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Introduction

Data driven risk inference
Why has modern machine learning...
... already quite successfully entered the world of dynamic stochastic modeling,
mathematical finance and risk assessement?

One answer: it enables realistic data driven (financial) risk inference to
exploit upside risks and reduce downside risks.

What is inference? a conclusion reached on both, evidence and reasoning.

Evidence = Data

Time series data

Derivatives’ price data

Macro economic data

...

Reasoning

Recognition of universal structures
(statistics)

First principles, e.g. no arbitrage

Universal model classes and strategies

Combining machine learning with theory from mathematical finance allows to
conciliate both sides - modeling as close as possible to high dimensional data

while obeying well established principles.
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Introduction

Machine learning ingredients
1 Highly over parameterized and/or randomly initialized universal model

classes serving as regression bases. Examples include
I (random) signature to approximate paths functionals;
I artificial neural networks to approximate functions (also on infinite

spaces);
I kernel methods, etc.
I (physical) reservoirs of dynamical systems;

2 Optimization criterion coming with a
I a loss function taylored to the problem, e.g., a calibration functional to

match financial market data
I certain metrics (e.g. generative adversarial distances).

3 Algorithm used for training, typically
I (stochastic) gradient type algorithms;
I linear regression methods (if the regression basis is linear);
I tools from convex (quadratic) optimization (if the problem allows for

such a formulation).
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Introduction

Focusing on signature

We focus here on signature of some underlying stochastic process, used as
linear regression basis for path functionals allowing to build

1 universal strategies for optimal control problems comprising portfolio
optimization, hedging, optimal execution, optimal stopping, etc.

2 universal model classes of dynamic processes, being able to
approximate classical financial models.

The optimization criteria and loss functions depend on the problem and
include

I maximizing expected utility;
I minimizing a risk measure;
I maximizing over stopping times e.g. for pricing American options;
I minimizing certain distances to time series and option price data
⇒ calibration functionals.

As the regression basis is linear, many problems reduce to linear regression
or convex quadratic optimization problems.
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Introduction

Signature in data science - application areas
The importance of signature methods in machine learning and data science has
steadily increased: they have been employed

as feature maps for classification tasks
related to streamed data (see, e.g.,
I. Chevyrev & A. Kormilitzin (’16))

for Chinese character recognition (see
B. Graham (’13))
for machine learning models for psychiatric diagnosis (Y. Wue et al. (’22))
for time series generation (see, e.g., N. Hao (’23))
for image recognition: 2D signature (see, e.g., I. Horozov (’15), M. Ibrahim
& T. Lyons (’21), D. Lee & H. Oberhauser (’23), J. Diehl (’24) et al.)
in the context of signature SDEs to obtain universal model classes of
dynamic processes, (to approximate classical financial models; see, e.g.,
I. Perez Arribas et al. (’20), C.C., G.Gazzani & S.Svaluto-Ferro (’22))
to obtain universal strategies for optimal control problems (see, e.g., Kalsi et
al.(’19), Bayer et al. (’21))
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Introduction

Themes of this course

Part I Review and overview of the theory of signature
Review of signature in a semimartingale setup
Global universal approximation property of linear functions of
the signature on weighted spaces

Part II Signature methods in Stochastic Portfolio Theory (SPT)
Introduction to SPT
Signature-type portfolios
Optimization tasks and approximation results
Numerical results on simulated and real market data
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Introduction

Themes of this course

Part III An affine and polynomial perspective to signature based models
An overview of affine and polynomial processes by means of
Lévy’s stochastic area formula
Signature Stochastic Differential Equations (SDEs) from an
affine and polynomial perspective

Part IV Signature based asset price models for the joint calibration
problem to SPX and VIX options

Theoretical model ingredients and pricing of VIX and SPX
options
Calibration results on market data

Part V Signature of càdlàg rough paths, functional Itô formula and Taylor
expansions

Marcus signature for càdlàg rough paths
Functional Itô formula and Taylor expansions for
non-anticipative maps of càdlàg rough paths
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expansions

Marcus signature for càdlàg rough paths
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Part I

Review and overview of the theory of
signature

partly based on a course given jointly with Sara Svaluto-Ferro

partly based on joint work with Philipp Schmocker and Josef
Teichmann,
C. Cuchiero, P. Schmocker and J. Teichmann, Global universal
approximation of functional input maps on weighted spaces, 2023,
https://arxiv.org/abs/2306.03303

