The Economics of OTC markets

Lecture 2

B. Lester	J. Hugonnier*	P-O. Weill
Philly Fed	EPFL	UCLA

Bachelier Lectures Fall 2024

Dealer profits

 The steady-state flow of profits generated by the dealer sector in the semicentralized market

$$\Pi(\lambda) := \lambda \int_{\mathcal{D}} \theta \left(\boldsymbol{P} - \boldsymbol{R}(\delta) \right) \left(\mathbf{1}_{\{\delta < \delta^{\star}\}} \boldsymbol{d} \Phi_{1}^{\lambda}(\delta) - \mathbf{1}_{\{\delta > \delta^{\star}\}} \boldsymbol{d} \Phi_{0}^{\lambda}(\delta) \right)$$
$$= \frac{\lambda \theta \left| \boldsymbol{L}(\boldsymbol{s}, \gamma; \boldsymbol{F}) \right|}{(\gamma + \lambda) \left(\boldsymbol{r} + \gamma + \lambda (1 - \theta) \right)}$$

attains its maximum at

$$\lambda^* := \left(\gamma \times \frac{r+\gamma}{1-\theta}\right)^{1/2}$$

⇒ The optimal "monopolistic" contact rate is *finite* and increasing with respect to γ , *r*, and θ

Request for quotes

An alternative price-setting mechanism

- Investors contact dealers at rate λ
- Can send a request for quotes to *n* ≥ 2 randomly selected dealers
- Each dealer responds with probability $1 \pi \in (0, 1)$
- Data for CDS market: $\pi \approx 10\%$
- Dealers participate in a small auction as in the price dispersion paper of Burdett and Judd (83)
- Dealers have complete infomation about investors types
- Focus wlog on a buyer sending an RFQ

RFQ with 4 dealers

A dealer's profits

- Denote by P the interdealer price
- Other respondent dealers each draw a θ_i from a distribution G on
 [0, 1] and quote (1 θ_i) P + θ_iR(δ)
- \Rightarrow A dealer quoting θ earns

$$\Pi(\theta) := \theta \left(\boldsymbol{R}(\delta) - \boldsymbol{P} \right) \sum_{k=1}^{n} \phi_k \left(1 - \boldsymbol{G}(\theta) \right)^{k-1} \alpha_k(\theta)$$

where ϕ_k is the probability of k - 1 other quotes, and

$$\alpha_k(\theta) := \sum_{\ell=0}^{k-1} \frac{C_\ell^{k-1}}{1+\ell} \left[\frac{\Delta G(\theta)}{1-G(\theta-)} \right]^\ell \left[1 - \frac{\Delta G(\theta)}{1-G(\theta-)} \right]^{k-1-\ell}$$

gives the probability that θ is accepted conditional on all other offers being *weakly* dominated

Derivation

- Probability of k quotes: $\phi_k := C_{k-1}^{n-1} (1-\pi)^{k-1} \pi^{n-k}$
- Probability that k 1 other quotes are *weakly* dominated:

$$\mathbf{P}\left[heta \leq \min_{i \leq k-1} heta_i | heta
ight] = (1 - G(heta -))^{k-1}$$

 A weakly dominated quote is equal to θ with probability 1 – p and strictly greater with probability

$$p := \mathbf{P} \left[\theta < \theta_i | \theta \text{ and } \theta \leq \theta_i \right] = 1 - \frac{\Delta G(\theta)}{1 - G(\theta -)}$$

 If there are *l* quotes equal to *θ* then one is accepted at random and the dealer wins with probability 1/(1 + *l*)

Equilibrium

An equilibrium is a distribution such that

$$\Pi(heta') \leq \sup_{q \in \mathrm{supp}(G)} \Pi(q) = \Pi(heta), \qquad orall (heta', heta) \in [0, 1] imes \mathrm{supp}(G)$$

In words: Dealers should be indifferent to any $\theta \in \text{supp}(G)$ and should have no incentives to quote outside of that set

R1 If $\psi_1 < 1$ where

$$\psi_k := \mathbf{P}[k \text{ quotes}|\ell \ge 1 \text{ quotes}] = rac{C_k^n (1-\pi)^k \pi^{n-k}}{1-\pi^n}$$

then either $G = \text{dirac}_0$ or G is continuous on [0, 1] and supported on $[\underline{\theta}, 1]$ for some $\underline{\theta} \in (0, 1)$

