right)_{s \leq t}\right)$. For all methods above, we are left with approximations in spaces of functions of paths.

Following [Kalsi, Lyons, Perez Arribas '20], a general recipe for solving stochastic optimal control problems using path signatures can be described as follows:

1. Assume that controls α_{t} are continuous functions $\phi\left(\left.\widehat{X}\right|_{[0, t]}\right)$ of the path and, hence, of the signature $\theta\left(\widehat{\mathbb{X}}_{0, t}^{<\infty}\right)$ - and similarly for the loss function $L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right)$.

Following [Kalsi, Lyons, Perez Arribas '20], a general recipe for solving stochastic optimal control problems using path signatures can be described as follows:

1. Assume that controls α_{t} are continuous functions $\phi\left(\left.\widehat{X}\right|_{[0, t]}\right)$ of the path and, hence, of the signature $\theta\left(\widehat{\mathbb{X}}_{0, t}^{<\infty}\right)$ - and similarly for the loss function $L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right)$.
2. As continuous functions, $\alpha_{t}=\theta\left(\widehat{\mathbb{X}}_{0, t}^{<\infty}\right) \approx\left\langle\ell_{\theta}, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle, L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right) \approx\left\langle f_{L}\left(\ell_{\theta}\right), \widehat{\mathbb{X}}_{0, T}^{<\infty}\right\rangle$ for some $\ell_{\theta}, f_{L}\left(\ell_{\theta}\right) \in \mathcal{W}_{d}$ - by universality.

Following [Kalsi, Lyons, Perez Arribas '20], a general recipe for solving stochastic optimal control problems using path signatures can be described as follows:

1. Assume that controls α_{t} are continuous functions $\phi\left(\left.\widehat{X}\right|_{[0, t]}\right)$ of the path and, hence, of the signature $\theta\left(\widehat{\mathbb{X}}_{0, t}^{<\infty}\right)$ - and similarly for the loss function $L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right)$.
2. As continuous functions, $\alpha_{t}=\theta\left(\widehat{\mathbb{X}}_{0, t}^{<\infty}\right) \approx\left\langle\ell_{\theta}, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle, L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right) \approx\left\langle f_{L}\left(\ell_{\theta}\right), \widehat{\mathbb{X}}_{0, T}^{<\infty}\right\rangle$ for some $\ell_{\theta}, f_{L}\left(\ell_{\theta}\right) \in \mathcal{W}_{d}$ - by universality.
3. Interchange expectation and truncate the signature at level N :
$E\left[L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right)\right] \approx E\left[\left\langle f_{L}\left(\ell_{\theta}\right), \widehat{\mathbb{X}}_{0, T}^{<\infty}\right\rangle\right]=\left\langle f_{L}\left(\ell_{\theta}\right), \mathbb{E}\left[\widehat{\mathbb{X}}_{0, t}^{<\infty}\right]\right\rangle \approx\left\langle f_{L}\left(\ell_{\theta}\right), \mathbb{E}\left[\widehat{\mathbb{X}}_{0, t}^{\leq N}\right]\right\rangle$.

Following [Kalsi, Lyons, Perez Arribas '20], a general recipe for solving stochastic optimal control problems using path signatures can be described as follows:

1. Assume that controls α_{t} are continuous functions $\phi\left(\left.\widehat{X}\right|_{[0, t]}\right)$ of the path and, hence, of the signature $\theta\left(\widehat{\mathbb{X}}_{0, t}^{<\infty}\right)$ - and similarly for the loss function $L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right)$.
2. As continuous functions, $\alpha_{t}=\theta\left(\widehat{\mathbb{X}}_{0, t}^{<\infty}\right) \approx\left\langle\ell_{\theta}, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle, L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right) \approx\left\langle f_{L}\left(\ell_{\theta}\right), \widehat{\mathbb{X}}_{0, T}^{<\infty}\right\rangle$ for some $\ell_{\theta}, f_{L}\left(\ell_{\theta}\right) \in \mathcal{W}_{d}$ - by universality.
3. Interchange expectation and truncate the signature at level N :
$E\left[L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right)\right] \approx E\left[\left\langle f_{L}\left(\ell_{\theta}\right), \widehat{\mathbb{X}}_{0, T}^{<\infty}\right\rangle\right]=\left\langle f_{L}\left(\ell_{\theta}\right), \mathbb{E}\left[\widehat{\mathbb{X}}_{0, t}^{<\infty}\right]\right\rangle \approx\left\langle f_{L}\left(\ell_{\theta}\right), \mathbb{E}\left[\widehat{\mathbb{X}}_{0, t}^{\leq N}\right]\right\rangle$.
4. Optimize $\ell_{\theta} \mapsto\left\langle f_{L}\left(\ell_{\theta}\right), \mathbb{E}\left[\widehat{\mathbb{X}}_{0, t}^{\leq N}\right]\right\rangle$ - a fully deterministic optimization problem.