Christa Cuchiero (Vienna) Signatures in finance March 2024 8 / 43



Semimartingales as rough paths

The most important class of stochastic processes in finance are
semimartingales. We would therefore like to define their signature in line
with the theory of (weakly) geometric rough paths.
Let α ∈ ( 1

2 ,
1
3 ). Then for semimartingales with a.s. α-Hölder continuous

trajectories, this can be realized via the Stratonovich lift which is a.s. a
weakly geometric α-Hölder rough path.
Denote by Cαg ([0,T ],Rd ) the set of weakly geometric α-Hölder rough paths.

Proposition
Let α ∈ ( 1

2 ,
1
3 ) and X be a continuous Rd -valued semimartingale and [X ,X ]c its

(Rd )⊗2-valued continuous quadratic variation. Then,
X(ω) = (X (ω),X(2)(ω)) ∈ Cαg ([0,T ],Rd ) a.s., where, for 0 ≤ s ≤ t ≤ T ,

X(2)
s,t :=

∫ t

s
Xs,r ⊗ dXr + 1

2 [X ,X ]cs,t =
∫ t

s
Xs,r ⊗ ◦dXr

and the first integral is understood in Itô’s sense and the second in Stratonovich
sense. The lift is called Stratonovich lift.

Christa Cuchiero (Vienna) Signatures in finance March 2024 9 / 43



Semimartingales as rough paths

The most important class of stochastic processes in finance are
semimartingales. We would therefore like to define their signature in line
with the theory of (weakly) geometric rough paths.
Let α ∈ ( 1

2 ,
1
3 ). Then for semimartingales with a.s. α-Hölder continuous
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Signature Stratonovich SDE
Proposition
Let X be a continuous Rd -valued semimartingale and X its Stratonovich lift.
Then its unique Lyon’s extension (used to define the signature for weakly
geometric rough paths), denoted by X, coincides a.s. with the following
G((Rd ))-valued Stratonovich SDE

dXs,t = Xs,t ⊗ ◦dXt , Xs,s = (1, 0, 0, . . . ) ∈ G((Rd )).

The explicit solution of this SDE are simply the interated integrals in
Stratonovich sense, collected in the G((Rd )) valued object

Xs,t =1 +
∫ t

s
Xs,r ⊗ ◦dXr ,

which in coordinate form, for a multi-index I = (i1, . . . , in), reads as

X(n)
s,t;I :=

∫ t

s

∫ un

s
· · ·
∫ u2

s
dX i1

u1
◦ · · · ◦ dX in

un
∈ R.
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Signature of continuous Rd -valued semimartingales

Hence the signature of an Rd -valued continuous semimartingale X
can be defined via

Xs,t :=
(

1,
∫ t

s
◦dXs ,

∫ t

s

∫ u2

s
◦dXu1 ⊗ ◦dXu2 , . . . ,

· · ·
∫ t

s

∫ un

s
· · ·
∫ u2

s
◦dXu1 ⊗ · · · ⊗ ◦dXun , . . .

)
.

Visualizer of signature:
https://zhy0.com/signature-visualizer/
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Geometric properties

Consider the signature of order 2, i.e. X(2). Then the Stratonovich product
rule implies Sym(X(2)

s,t ) = 1
2 (Xt − Xs)⊗ (Xt − Xs), whence the symmetric

part of X(2) is fully determined by X(1)
s,t = Xt − Xs .

To get rid of this redundancy one could only consider Anti(X(2)) given by
Anti(X(2)

s,t )i,j = 1
2

(∫ t
s (X i

s,u − X i
s,s)dX j

u −
∫ t

s (X j
s,u − X j

s,s)dX i
u

)
.

This is the area (with orientation taken into account) between the curve
{(X i

u,X j
u) : u ∈ [s, t]} and the chord from (X i

s ,X j
s ) to (X i

t ,X
j
t ).