Proof of R1

Assume $\psi_1 < 1$ and let $\sigma = \text{supp}(G)$

1. If *G* is not concentrated at 0

 $\Rightarrow \exists \theta > 0 \text{ such that } G(\theta -) < 1 \Rightarrow \overline{\Pi} = \Pi(\theta) > 0$

 $\Rightarrow \underline{\theta} = \inf \{ \sigma \} > 0 \text{ because } \Pi(0) < \overline{\Pi}$

- 2. If $\overline{\theta} = \max{\{\sigma\}} < 1$ then offering $\overline{\theta} + \epsilon$ is a profitable deviation as it improves the terms of trade by a discrete amount but only reduce the trade probability by an infinitesimal amount
- If G include a point mass at some θ₁ ∈ σ then quoting θ₁ − ε is a proditable deviation because it improves the trade probability by a discrete amount by eliminiating all offers at θ₁, but only worsens the terms of trade by an infinitesimal amount

Proof of R1

Assume $\psi_1 < 1$ and let $\sigma = \text{supp}(G)$

5. If *G* is flat over some interval $[\theta_1, \theta_2] \subseteq \sigma$ then quoting $\theta_2 \notin \sigma$ is a profitable deviation as it decreases the dealer's probability of trade by an arbitrary small amount but imporves the terms of trade by a discrete amount

Equilibrium

R2 In the *unique* equilibrium of the game:

1. If
$$\psi_1 = 0$$
 then $G = \text{dirac}_0$ (Bertand)2. If $\psi_1 = 1$ then $G = \text{dirac}_1$ (Monopoly)3. If $\psi_1 \in (0, 1)$ then

$$G(\theta) = \mathbf{1}_{\{\theta > \phi_1\}} \frac{1 - (\theta/\phi_1)^{\frac{1}{1-n}}}{1 - \pi}$$

- **R3** The average transaction price of any investor is the same as in a semicentralized market with $\theta \equiv \psi_1$
- **R4** The implied bargaining power ψ_1 is decreasing in the number *n* of contacted dealers and in the probability 1π that a contacted dealer quotes a price

Proof of R2

Assume that the probability $\psi_1 \in (0, 1)$

- G = dirac₀ cannot be an equilibrium: If it was then any dealer would prefer to quote θ > 0 because Π(θ) > 0 due to the fact that ψ₁ > 0 guarantees a strictly positive trade probability
- \Rightarrow R1: *G* is continuous with support [$\underline{\theta}$, 1] for some $\underline{\theta} > 0$
- 2. This implies that $\Pi(\theta) = \Pi(1)$ for all θ in that interval. Expanding this equality and using that $\alpha_k(\theta; G) = 1$ when *G* is continuous we deduce that

$$\frac{\Pi(1) - \Pi(\theta)}{R(\delta) - P} = \phi_1 - \sum_{k=1}^n \phi_k \theta \left(1 - G(\theta)\right)^{k-1} = 0, \quad \theta \in [\underline{\theta}, 1]$$

and the result follows by solving this equation

The economics of OTC markets

Transaction price

• In equilibrium:

$$H(\theta) := \mathbf{P} [\text{best quote} \le \theta] = \sum_{k=1}^{n} \psi_k \left(1 - (1 - G(\theta))^k \right)$$

 \Rightarrow The *expected* buying price of the investor is

$$\theta^* R(\delta) + (1 - \theta^*) P$$

with the bargaining power

$$\theta^* := \mathbb{E}^H[\theta] = \int_0^1 \sum_{k=1}^n k \psi_k \theta \left(1 - G(\theta)\right)^{k-1} dG(\theta) \equiv \psi_1$$

where the last equality follows by computing the inner sum and then integrating the result

Equilibrium

Decentralized market

- Bilateral trade
 - Contact at rate λ
 - Nash bargaining under complete information
 - Buyer bargaining power $\theta_0 \in [0,1]$
- Key novelty:
 - (Φ_{0t}, Φ_{1t}) depend on trading decisions
 - Trading decisions depend on value of search options
 - Value of search options depend on (Φ_{0t}, Φ_{1t})
- Serves as a building block for a model of frictional intermediation where investors trade through dealers (SC) and dealers trade in a frictional market

Decentralized market

Reservation values

Proceeding as in the semicentralized market setting shows that reservation values solve

$$rR_{t}(\delta) = \dot{R}_{t}(\delta) + \delta + \gamma \mathbb{E}^{F} [R_{t}(x) - R_{t}(\delta)]$$
(RV)
(resell) $+ \lambda \theta_{1} \int_{\mathcal{D}} (R_{t}(x) - R_{t}(\delta))^{+} d\Phi_{0t}(x)$
(buy-back) $- \lambda \theta_{0} \int_{\mathcal{D}} (R_{t}(\delta) - R_{t}(x))^{+} d\Phi_{1t}(x)$