Following [Kalsi, Lyons, Perez Arribas '20], a general recipe for solving stochastic optimal control problems using path signatures can be described as follows:

1. Assume that controls α_{t} are continuous functions $\phi\left(\left.\widehat{X}\right|_{[0, t]}\right)$ of the path and, hence, of the signature $\theta\left(\widehat{\mathbb{X}}_{0, t}^{<\infty}\right)$ - and similarly for the loss function $L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right)$.
2. As continuous functions, $\alpha_{t}=\theta\left(\widehat{\mathbb{X}}_{0, t}^{<\infty}\right) \approx\left\langle\ell_{\theta}, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle, L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right) \approx\left\langle f_{L}\left(\ell_{\theta}\right), \widehat{\mathbb{X}}_{0, T}^{<\infty}\right\rangle$ for some $\ell_{\theta}, f_{L}\left(\ell_{\theta}\right) \in \mathcal{W}_{d}$ - by universality.
3. Interchange expectation and truncate the signature at level N :
$E\left[L_{\theta}\left(\widehat{\mathbb{X}}_{0, T}^{<\infty}\right)\right] \approx E\left[\left\langle f_{L}\left(\ell_{\theta}\right), \widehat{\mathbb{X}}_{0, T}^{<\infty}\right\rangle\right]=\left\langle f_{L}\left(\ell_{\theta}\right), \mathbb{E}\left[\widehat{\mathbb{X}}_{0, t}^{<\infty}\right]\right\rangle \approx\left\langle f_{L}\left(\ell_{\theta}\right), \mathbb{E}\left[\widehat{\mathbb{X}}_{0, t}^{\leq N}\right]\right\rangle$.
4. Optimize $\ell_{\theta} \mapsto\left\langle f_{L}\left(\ell_{\theta}\right), \mathbb{E}\left[\widehat{\mathbb{X}}_{0, t}^{\leq N}\right]\right\rangle$ - a fully deterministic optimization problem.

No convergence result known so far, but pathwise density for steps $1+2$ with high probability is proved in [Kalsi, Lyons, Perez Arribas '20]. Problem: discontinuity of (optimal) controls.

Optimal stopping problem

Given a stochastic reward process $\left(Y_{t}\right)_{t \in[0, T]}$ adapted to a filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ generated by a d-dimensional stochastic process $\left(X_{t}\right)_{t \in[0, T]}$. Let \mathcal{S} denote the set of $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-stopping times. Compute $\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau}\right]$.

Optimal stopping problem

Given a stochastic reward process $\left(Y_{t}\right)_{t \in[0, T]}$ adapted to a filtration $\left(\mathcal{F}_{t}\right)_{t[0, T]}$ generated by a d-dimensional stochastic process $\left(X_{t}\right)_{t \in[0, T]}$. Let \mathcal{S} denote the set of $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-stopping times. Compute $\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau}\right]$.

- Optimal stopping times are generally hitting times of sets, hence discontinuous functions on path-space.

Figure: Discontinuity of hitting times

Optimal stopping problem

Given a stochastic reward process $\left(Y_{t}\right)_{t \in[0, T]}$ adapted to a filtration $\left(\mathcal{F}_{t}\right)_{t[0, T]}$ generated by a d-dimensional stochastic process $\left(X_{t}\right)_{t \in[0, T]}$. Let \mathcal{S} denote the set of $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-stopping times. Compute $\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau}\right]$.

- Optimal stopping times are generally hitting times of sets, hence discontinuous functions on path-space.
- Example: X models a stock price - possibly with additional factors such as stochastic volatilities and $Y_{t}=h\left(X_{t}\right)$ for some payoff function h.
- Example: $X=Y=W^{H}$...fractional Brownian motion

Figure: Discontinuity of hitting times
[Becker, Cheredito, Jentzen '19] consider the optimal stopping problem for fractional Brownian motion. In the general setting, their strategy is as follows:

1. Fix a time-grid $0=t_{0}<\cdots<t_{J}=T$ and define a (discrete time) ($J+1$)d-dimensional Markov process $\left(Z_{j}\right)_{j=0}^{J}$ by

$$
\begin{aligned}
& Z_{0}:=\left(X_{t_{0}}, 0, \ldots, 0\right), \\
& Z_{1}:=\left(X_{t_{0}}, X_{t_{1}}, 0, \ldots, 0\right), \\
& Z_{2}:=\left(X_{t_{0}}, X_{t_{1}}, X_{t_{2}}, 0, \ldots, 0\right),
\end{aligned}
$$

[Becker, Cheredito, Jentzen '19] consider the optimal stopping problem for fractional Brownian motion. In the general setting, their strategy is as follows:

1. Fix a time-grid $0=t_{0}<\cdots<t_{J}=T$ and define a (discrete time) $(J+1) d$-dimensional Markov process $\left(Z_{j}\right)_{j=0}^{J}$ by

$$
\begin{aligned}
& Z_{0}:=\left(X_{t_{0}}, 0, \ldots, 0\right), \\
& Z_{1}:=\left(X_{t_{0}}, X_{t_{1}}, 0, \ldots, 0\right), \\
& Z_{2}:=\left(X_{t_{0}}, X_{t_{1}}, X_{t_{2}}, 0, \ldots, 0\right),
\end{aligned}
$$

2. Solve the discrete-time Markovian optimal stopping problem. [Becker, Cheredito, Jentzen '19] use deep neural networks to approximate stopping decisions $f_{j}\left(Z_{j}\right) \approx \mathrm{DNN}_{j}\left(Z_{j} ; \theta\right)$ - "stop at time t_{j} unless stopped earlier".

How can we construct stopping times and adapted processes using rough paths?

Stopped rough paths

Let $\widehat{\Omega}_{t}^{p}:=\left\{\mathbf{x} \in \mathscr{C}_{g}^{1 / p}\left([0, t] ; \mathbb{R}^{1+d}\right) \mid x^{1}(s)=s\right\}$. The space of stopped rough paths is defined as $\Lambda_{T}:=\bigcup_{t \in[0, T]} \widehat{\Omega}_{t}^{p}$.

How can we construct stopping times and adapted processes using rough paths?

Stopped rough paths

Let $\widehat{\Omega}_{t}^{p}:=\left\{\mathbf{x} \in \mathscr{C}_{g}^{1 / p}\left([0, t] ; \mathbb{R}^{1+d}\right) \mid x^{1}(s)=s\right\}$. The space of stopped rough paths is defined as $\Lambda_{T}:=\bigcup_{t \in[0, T]} \widehat{\Omega}_{t}^{p}$.

- Λ_{T} is a Polish space with a Dupire type metric.
- We can now define adapted processes or stopping times as functionals on Λ_{T}.

How can we construct stopping times and adapted processes using rough paths?

Stopped rough paths

Let $\widehat{\Omega}_{t}^{p}:=\left\{\mathbf{x} \in \mathscr{C}_{g}^{1 / p}\left([0, t] ; \mathbb{R}^{1+d}\right) \mid x^{1}(s)=s\right\}$. The space of stopped rough paths is defined as $\Lambda_{T}:=\bigcup_{t \in[0, T]} \widehat{\Omega}_{t}^{p}$.

- Λ_{T} is a Polish space with a Dupire type metric.
- We can now define adapted processes or stopping times as functionals on Λ_{T}.

Rough stochastic processes

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a rough stochastic process is a random variable $\widehat{\mathbf{X}}$ taking values in $\widehat{\Omega}_{T}^{p}$. We further define the natural filtration generated by $\widehat{\mathbf{X}}$, i.e., $\mathcal{F}_{t}:=\sigma\left(\mathbf{X}_{0, s}: 0 \leq s \leq t\right)$.

Given $\ell \in \mathcal{W}_{1+d}$, define a signature stopping rule $\tau_{\ell} \in \mathcal{S}$ as

$$
\tau_{\ell}:=\inf \left\{t \in[0, T] \mid\left\langle\ell, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle \geq 1\right\} .
$$

Note that τ_{ℓ} is the first hitting time of a hyperplane in $T\left(\left(\mathbb{R}^{1+d}\right)\right)$.

Given $\ell \in \mathcal{W}_{1+d}$, define a signature stopping rule $\tau_{\ell} \in \mathcal{S}$ as

$$
\tau_{\ell}:=\inf \left\{t \in[0, T] \mid\left\langle\ell, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle \geq 1\right\}
$$

Note that τ_{ℓ} is the first hitting time of a hyperplane in $T\left(\left(\mathbb{R}^{1+d}\right)\right)$.

Theorem

Given an $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-adapted continuous reward process $\left(Y_{t}\right)_{t \in[0, T]}$ with $\mathbb{E}\|Y\|_{\infty}<\infty$, then

$$
\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]=\sup _{\ell \in \mathcal{W}_{1+d}} \mathbb{E}\left[Y_{\tau_{\ell} \wedge T}\right] .
$$

Given $\ell \in \mathcal{W}_{1+d}$, define a signature stopping rule $\tau_{\ell} \in \mathcal{S}$ as

$$
\tau_{\ell}:=\inf \left\{t \in[0, T] \mid\left\langle\ell, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle \geq 1\right\}
$$

Note that τ_{ℓ} is the first hitting time of a hyperplane in $T\left(\left(\mathbb{R}^{1+d}\right)\right)$.