These properties imply that the correct state space for X2 is G2(Rd ), the
free-step-2-nilpotent Lie group.
We therefore will often view the Stratonovich lift X = X2 = (1,X ,X(2)) as
stochastic process with values in G2(Rd ).
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Linear functions of signature and universal approximation

For a multi-index I = {i1, ..., im} ∈ {1, . . . , d}m we denote by
εI := εi1 ⊗ ...⊗ εim the basis elements of (Rd )⊗m.
We call

L(Xs,t) =
∑

0≤|I|≤n

αI〈εI ,Xs,t〉 for n ∈ N

with αI ∈ R linear functions of the signature.

Key properties to obtain a Universal Approximation Theorem (UAT) for linear
functions of the signature

Point-separation: for (X̂t)t≥0 := (t,Xt)t≥0, its signature X̂s,t determines
X̂[s,t] uniquely.
Algebra: the product of linear functions of the signature is again a linear
function of the signature, precisely 〈εI ,Xs,t〉〈eJ ,Xs,t〉 = 〈εI � εJ ,Xs,t〉.

⇒ Use the Stone-Weierstrass Theorem to approximate continuous (with
respect to the α-Hölder norm) path functionals f (X[0,t]) via L(X̂0,t)
uniformly in time on and compact sets of paths.
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Towards a global UAT on a weighted space
based on joint work with P. Schmocker and J. Teichmann (’23)

For applications approximation on compacts is often unsatisfactory in
particular in stochastic setups.

In Chevyrev & Oberhauser (’22), the strict topology going back to Giles
(’71) is used to go beyond compact sets of paths.

As one needs to work with bounded continuous functions a so-called tensor
normalization has to be introduced to make signature bounded.

This, however, destroys many tracatability properties of signature, e.g. in
view of expected signatures.

⇒ Goal: global approximation result for linear functions of the signature
(without normalization) for functions defined on a weighted space,
corresponding to appropriate generalizations of continuous functions on
paths spaces.

⇒ Tool: weighted Stone-Weierstrass theorem
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Towards a global UAT on a weighted space - setup
based on joint work with P. Schmocker and J. Teichmann (’23)

For α ∈ (1/3, 1/2) we consider the following path space of Hölder
continuous maps

Ĉα
o ([0,T ]; G2(Rd+1))

:=
{
X̂2

[0,T ] ∈ Cα
o ([0,T ]; G2(Rd+1)) : X̂t = (t,Xt), t ∈ [0,T ], X0 = 0

}
.

Here, G2(Rd+1) denotes the free-step-2-nilpotent Lie group where X̂2 takes
values. Moreover, X̂2

[0,T ] denotes a path in Ĉα
o ([0,T ]; G2(Rd+1)) (here, not

necessarily induced by a semimartingale).

We equip the space with an α-Hölder norm adapted to the group structure
(Carnot-Caratheodory norm), denoted by ‖ · ‖CC ,α.

As topology on Ĉα
o ([0,T ]; G2(Rd+1)) we however consider the weaker

Cα′ -topology for 0 ≤ α′ < α or the weak-∗-topology.
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Towards a global UAT on a weighted space - setup
based on joint work with P. Schmocker and J. Teichmann (’23)

We choose a weight function ψ = exp(β‖ · ‖γCC ,α) for β > 0 and γ > 2.
Then for both topologies, (Ĉα

o ([0,T ]; G2(Rd+1)), ψ) becomes a weighted
space, i.e. every pre-image

KR := ψ−1(]0,R]) =
{
X̂2

[0,T ] ∈ Ĉα
o ([0,T ]; G2(Rd+1)) : ψ(X̂2

[0,T ]) ≤ R
}

is compact for all R > 0.

Define functions on this weighted space via

Bψ =
{

f : Ĉα
o ([0,T ]; G2(Rd+1))→ R : supX̂2

[0,T ]∈Ĉαo

|f (X̂2
[0,T ])|

ψ(X̂2
[0,T ])

<∞
}

, i.e.

functions which are controlled by the growth of the weight function ψ. We
work on Bψ defined as the ‖ · ‖Bψ(X)-closure of Cb-functions in Bψ.

We can then apply a weighted version of the Stone-Weierstrass theorem to
obtain a global UAT for linear functions of the signature approximating Bψ−
functions.
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work on Bψ defined as the ‖ · ‖Bψ(X)-closure of Cb-functions in Bψ.