- RVs depend on the distributions ⇒ on time!
- Equation (RV) admits a *unique solution* such that e^{-rT}R_T(δ) → 0 This solution is *strictly increasing in* δ, bounded, and absolutely continuous in time and type

- *R_t*(δ) is strictly increasing in δ
- \Rightarrow An owner at δ_1 *always* sells to a nonowner at $\delta_0 > \delta_1$
- ⇒ The distributions of types among owners and nonowners can be solved for independently of RVs!
 - The distribution of types among owners solves

$$\dot{\Phi}_{1t}(\delta) = \gamma \left(\mathbf{sF}(\delta) - \Phi_{1t}(\delta) \right) \qquad \{ x \le \delta \le \mathbf{y} \}$$

+
$$\int_{\mathcal{D} \times \mathcal{D}} \lambda \left(\mathbf{1}_{\{x \le \mathbf{y} \le \delta\}} - \mathbf{1}_{\{x \le \delta \land \mathbf{y}\}} \right) d\Phi_{1t}(x) d\Phi_{0t}(\mathbf{y})$$

=
$$\gamma \left(\mathbf{sF} - \Phi_{1t} \right) + \lambda \Phi_{1t} \left(1 - \mathbf{s} - \Phi_{0t} \right)$$

• Quadratic DE since
$$\Phi_{0t} + \Phi_{1t} = F$$

• Recall $F_0 = F_t = F$

 The equilibrium distribution of types among owners of the asset is explicitly given by

$$\Phi_{1t} = \Phi_1 + \frac{(\Phi_{10} - \Phi_1)\Gamma}{\Gamma + (\Phi_{10} - \Phi_1 - \Gamma)(e^{\lambda\Gamma t} - 1)}$$

and converges to the steady state

$$\begin{split} \Phi_{1} &:= \frac{1}{2}\Gamma - \frac{1}{2}\left(1 - s + \phi - F\right) \\ &= \frac{1}{2}\left(\left(1 - s + \phi - F\right)^{2} + 4s\phi F\right)^{1/2} - \frac{1}{2}\left(1 - s + \phi - F\right) \end{split}$$

with the constant $\phi := \gamma / \lambda$

Trading patterns

Trading rate

Trading network

Endogenous density of trading volume

Conclusion

- Endogenous core-periphery network!
- · But identities of core and periphery change over time
- Can freeze identities by setting $\gamma = 0$
- · But then the steady state involves no trading
- Can fix this problem by
 - Viewing investors with $\gamma = 0$ as dealers
 - Introducing customers with time varying types who trade through dealers as in the SC market model
- Delivers a model of Frictional Intermediation

Frictional intermediation

- Fully tractable setup
- 2 Closed forms for counterparts of key statistics
- 3 Calibrate to trade-level data from the municipal bonds market

References

1 Search

DGP (05|07), Vayanos and Weill (08), Lagos and Rocheteau (09), Feldhutter (11), Gavazza (11), Afonso and Lagos (13), Neklyudov (14), Lester-Rocheteau-Weill (15), Üslü (16), Farboodi-Jarosch-Shimer (17), HLW (19,21)

2 Empirics

- Chains: Ashcraft and Duffie (07), LS (18) and HSN (18)
- Trading delays and price dispersion: AD, Gavazza (11), Jankowitsch et al. (11)
- Core-periphery structure: AD, Atalay and Bech (10), LS, AL, Craig and von Peter (14)
- 3 Network and hybrid models
 - Atkeson, Eisfeldt and Weill (15), Colliard and Demange (17)
 - Zawadowski (13), Gofman (14), Babus and Kondor (17), Malamud and Rostek (17), Glode and Opp (16), Farboodi (17)

Environment

- Measures 1 of customers and m of dealers
- Homogenous discount rate *r* > 0
- Asset supply $s \in (m, 1)$
- Agents can hold zero or one unit
- Customers get utility flow $y \in \{y_L, y_H\}$
 - Preference shocks arrive at rate γ
 - Conditional on a shock customer type is set to y_j with probability π_j
- Dealers get utility flow $x \in [\underline{x}, \overline{x}]$
- Continuous cross-sectional distribution F of dealer types
- Focus on steady state