Theorem

Given an $\left(\mathscr{F}_{t}\right)_{t \in[0, T]}$-adapted continuous reward process $\left(Y_{t}\right)_{t[0, T]}$ with $\mathbb{E}\|Y\|_{\infty}<\infty$, then

$$
\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]=\sup _{\ell \in \mathcal{W}_{1+d}} \mathbb{E}\left[Y_{\tau_{\ell} \wedge T}\right] .
$$

- While optimal stopping times $\tau^{*} \in \mathcal{S}$ typically exist, we do not expect an optimizer $\ell^{*} \in \mathcal{W}_{1+d}$ to exist.

Given $\theta \in C\left(\Lambda_{T}, \mathbb{R}\right)$ define a continuous stopping rule by

$$
\tau_{\theta}:=\inf \left\{t \in[0, T] \mid \int_{0}^{t} \theta\left(\left.\widehat{\mathbf{X}}\right|_{[0, s]}\right)^{2} \mathrm{~d} s \geq 1\right\} .
$$

Lemma

$$
\sup _{\theta \in C\left(\Lambda_{T}, \mathbb{R}\right)} \mathbb{E}\left[Y_{\tau_{\theta} \wedge T}\right]=\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]
$$

Proof of the Lemma is based on approximation of measurable by continuous functions.

- If a continuous stopping rule τ_{θ} was continuous as a function of the signature, we could approximate it by signature stopping rules:

$$
\inf \left\{t \in[0, T] \mid \int_{0}^{t} \theta\left(\left.\widehat{\mathbf{X}}\right|_{[0, s]}\right)^{2} \mathrm{~d} s \geq 1\right\} \approx \inf \left\{t \in[0, T] \mid\left\langle\ell, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle \geq 1\right\}
$$

- Unfortunately, this is just not the case.
- If a continuous stopping rule τ_{θ} was continuous as a function of the signature, we could approximate it by signature stopping rules:

$$
\inf \left\{t \in[0, T] \mid \int_{0}^{t} \theta\left(\left.\widehat{\mathbf{X}}\right|_{[0, s]}\right)^{2} \mathrm{~d} s \geq 1\right\} \approx \inf \left\{t \in[0, T] \mid\left\langle\ell, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle \geq 1\right\}
$$

- Unfortunately, this is just not the case.
- Randomization: Replace the fixed level 1 above by an (independent) random level Z.
- Interpretation: If $Z \sim \operatorname{Exp}(1)$, stop at the first jump time of a pure jump process with intensity $\theta\left(\left.\widehat{\mathbf{X}}\right|_{[0, s]}\right)^{2}$.
- If a continuous stopping rule τ_{θ} was continuous as a function of the signature, we could approximate it by signature stopping rules:

$$
\inf \left\{t \in[0, T] \mid \int_{0}^{t} \theta\left(\left.\widehat{\mathbf{X}}\right|_{[0, s]}\right)^{2} \mathrm{~d} s \geq 1\right\} \approx \inf \left\{t \in[0, T] \mid\left\langle\ell, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle \geq 1\right\}
$$

- Unfortunately, this is just not the case.
- Randomization: Replace the fixed level 1 above by an (independent) random level Z.
- Interpretation: If $Z \sim \operatorname{Exp}(1)$, stop at the first jump time of a pure jump process with intensity $\theta\left(\left.\widehat{\mathbf{X}}\right|_{[0, s]}\right)^{2}$.

Let $Z \geq 0$ be a r.v. independent of $\widehat{\mathbb{X}}$ with (smooth) c.d.f. F_{Z}.

$$
\tau_{\theta}^{r}:=\inf \left\{t \in[0, T] \mid \int_{0}^{t} \theta\left(\left.\widehat{\mathbb{X}}\right|_{[0, s]}\right)^{2} \mathrm{~d} s \geq Z\right\}, \tau_{\ell}^{r}:=\inf \left\{t \in[0, T] \mid \int_{0}^{t}\left\langle\ell, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle^{2} \mathrm{~d} s \geq Z\right\} .
$$

Lemma

$$
\sup _{\theta \in C\left(\Lambda_{T}, \mathbb{R}\right)} \mathbb{E}\left[Y_{\tau_{\theta}^{r} \wedge T}\right]=\sup _{\theta \in C\left(\Lambda_{T}, \mathbb{R}\right)} \mathbb{E}\left[Y_{\tau_{\theta} \wedge T}\right], \sup _{\ell \in \mathcal{W}_{1+d}} \mathbb{E}\left[Y_{\tau_{\ell}^{r} \wedge T}\right]=\sup _{\ell \in \mathcal{W}_{1+d}} \mathbb{E}\left[Y_{\tau_{\ell} \wedge T}\right] .
$$

Proof: Formal proof by dominated convergence. Informally: The buyer of an American option may very well randomize her exercise decision.