We can then apply a weighted version of the Stone-Weierstrass theorem to
obtain a global UAT for linear functions of the signature approximating Bψ−
functions.
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Weighted Stone-Weierstrass Theorem for Bψ
based on joint work with P. Schmocker and J. Teichmann (’23)

For the weighted version of the Stone-Weierstrass theorem we need additionally
to point separation and the algebra property a growth condition.

Definition
A subalgebra A ⊂ Bψ is called point separating and of moderate growth if there
exists a point separating vector subspace Ã ⊆ A s.t. x 7→ exp (|ã(x)|) ∈ Bψ, for
all ã ∈ Ã.

Theorem (C.C., P. Schmocker & J. Teichmann (’23))

Let A ⊂ Bψ be a subalgebra, that is point separating and of moderate growth
and vanishes nowhere. Then A is dense in Bψ.
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Global UAT for linear functions of the signature on Bψ
based on joint work with P. Schmocker and J. Teichmann (’23)

Recall that ψ = exp(β‖ · ‖γCC ,α) for β > 0 and γ > 2.

Theorem (C.C., P. Schmocker, J. Teichmann (’23))

The linear span of the set
{
X̂2

[0,T ] 7→ 〈εI , X̂0,T 〉 : I ∈ {0, . . . , d}m,m ∈ N
}

is
dense in Bψ, i.e. for every f ∈ Bψ and ε > 0 there exists a linear function L of the
signature (at time T ) such that

sup
X̂2

[0,T ]∈Ĉαo

∣∣∣f (X̂2
[0,T ])− L(X̂0,T )

∣∣∣
ψ(X̂2

[0,T ])
< ε.

In stochastic setups this allows to obtain global approximations in probability
under exponential moment conditions.
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Part II

Signature methods in Stochastic Portfolio
Theory

based on joint work with Janka Möller
C. Cuchiero and J. Möller, Signature methods in stochastic portfolio
theory, 2023, https://arxiv.org/abs/2310.02322
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Introduction to SPT

Overview on Stochastic Portfolio Theory (SPT)

Major goals of Stochastic Portfolio Theory (SPT) are

... to specify only a few normative assumptions on the market (not
necessarily absence of arbitrage);

... to analyze the relative performance of a portfolio with respect to the
market portfolio, corresponding to major indices like S&P500;

... to develop and analyze models which allow for relative arbitrage with
respect to the market portfolio;

... to understand various aspects of relative arbitrages, in particular
properties of portfolios generating them, e.g., so-called functionally
generated portfolios.
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Introduction to SPT

A (very incomplete) literature overview of SPT

The first instance of the ideas of SPT is the article “Stochastic Portfolio
Theory and Stock Market Equilibrium” by Robert Fernholz and Brian Shay.

Robert Fernholz further developed it in several papers and the monograph
“Stochastic Portfolio Theory” (2002).

Since then a lot of research has been conducted in this area, in particular by
Adrian Banner, Daniel Fernholz, Robert Fernholz, Ioannis Karatzas,
Constantinos Kardaras, Martin Larsson, Soumik Pal, Johannes Ruf, etc.,
which is partly summarized in the...

... overview articles and recent book
I Stochastic Portfolio Theory: an Overview (2009) by Robert Fernholz

Ioannis Karatzas;
I Topics in Stochastic Portfolio Theory (2015) by Alexander Vervuurt;
I Portfolio Theory and Arbitrage: A Course in Mathematical Finance

(2021) by Ioannis Karatzas and Constantinos Kardaras.
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Introduction to SPT

Basic definitions of Stochastic Portfolio Theory (SPT)

Consider a finite time-horizon T > 0 and some filtered probability space
(Ω,F , (F)t∈[0,T ],P).

Market capitalizations of d companies given by a vector S = (S1, ...,Sd ) of
d positive continuous semimartingales.

Portfolio: a vector π = (π1, ..., πd ) of predictable processes such that∑d
i=1 π

i
t ≡ 1 for all t ∈ [0,T ] . Each πi

t represents the proportion of current
wealth invested at time t in the i th asset for i ∈ {1, . . . , d}

Market Portfolio: µ = (µ1, ..., µd ) with

µi
t = S i

t
S1

t + ...+ Sd
t
, t ∈ [0,T ].