Trading

- Customer trading:
 - CD|DC contact rate ρ
 - Information need not be incomplete
 - Nash bargaining with dealer bargaining power $\theta \in (0, 1)$
- Frictional interdealer market:
 - DD contact rate λ
 - Assume complete information
 - Nash bargaining with seller bargaining power $\theta_1 \in (0, 1)$
- \Rightarrow Type distributions
 - Dealers (CDF): $\Phi_0(x)$ and $\Phi_1(x)$
 - Customers (masses): μ_{L0} , μ_{H0} , μ_{L1} , and μ_{H1}

Reservation values

- Denote by W(y) and V(x) the reservation values
- On the *customer* side:

$$rW(x) = y + \gamma \sum_{i} \pi_{i} \left(W(y_{i}) - W(y) \right)$$

(sell2D) $+ \rho \left(1 - \theta \right) \int_{\underline{x}}^{\overline{x}} \left(V(x) - W(y) \right)^{+} d\Phi_{0}(x)$
buyfromD) $- \rho \left(1 - \theta \right) \int_{\underline{x}}^{\overline{x}} \left(W(y) - V(x) \right)^{+} d\Phi_{1}(x)$

- Valid on $[y_L, y_H]$ not just at y_L and y_H
- Double feedback from distributions of types and RVs

Reservation values

• On the dealer side:

$$rV(x) = x + \lambda \int_{\underline{x}}^{\overline{x}} \theta_1 \left(V(x') - V(x) \right)^+ \frac{d\Phi_0(x')}{m}$$

(buyfromD) $-\lambda \int_{\underline{x}}^{\overline{x}} \theta_0 \left(V(x) - V(x') \right)^+ \frac{d\Phi_1(x')}{m}$
(sell2C) $+\rho \sum_i \theta \left(W(y_i) - V(x) \right)^+ \mu_{i0}$
(buyfromC) $-\rho \sum_i \theta \left(V(x) - W(y_i) \right)^+ \mu_{i1}$

- Dealer receive no preference shocks
- Key result: [RV_c-RV_d] admits a unique solution that is bounded, Lipschitz, and strictly increasing

Trading patterns

Trading patterns

• Given $x_0 \le x_1$ the distributions of types solve

$$s = \mu_{L1} + \mu_{H1} + \Phi_1(\overline{x})$$

$$0 = \pi_i - (\mu_{i0} + \mu_{i1}) = mF(x) - (\Phi_1(x) + \Phi_0(x))$$

$$0 = \Phi_1[\underline{x}, x_0] = \Phi_0[x_1, \overline{x}]$$

$$0 = \gamma \pi_L \mu_1 - \gamma \mu_{L1} - \rho \mu_{L1} \Phi_0[x_0, x_1]$$

$$0 = \gamma \pi_H \mu_0 - \gamma \mu_{H0} - \rho \mu_{H0} \Phi_1[x_0, x_1]$$

$$0 = \rho \mu_{L1} \Phi_0[x_0, \bullet] - \rho \mu_{H0} \Phi_1 - \frac{\lambda}{m} \Phi_1 \Phi_0[\bullet, x_1] \quad \text{on } [x_0, x_1]$$

• The existence of an equilibrium reduces to as a fixed point problem over the pair of constants (*x*₀, *x*₁)!

Equilibrium

• Fixed point problem:

$$\begin{split} \mathbf{x} &= (x_0, x_1) \Longrightarrow \left(\mu_{jq}(\mathbf{x}), \Phi_q(x; \mathbf{x}) \right) \\ & \Longrightarrow \left(V(x; \mathbf{x}), W(y; \mathbf{x}) \right) \\ & \Longrightarrow \hat{x}_1 := \inf \left\{ x : V(x; \mathbf{x}) \ge W(y_H, \mathbf{x}) \right\} \land \overline{x} \\ & \Longrightarrow \hat{x}_0 := \sup \left\{ x : V(x; \mathbf{x}) \le W(y_L, \mathbf{x}) \right\} \lor \underline{x} \end{split}$$

- SSE exists (Brouwer)
- N&S Conditions for intermediation (large θ , ρ , and Δ autarky)
- S Conditions for no dormant dealers (⇒ uniqueness)
- SSE with intermediation is observationally equivalent to one w/o dormant dealers but with endogenous s and m

Trading patterns

- Let $m_q := \Phi_q(\overline{x})$
- Customers
 - at y_L sell to dealers with intensity ρm₀
 - at y_H buy from dealers with intensity ρm₁
 - others do not trade
- 2 Dealers at x
 - buy from customers at y_L with intensity ρμ_{L1}
 - buy from dealers at $x \Delta$ with intensity $\lambda_0(x) = \lambda \Phi_1(x)/m$
 - Sell to dealers at x + Δ with intensity λ₁(x) = λ(m₀ − Φ₀(x))/m
 - Sell to customers at y_H with intensity ρμ_{H0}
- ⇒ Endogenous intermediation chains