Lemma

$$
\sup _{\theta \in C\left(\Lambda_{T}, \mathbb{R}\right)} \mathbb{E}\left[Y_{\tau_{\theta}^{r} \wedge T}\right]=\sup _{\theta \in C\left(\Lambda_{T}, \mathbb{R}\right)} \mathbb{E}\left[Y_{\tau_{\theta} \wedge T}\right], \sup _{\ell \in \mathcal{W}_{1+d}} \mathbb{E}\left[Y_{\tau_{\ell}^{\tau^{r}} \wedge T}\right]=\sup _{\ell \in \mathcal{W}_{1+d}} \mathbb{E}\left[Y_{\tau_{\ell} \wedge T}\right] .
$$

Proof: Formal proof by dominated convergence. Informally: The buyer of an American option may very well randomize her exercise decision.

Lemma (Regularization by randomization)

Let $\widetilde{F}(t):=F_{Z}\left(\int_{0}^{t} \theta(\widehat{\mathbf{X}}[[0, s]) \mathrm{d} s)\right.$, then $\mathbb{E}\left[Y_{\tau_{\theta}^{r} \wedge T} \mid \widehat{\mathbf{X}}\right]=\int_{0}^{T} Y_{t} \mathrm{~d} \widetilde{F}(t)+Y_{T}(1-\widetilde{F}(T))$.

- Note that the R.H.S. is a smooth function of $\widehat{\mathbf{X}}$.

Lemma

For every $\varepsilon>0$ there is a compact set $\mathcal{K} \subset \widehat{\Omega}_{T}^{p}$ s.t. $\mathbb{P}(\mathbf{X} \in \mathcal{K})>1-\varepsilon$ and for every $\theta \in C\left(\Lambda_{T}, \mathbb{R}\right)$ there is a sequence $\ell_{n} \in \mathcal{W}_{1+d}$ s.t.

$$
\sup _{\mathbf{x} \in \mathcal{K} ; t \in[0, T]}\left|\theta\left(\left.\mathbf{x}\right|_{[0, t]}\right)-\left\langle\ell_{n}, \mathbb{x}_{0, t}^{<\infty}\right\rangle\right| \xrightarrow{n \rightarrow \infty} 0
$$

The above Stone-Weierstrass theorem implies that (randomized) continuous stopping rules can be approximated by (randomized) signature stopping rules, given that

$$
\mathbb{E}\left[Y_{\tau}\right] \leq \mathbb{E}\left[\|Y\|_{\infty}\right]<\infty .
$$

Let, for simplicity, $Z \sim \operatorname{Exp}(1)$. Then we end up with

$$
\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]=Y_{0}+\sup _{\ell \in \mathcal{W}_{d+1}} \mathbb{E}\left[\int_{0}^{T} \exp \left(-\int_{0}^{t}\left\langle\ell, \widehat{\mathbb{X}}_{0, s}^{<\infty}\right\rangle^{2} \mathrm{~d} s\right) \mathrm{d} Y_{t}\right]
$$

Let, for simplicity, $Z \sim \operatorname{Exp}(1)$. Then we end up with

$$
\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]=Y_{0}+\sup _{\ell \in \mathcal{W}_{d+1}} \mathbb{E}\left[\int_{0}^{T} \exp \left(-\int_{0}^{t}\left\langle\ell, \widehat{\mathbb{X}}_{0, s}^{<\infty}\right\rangle^{2} \mathrm{~d} s\right) \mathrm{d} Y_{t}\right] .
$$

- Recalling that $\widehat{X}_{s}=\left(s, X_{s}\right)$, we have

$$
\int_{0}^{t}\left\langle\ell, \widehat{\mathbb{X}}_{0, s}^{<\infty}\right\rangle^{2} \mathrm{~d} s=\int_{0}^{t}\left\langle\ell ш \ell, \widehat{\mathbb{X}}_{0, s}^{<\infty}\right\rangle \mathrm{d} s=\left\langle(\ell ш \ell) 1, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle
$$

Let, for simplicity, $Z \sim \operatorname{Exp}(1)$. Then we end up with

$$
\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]=Y_{0}+\sup _{\ell \in \mathcal{W}_{d+1}} \mathbb{E}\left[\int_{0}^{T} \exp \left(-\int_{0}^{t}\left\langle\ell, \widehat{\mathbb{X}}_{0, s}^{<\infty}\right\rangle^{2} \mathrm{~d} s\right) \mathrm{d} Y_{t}\right] .
$$

- Recalling that $\widehat{X}_{s}=\left(s, X_{s}\right)$, we have

$$
\int_{0}^{t}\left\langle\ell, \widehat{\mathbb{X}}_{0, s}^{<\infty}\right\rangle^{2} \mathrm{~d} s=\int_{0}^{t}\left\langle\ell ш \ell, \widehat{\mathbb{X}}_{0, s}^{<\infty}\right\rangle \mathrm{d} s=\left\langle(\ell ш \ell) 1, \widehat{\mathbb{X}}_{0, t}^{<\infty}\right\rangle
$$