Denote the simplex of dimension d by

∆d := {(x1, ..., xd ) ∈ Rd |x1 ≥ 0, ..., xn ≥ 0 and
d∑

i=1
x i = 1}.
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Introduction to SPT

Relative wealth process

For a portfolio π the relative wealth process with respect to the
market portfolio is given by

Y π := V π

V µ
, Y π

0 = 1,

where V π (V µ resp.) denotes the wealth process generated by the
portfolio π (µ resp.).

In this multiplicative setting, the dynamics of this relative wealth
process are given by

dY π
t

Y π
t

=
d∑

i=1
πi

t
dµi

t
µi

t
, Y π

0 = 1,

in perfect analogy with the usual wealth process dynamics where we
have µi instead of S i .
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Introduction to SPT

Relative arbitrage and functionally generated portfolios
Definition (Relative arbitrage opportunity)
A portfolio π is said to generate a relative arbitrage opportunity with respect to
the market µ over the time horizon [0,T ] if

P [Y π
T ≥ 1] = 1 and P [Y π

T > 1] > 0.

Under certain conditions on the market, e.g. diversity and ellipticity or sufficient
volatility, so-called functionally generated portfolios have been shown to generate
such relative arbitrage opportunities.

Definition (Functionally Generated Portfolios (Fernholz ’02))
Consider a C 2-function G : U ⊃ ∆d → R+ such that xi Di log G(x) is bounded on
∆d . Then G defines the functionally generated portfolio via

πi
t = µi

t(Di log G(µt) + 1−
d∑

j=1
µj

tDj log G(µt)).

If G is concave, it holds that πi
t ≥ 0 for all i ∈ {1, ..., d} and t ∈ [0,T ].
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Introduction to SPT

Fernholz’s master equation

Proposition (Pathwise version of Fernholz’s master equation)
Let π be a functionally generated by G and (µt)t∈[0,T ] a continuous path
admitting a continuous Sd

+-valued quadratic variation [µ] along a refining
sequence of partitions (in the sense of Föllmer).

Then the relative wealth process (Y π
t )t≥0 satisfies

log(Y π
t ) = log(G(µ(t)))− log(G(µ(0))) + gt , t ∈ [0,T ],

where gt =
∫ t

0 −
1

2G(µ(t))
∑

i ,j DijG(µ(t))d [µi , µj ]t .

Remark: Under certain market conditions it can be shown that after a
sufficiently long time horizon t∗, the term gt∗ dominates
log(G(µ(t)))− log(G(µ(0))) and thus creates relative arbitrage.
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Signature portfolios and optimization tasks

Signature portfolios

Inspired by functionally generated portfolios and control problems in finance
solved via signature methods (e.g. Kalsi et al. (’19) or Bayer et al. (’21)), we
introduce path functional portfolios and signature portfolios.
We denote here and throughout the signature of X by Xt := X0,t .

Definition (Path-functional portfolios)

Consider a continuous semimartingale (Xt)t∈[0,T ] and let X̂t = (t,Xt). We define
two types of path-functional portfolios, denoted by η and θ,

ηi
t = µi

t(F i (X̂[0,t]) + 1−
d∑

j=1
µj

tF j(X̂[0,t])), (η-portfolio)

θi
t = F i (X̂[0,t]) + µi

t(1−
d∑

j=1
F j(X̂[0,t])). (θ-portfolio)

If F i (X̂[0,t]) =
∑

0≤|I|≤n α
(i)
I 〈εI , X̂t〉, then the path functional portfolio is called

signature portfolio.
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Signature portfolios and optimization tasks

Optimizing performance functionals - logarithmic utility

The goal is now to optimize certain performance functionals within
the class of signature portfolios.

We start with logarithmic utility for the relative wealth process, i.e.
the goal is to optimize E[log Y η

t ], by finding optimal parameters
{αi

I}0≤I≤n,i∈{1,...,d}. A similar method also works for the θ-portfolio.