- Approximate exp by polynomials, giving the exponential shuffle $\exp ^{\amalg}(\ell):=\sum_{n=0}^{\infty} \frac{1}{n!} \ell^{\amalg n}$.
- Often, Y can also be approximated by a linear functional on $\widehat{\mathbb{X}}^{<\infty}$. Otherwise, consider a RP extending $t \mapsto\left(t, X_{t}, Y_{t}\right)$. E.g., in the case $d=1, Y \equiv X$, we obtain

$$
\mathbb{E}\left[Y_{\tau_{\ell} \wedge T}\right]=\left\langle\exp ^{Ш}(-(\ell ш \ell) 1) 2, \mathbb{E}\left[\widehat{\mathbb{X}}_{0, T}^{<\infty}\right]\right\rangle \approx\left\langle\exp ^{Ш}(-(\ell ш \ell) 1) 2, \mathbb{E}\left[\widehat{\mathbb{X}}_{0, T}^{\leq N}\right]\right\rangle .
$$

Theorem

Let $\mathbb{E}\left[\|Y\|_{\infty}\right]<\infty$. Given $\kappa>0$, define the stopping time $\sigma=\sigma_{\kappa}$ by
$\sigma:=\inf \left\{t \geq 0 \mid\|\widehat{\mathbb{X}}\|_{p-\mathrm{var} ;[0, t]} \geq \kappa\right\} \wedge T$. Then,

$$
\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]=\mathbb{E}\left[Y_{0}\right]+\lim _{\kappa \rightarrow \infty} \lim _{K \rightarrow \infty} \lim _{N \rightarrow \infty} \sup _{|| |+\operatorname{deg}(\ell) \leq K} \mathbb{E}\left[\int_{0}^{\sigma_{\kappa}}\left\langle\exp ^{Ш}(-(\ell ш \ell) 1), \widehat{\mathbb{X}}_{0, t}^{\leq N}\right\rangle \mathrm{d} Y_{t}\right] .
$$

Theorem

Let $\mathbb{E}\left[\|Y\|_{\infty}\right]<\infty$. Given $\kappa>0$, define the stopping time $\sigma=\sigma_{\kappa}$ by $\sigma:=\inf \left\{t \geq 0 \mid\|\widehat{\mathbb{X}}\|_{p-\mathrm{var} ;[0, t]} \geq \kappa\right\} \wedge T$. Then,

$$
\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]=\mathbb{E}\left[Y_{0}\right]+\lim _{\kappa \rightarrow \infty} \lim _{K \rightarrow \infty} \lim _{N \rightarrow \infty} \sup _{|| |+\operatorname{deg}(\ell) \leq K} \mathbb{E}\left[\int_{0}^{\sigma_{\kappa}}\left\langle\exp ^{\amalg}(-(\ell ш \ell) 1), \widehat{\mathbb{X}}_{0, t}^{\leq N}\right\rangle \mathrm{d} Y_{t}\right] .
$$

If Y is a linear functional of $\widehat{\mathbb{X}}^{<\infty}$, this formula can be further simplified. E.g., if $d=1$ and $Y=X$, then

$$
\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]=\mathbb{E}\left[Y_{0}\right]+\lim _{\kappa \rightarrow \infty} \lim _{K \rightarrow \infty} \lim _{N \rightarrow \infty} \sup _{|\epsilon|+\operatorname{deg}(\ell) \leq K}\left\langle\exp ^{Ш}(-(\ell ш \ell) 1) 2, \mathbb{E}\left[\widehat{\mathbb{X}}_{0, \sigma_{K}}^{\leq N}\right]\right\rangle .
$$

1. Optimal stopping of Brownian motion X : By Fawcett's formula,

$$
\mathbb{E}\left[\widehat{\mathbb{X}}_{0, T}^{<\infty}\right]=\exp \left(T\left(e_{1}+\frac{1}{2} e_{2} \otimes e_{2}\right)\right)
$$

We immediately see that $\left\langle\exp ^{Ш}(-(\ell Ш \ell) 1) 2, \mathbb{E}\left[\widehat{\mathbb{X}}_{0, T}^{\leq N}\right]\right\rangle=0$.

1. Optimal stopping of Brownian motion X : By Fawcett's formula,

$$
\mathbb{E}\left[\widehat{\mathbb{X}}_{0, T}^{<\infty}\right]=\exp \left(T\left(e_{1}+\frac{1}{2} e_{2} \otimes e_{2}\right)\right)
$$

We immediately see that $\left\langle\exp ^{Ш}(-(\ell Ш \ell) 1) 2, \mathbb{E}\left[\widehat{\mathbb{X}}_{0, T}^{\leq N}\right]\right\rangle=0$.
2. Obtain approximately optimal strategy, not just approximation to value function. Let $\ell^{*}=\ell_{\kappa, K, N}^{*}$ an optimizer in the theorem. Construct

$$
\tau_{\ell^{*}}^{r}:=\inf \left\{t \in[0, T] \mid\left\langle\left(\ell^{*} ш \ell^{*}\right) 1, \widehat{\mathbb{X}}_{0, t}^{\leq N}\right\rangle \geq Z\right\} .
$$

- $\mathbb{E}\left[Y_{\tau_{\ell^{*}}^{*}}\right] \approx \mathbb{E}\left[Y_{0}\right]+\left\langle\exp ^{Ш}\left(-\left(\ell^{*} \amalg \ell^{*}\right) 1\right) 2, \mathbb{E}\left[\widehat{\mathbb{X}}_{0, \sigma_{\kappa}}^{\leq N}\right]\right\rangle \approx \sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]$
- Obviously, $\mathbb{E}\left[Y_{\tau_{\varepsilon^{*}}}\right] \leq \sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]$.

1. Optimal stopping of Brownian motion X : By Fawcett's formula,

$$
\mathbb{E}\left[\widehat{\mathbb{X}}_{0, T}^{<\infty}\right]=\exp \left(T\left(e_{1}+\frac{1}{2} e_{2} \otimes e_{2}\right)\right)
$$

We immediately see that $\left\langle\exp ^{Ш}(-(\ell Ш \ell) 1) 2, \mathbb{E}\left[\widehat{\mathbb{X}}_{0, T}^{\leq N}\right]\right\rangle=0$.
2. Obtain approximately optimal strategy, not just approximation to value function. Let $\ell^{*}=\ell_{\kappa, K, N}^{*}$ an optimizer in the theorem. Construct

$$
\tau_{\ell^{*}}^{r}:=\inf \left\{t \in[0, T] \mid\left\langle\left(\ell^{*} ш \ell^{*}\right) 1, \widehat{\mathbb{X}}_{0, t}^{\leq N}\right\rangle \geq Z\right\} .
$$

- $\mathbb{E}\left[Y_{\tau_{\ell^{*}}}\right] \approx \mathbb{E}\left[Y_{0}\right]+\left\langle\exp ^{Ш}\left(-\left(\ell^{*} \amalg \ell^{*}\right) 1\right) 2, \mathbb{E}\left[\widehat{\mathbb{X}}_{0, \sigma_{\kappa}}^{\leq N}\right]\right\rangle \approx \sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]$
- Obviously, $\mathbb{E}\left[Y_{\tau_{\ell^{*}}}\right] \leq \sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]$.

3. Dual method based on minimization of martingales.

Recall that $\mathbb{L}_{s, t}^{<\infty}:=\log \mathbb{X}_{s, t}^{<\infty} \in \mathfrak{g}\left(\mathbb{R}^{d}\right)$ and $\mathbb{L}_{s, t}^{\leq N}:=\log \mathbb{X}_{s, t}^{\leq N} \in \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right)$.

Recall that $\mathbb{L}_{s, t}^{<\infty}:=\log \mathbb{X}_{s, t}^{<\infty} \in \mathfrak{g}\left(\mathbb{R}^{d}\right)$ and $\mathbb{L}_{s, t}^{\leq N}:=\log \mathbb{X}_{s, t}^{\leq N} \in \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right)$.

- The log-signature $\mathbb{L}_{s, t}^{\leq N}$ contains the same information as $\mathbb{X}_{s, t}^{\leq N}$, but removes algebraic redundancies.
- No shuffle identity holds for (truncated) log-signatures, but $\operatorname{dim} \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right) \ll \operatorname{dim} T^{N}\left(\mathbb{R}^{d}\right)$. E.g., for $d=3, N=6$: 196 vs 1092.

Recall that $\mathbb{L}_{s, t}^{<\infty}:=\log \mathbb{X}_{s, t}^{<\infty} \in \mathfrak{g}\left(\mathbb{R}^{d}\right)$ and $\mathbb{L}_{s, t}^{\leq N}:=\log \mathbb{X}_{s, t}^{\leq N} \in \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right)$.

- The log-signature $\mathbb{L}_{s, t}^{\leq N}$ contains the same information as $\mathbb{X}_{s, t}^{\leq N}$, but removes algebraic redundancies.
- No shuffle identity holds for (truncated) log-signatures, but $\operatorname{dim} \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right) \ll \operatorname{dim} T^{N}\left(\mathbb{R}^{d}\right)$. E.g., for $d=3, N=6$: 196 vs 1092 .
- Use of the shuffle identity is not free, but often translated into very high degrees of truncation. E.g., suppose that deg $=3$ contains enough information, but a polynomial of degree 3 is to be linearized. Hence, the truncation degree $N=9$ is required. (For $d=3$, this leads to a dimension $\operatorname{dim} T^{9}\left(\mathbb{R}^{3}\right)=29524$ - compare with $\operatorname{dim} T^{3}\left(\mathbb{R}^{3}\right)=39$, $\operatorname{dim} \mathfrak{g}^{3}\left(\mathbb{R}^{3}\right)=14$.)