Note that it is the same to optimize the (absolute) log portfolio
wealth or the relative log portfolio wealth (w.r.t the market) as(

max
{αi

I}0≤I≤n,i∈{1,...,d}
E[log V η

t ]
)
⇔
(

max
{αi

I}0≤I≤n,i∈{1,...,d}
E[log V η

t ]− E[log V µ
t ]
)

⇔
(

max
{αi

I}0≤I≤n,i∈{1,...,d}
E [log Y η

t ]
)
.
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Signature portfolios and optimization tasks

Optimizing logarithmic utility within signature portfolios
Theorem (C.C., Janka Möller (’23))
Consider a market of d stocks, let X and µ be a Rn-valued and ∆d -valued
continuous semimartingales. Let t0 ≥ 0 be the time at which we start to
invest. Consider an arbitrary but fixed labelling function L. Then

max
{α(i)

I }i∈{1,...,d},0≤|I|≤n

E [log (Y η
t )]⇔ min

x
1
2xTE[Q(t)]x− E[c(t)]T x

where x, c(t) are vectors and Q(t) is a matrix with coefficients

xL(I,i) = α
(i)
I

(c(t))L(I,i) =
∫ t

t0
〈εI , X̂s〉dµi

s , (Q(t))L(I,i),L(J,j) =
∫ t

t0
〈εI � εJ , X̂s〉d [µi , µj ]s .

The optimization task is a convex quadratic optimization problem.

Christa Cuchiero (Vienna) Signatures in finance March 2024 28 / 43



Signature portfolios and optimization tasks

Sketch of the proof and remarks

By the form of the η-portfolio the log relative wealth process is given by

log (Y η
t ) =

d∑
i=1

∫ t

t0

ηi
s
µi

s
dµi

s −
1
2

d∑
i=1

d∑
j=1

∫ t

t0

ηi
s
µi

s

ηj
s

µj
s

d [µi , µj ]s

=
d∑

i=1

∫ t

t0

F i (X̂[0,s])dµi
s −

1
2

d∑
i=1

d∑
j=1

∫ t

t0

F i (X̂[0,s])F j(X̂[0,s])d [µi , µj ]s .

The linearity of F and the shuffle property of the signature yields the above
convex quadratic optimization problem.

If X = µ, then the components of c(t) and Q(t) are linear functions of the
signature of t 7→ µ̂t = (t, µt), whose expected value can then often easily be
computed.

Note that in practice the optimization is performed along the observed
trajectory, i.e. without expected values. This allows to detect
(path-)functionally generated relative arbitrages if they exist.
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Signature portfolios and optimization tasks

Remarks

Suppose that µ has dt characteristics with drift bt and diffusion matrix Ct .
The general log-optimal portfolio is found by solving the quadratic
optimization task

inf
π
E[
∫ t

t0

1
2 (πt
µt

)>Ct(πt
µt

)− b>t
πt
µt

)dt] ,

where the inf is taken over predictable processes with
∑
πi

t = 1.

This optimization problem on the level of π is translated to a quadratic
optimization problem over signature coefficients without constraints.

A similar convex quadratic optimization problem (with Q(t) of slightly
different form) is obtained by replacing F i by any linear function of some
features, corresponding e.g. to

I randomized signature (C.C., Gonon, Grigoryeva, Ortega, Teichmann);
I random neural networks (Herrera, Krach, Teichmann).
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Signature portfolios and optimization tasks

General structure

Corollary (Quadratic Optimization Tasks)
Consider an optimization problem of the form

inf
β
E[
∫ t

t0

β>s Csβsν1(ds)−
∫ t

t0

b>s βsν2(ds)] (*)

over predictable processes β with values in Rd , where b and C are stochastic
processes with values in Rd and Sd resp., νi denotes signed measures on [t0, t].

If the controls β are parametrized via βi
t =

∑
p∈P α

i
pϕ

p(t,X[0,t]), where
{ϕp}p∈P is a collection of feature maps and αi

p ∈ R are constant optimization
parameters, then (*) is a quadratic optimization problem in {αi

p}1≤i≤d,p∈P .

A choice for ϕp is a version of randomized signature, ϕp = 〈Ap, X̂N
t 〉, where

Ap denotes the p-th row of a Johnson-Lindenstrauss projection matrix.

Beside the log-optimal portfolio, a mean-variance type portfolio optimization
can be cast into this framework.
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Approximation results

Approximation by signature portfolios
Define the space of lifted stopped paths
Λ2

T =
⋃

t∈[0,T ]{(X̂2
[0,t])(ω) |X cont. semi-mart., X̂s = (s,Xs), s ∈ [0, t]} and equip

it with an appropriate α-Hölder norm for α ∈ (1/3, 1/2).

Proposition (C.C., Janka Möller (’23))
Consider for t ∈ [0,T ] path-functional portfolios of η- and θ-type of the form

πi
t = µi

t (f i (X̂2
[0,t]) + 1−

∑
j

µj
t f j (X̂2

[0,t])) and πi
t = f i (X̂2

[0,t]) + µi
t (1−

∑
j

f j (X̂2
[0,t])),

where f i are continuous non-anticipating path functionals on Λ2
T for every i .

Then portfolios of η- and θ-type can be approximated arbitrarily well by
signature portfolios ηSig (θSig resp) uniformly in time and on compacts of Λ2

T .

Moreover, if E[exp(β‖X̂[0,T ]‖γCC ,α)] <∞ for β > 0 and γ > 2, then for any
ε, δ > 0, there exists a signature portfolio ηSig (θSig resp) such that

P[ sup
t∈[0,T ]

‖πt − ηSig
t ‖ > ε] < δ.
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Approximation results

Approximation of the log-optimal portfolio
Proposition (C. C., Janka Möller (’23))
Consider a market model, where for all i ∈ {1, ..., d}

dS i
t = S i

t

(
ai
(
X̂2

[0,t]

)
dt +

m∑
j=1

B ij
(
X̂2

[0,t]

)
dW j

t

)
,

with m ≥ d such that (BBT )−1 exists (and some integrability cond. are satisfied).
Assume that for all i ∈ {1, ..., d}, j ∈ {1, ...,m} ai ,B ij are continuous
non-anticipating path-functionals on Λ2

T .

Then the log-optimal portfolio can be approximated arbitrarily well by
signature portfolios θSig uniformly in time and on compact sets of Λ2

T .

Moreover, if E[exp(β‖X̂[0,T ]‖γCC ,α)] <∞ for β > 0 and γ > 2, then for any
ε, δ > 0, there exists a signature portfolio θSig such that

P[ sup
t∈[0,T ]

‖πt − θSig
t ‖ > ε] < δ.
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Numerical results

Learning the log-optimal portfolio
1 Correlated Black-Scholes Market:

dS i
t = S i

t(ai dt +
m∑

j=1
B ijdW j

t ), 1 ≤ i ≤ d .

2 Volatility Stabilized Market:

dS i
t

S i
t

= 1 + γ

2
1
µi

t
dt +

√
1
µi

t
dW i

t 1 ≤ i ≤ d .

3 Signature Market:

dS i
t = S i

t(ai
tdt +

m∑
j=1

B ij dW j
t ) 1 ≤ i ≤ d

where (ai
t) =

∑
0≤|I|≤N λ

(i)
I 〈εI , µ̂〉t and B ∈ Rd×m.

Christa Cuchiero (Vienna) Signatures in finance March 2024 34 / 43



Numerical results

Learning the log-optimal portfolio
1 Correlated Black-Scholes Market:

dS i
t = S i

t(ai dt +
m∑

j=1
B ijdW j

t ), 1 ≤ i ≤ d .

2 Volatility Stabilized Market:

dS i
t

S i
t

= 1 + γ

2
1
µi

t
dt +

√
1
µi

t
dW i

t 1 ≤ i ≤ d .

3 Signature Market:

dS i
t = S i

t(ai
tdt +

m∑
j=1

B ij dW j
t ) 1 ≤ i ≤ d

where (ai
t) =

∑
0≤|I|≤N λ

(i)
I 〈εI , µ̂〉t and B ∈ Rd×m.

Christa Cuchiero (Vienna) Signatures in finance March 2024 34 / 43



Numerical results

Learning the log-optimal portfolio
1 Correlated Black-Scholes Market:

dS i
t = S i

t(ai dt +
m∑

j=1
B ijdW j

t ), 1 ≤ i ≤ d .

2 Volatility Stabilized Market:

dS i
t

S i
t

= 1 + γ

2
1
µi

t
dt +

√
1
µi

t
dW i

t 1 ≤ i ≤ d .

3 Signature Market:

dS i
t = S i

t(ai
tdt +

m∑
j=1

B ij dW j
t ) 1 ≤ i ≤ d

where (ai
t) =

∑
0≤|I|≤N λ

(i)
I 〈εI , µ̂〉t and B ∈ Rd×m.