Signatures are useful as features when their algebraic properties are efficiently used. Otherwise, log-signatures are probably preferable.

A class of fully connected Artificial Neural Networks

Given $K, q, I \in \mathbb{N}$ and an activation function φ (i.e., continuous, non-polynomial), let
$\operatorname{DNN}(K, q, I ; \varphi)$ denote the set of fully connected artificial neural networks with I hidden layers of dimension q, input dimension K and output dimension 1, i.e., for $\vartheta \in \mathrm{DNN}(K, q, I ; \varphi)$ there are affine maps $A_{0}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{q}, A_{1}, \ldots, A_{I-1}: \mathbb{R}^{q} \rightarrow \mathbb{R}^{q}$, $A_{I}: \mathbb{R}^{q} \rightarrow \mathbb{R}$ s.t.,

$$
\vartheta=A_{I} \circ \varphi \circ A_{I-1} \circ \varphi \circ \cdots \circ \varphi \circ A_{0} .
$$

A class of fully connected Artificial Neural Networks

Given $K, q, I \in \mathbb{N}$ and an activation function φ (i.e., continuous, non-polynomial), let
$\operatorname{DNN}(K, q, I ; \varphi)$ denote the set of fully connected artificial neural networks with I hidden layers of dimension q, input dimension K and output dimension 1, i.e., for $\vartheta \in \mathrm{DNN}(K, q, I ; \varphi)$ there are affine maps $A_{0}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{q}, A_{1}, \ldots, A_{I-1}: \mathbb{R}^{q} \rightarrow \mathbb{R}^{q}$, $A_{I}: \mathbb{R}^{q} \rightarrow \mathbb{R}$ s.t.,

$$
\vartheta=A_{I} \circ \varphi \circ A_{I-1} \circ \varphi \circ \cdots \circ \varphi \circ A_{0} .
$$

Deep signature stopping rule

Given $\vartheta \in \operatorname{DNN}(K, q, I ; \varphi)$ with $K=\operatorname{dim} g^{N}\left(\mathbb{R}^{d}\right)$ for some N, we define a deep signature stopping rule by

$$
\left.\tau_{\vartheta}:=\inf \left\{t \in[0, T] \mid \int_{0}^{t} \vartheta(\mathbb{L} \leq N)_{0, s}\right)^{2} \mathrm{~d} s \geq 1\right\}
$$

Universal approximation for deep signature stopping rules
Let $\mathcal{T}_{\text {log }}:=\bigcup_{N, q, I \in \mathbb{N}} \mathrm{DNN}\left(\operatorname{dim} \mathrm{g}^{N}\left(\mathbb{R}^{d}\right), q, I ; \varphi\right)$.

Theorem

If $\mathbb{E}\left[\|Y\|_{\infty}\right]<\infty$, we have

$$
\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]=\sup _{\vartheta \in \mathcal{T} \log } \mathbb{E}\left[Y_{\tau_{\vartheta}^{r} \wedge T}\right]
$$

Universal approximation for deep signature stopping rules
Let $\mathcal{T}_{\log }:=\bigcup_{N, q, I \in \mathbb{N}} \operatorname{DNN}\left(\operatorname{dim} \mathfrak{g}^{N}\left(\mathbb{R}^{d}\right), q, I ; \varphi\right)$.

Theorem

If $\mathbb{E}\left[\|Y\|_{\infty}\right]<\infty$, we have

$$
\sup _{\tau \in \mathcal{S}} \mathbb{E}\left[Y_{\tau \wedge T}\right]=\sup _{\vartheta \in \mathcal{T}_{\log }} \mathbb{E}\left[Y_{\tau_{\vartheta}^{r} \wedge T}\right] .
$$

- Proof: Combination of the classical universal approximations theorem for neural networks and our earlier arguments.

Example: Optimal stopping of fractional Brownian motion $\left(W_{t}^{H}\right)_{t[0,1]}$ - approximate values

Example: Optimal stopping of fractional Brownian motion $\left(W_{t}^{H}\right)_{t \in[0,1]}$ - sample strategy

C. Bayer, P. Hager, S. Riedel, J. Schoenmakers. Optimal stopping with signatures. Annals of Appl. Prob. 33(1):238-273, 2023.
(ris Secker, P. Cheridito, and A. Jentzen. Deep optimal stopping. J. Machine Learning Research, 2019.
围 J. Kalsi, T. Lyons, and I. Perez Arribas. Optimal execution with rough path signatures. SIAM J. Financial Math., 2020.