Christa Cuchiero (Vienna) Signatures in finance March 2024 34 / 43



Numerical results

Optimization procedure
For each market:

We use a Monte-Carlo type optimization. Note(
max
η

1
M

M∑
m=1

log Y η
T (ωm)

)
⇔
(

min
x
−xT c̃(T ) + 1

2xT Q̃(T )x
)
,

for ω1, ..., ωM ∈ Ω and where Q̃(T ) = 1
M
∑M

m=1 Q(T , ωm) and
c̃(T ) = 1

M
∑M

m=1 c(T , ωm).

We take here d = 3.

Simulate M ≈ 100000 in-sample trajectories to create Q̃(T ), c̃(T ).

Evaluate performance on 100000 test samples and compare it to the
respective theoretical log-optimal portfolio.

Log-optimal weights are never shown to signature portfolios during
training!
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Numerical results

Results: Black-Scholes Market

We learned a signature portfolio of type η of degree three.
Mean log-relative wealth equals 9.0115 in the theoretical log-optimal
portfolio (left), while in the learned signature portfolio (right) it is 9.0122.

The log-optimal portfolio in the B&S model, is a signature portfolio of type
θ, but as we approximate it with an η-portfolio, the approximation task is
actually

F (BS),i (µ[0,t]) ≈
ci

µi
t
.
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Numerical results

Results: Volatility Stabilized Market

We learned a signature portfolio of type η of degree three.

Mean log-relative wealth equals 8.7619 in the theoretical log-optimal
portfolio (left), while in the learned signature portfolio (right) it is 8.7417.

The approximation task is here

F (Vol),i (µ[0,t]) ≈
α + 1
2µi

t
+ d

2 (α− 1).
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Numerical results

Results: Signature Market

We learned a signature portfolio of type θ of degree two.

Mean log-relative wealth equals 0.2357 in the theoretical log-optimal
portfolio (left), while in the learned signature portfolio (right) it is 0.2355.

Here, the log-optimal portfolio is a signature portfolio of type θ.
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Numerical results

NASDAQ market

We here consider the 100 dimensional NASDAQ market.

Note that when working with real market data, we only have one realization
available. Hence, we optimize just along the past observed trajectory (in
other words we replace expectations by time averages).

We choose X to be the ranked market weights.

We apply a Johnson-Lindenstrauss projection of dimension 50 to the
signature computed up to order 3 and then replace F i in the η-portfolio by a
linear map of this randomized signature.

We perform both the log-utility and the mean-variance optimization with
different risk aversion parameters.

We take as an in-sample period 2000 trading days and as an out-of-sample
period the following 750 trading days. The training is performed on
historical data without estimating any drift or volatiltiy.
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Numerical results

Results NASDAQ Market

We present out-of-sample results here without transaction costs.

Figure: Left: Out-of-sample wealth processes entire NASDAQ, equally weighted
portfolio, randomized signature portfolios optimizing log-utility and
mean-variance.
Right: Average weights
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Numerical results

Results S&P500 market

We apply a similar procedure to the S&P 500, this time by choosing X to be
the name-based market weights and by adding transaction costs.
To keep the convex quadratic optimization structure we add the penalization
term β

T
∑T−1

t=0
∑

i

(
πi

t+1
µi

t+1
− πi

t
µi

t

)2
accounting for transaction costs.

Figure: Out of sample wealth process with 1% prop. trans. costs, S&P500,
equally weighted and randomized signature portfolio optimizing mean-variance.

This picture suggests that a (strong) relative arbitrage opportunity even
under transaction costs has been detected at least in this testing period.
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Conclusion

Conclusion

Signature portfolios can approximate a large class of path-functional
portfolios including

I classical functionally generated portfolios
I log-optimal portfolios in a large class of non-Markovian markets.

In some markets the log-optimal portfolios are exactly signature portfolios.

Despite their versatility, optimizing the log-utiltiy or mean variance within
the class of (randomized) signature portfolio leads to a convex quadratic
optimization problem.

Inclusion of transaction costs is possible, while preserving tractability of the
optimization problem.

The application to real market data points towards out-performance during
the out-of-sample testing period we considered, also under transaction costs.
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