Intermediation chains

Length	Freq. (%)	Markup (%)	Share of Markup (%)					
1	77	1.85	100					
2	13	1.94	43	57	•	•	•	
3	7	2.26	29	23	48	•	•	
4	1	2.92	22	21	19	38	•	
5	0.3	3.26	19	9	25	12	35	

Source: U.S. Municipal bonds, Li and Schürhoff (2018)

Intermediation chains

Key statistic:

$$\mathbf{P}\left(\{\mathbf{n}=k\}\bigcap_{i=1}^{k}\left\{x^{(k)}\leq z_{k}\right\}\right)=\frac{1}{\chi}\prod_{i=1}^{k}\log\left(\frac{1}{\rho\mu_{H0}+\lambda_{1}(z_{i})}\right)$$

with the constant $\chi := \lambda_1(x_0) / \rho \mu_{H0}$

- n is a truncated Poisson variable with rate χ
- Municipal bond market: $\mathbb{E}[\mathbf{n}] = 1.34$ implies $\chi = 0.8618$

The economics of OTC markets

Municipal bond market

Calibration

- Exact identification of *s* (supply), *m* (dealers), γ , π_H , ρ , and λ
- Calibrate the rest to the average markup, the yield spread, and the beta of markup on chain length
- Along a chain:

bid =
$$\theta W(y_L) + (1 - \theta) V(x^{(1)})$$

ask = $(1 - \theta) V(x^{(n)}) + \theta W(y_H)$

- The model requires a high θ to match the markup level
- But then the Diamond paradox kicks in: neither bid ~ W(y_L) nor ask ~ W(y_H) depend on the dealer types

Demographic targets

- Six parameters: *s*, *m*, γ , π_H , ρ , λ
- Targets from the municipal bonds market (GHS07|LS18)
 - 1. Supply per capita: 0.2058

Estimate uses trade size, supply, and participation

2. Average chain length: 1.34

Identifies the ratio $\chi = (\lambda m_0/m)/(\rho \mu_{H0})$

- 3. Average inventory duration: 3.3 days Identifies the selling intensities $\rho\mu_{H0}$ and $\lambda m_0/m$
- 4. D2C Turnover: 41.1%/Year

Identifies m_1 and the product $\gamma \pi_H$

- 5. Average time for a customer to sell: $\rho m_0 = 5$ days
- **6**. High type customers are marginal: $\pi_H = s$

Calibration

Supply per customer capita	s	0.2058	
Relative size of the dealer sector	т	0.0041	
Type switching intensity	γ	0.5267	
Probability of a switch to high	π_H	0.2058	
Intensity of customer-to-dealer contact	ho m	76.87	
Intensity of dealer-to-dealer contact	λ	78.04	
Customer: time to contact dealer owner	1 /(ρ m ₁)	9.303	days
Customer: time to contact dealer non owner	$1/(ho m_0)$	5.000	days
Dealer: time to contact H0 customer	1/(<i>рµ_{Н0}</i>)	4.303	days
Dealer: time to contact L1 customer	$1/(ho\mu_{L1})$	8.007	days
Dealer: time to contact m0 dealer	$m/(\lambda m_0)$	4.925	days
Dealer: time to contact m1 dealer	$m/(\lambda m_1)$	9.164	days
Assets held in dealer sector	m_1/s	0.71%	1%

Assortative matching

- Heterogeneity among high types customers: y_H + z with extra flow z drawn from some G upon switching to high type
- Dealers indexed by $x \in [\underline{x}, \overline{x}]$
 - High x dealers match with high z customers
 - Homogenous utility type y_L
- Dealers at x only sell to $y_H + z_x$ with $m_1 F(z_x) = \Phi_1(x)$
- Same trading patterns as in benchmark!
- But V(x) is now much steeper due to the higher flow valuation of customer buyers
- ⇒ No longer require a high bargaining power to match the observed dependence of markups on chain length

Markup splits

Not targeted in the calibration process

	Extended model					Data								
n	1	2	3	4	5	6	7	1	2	3	4	5	6	7
1	100			•		•	•	100	•		•			•
2	54	46						43	57					
3	46	10	44	•	·	•		29	23	48	•	•		•
4	42	8	8	42		•	•	22	21	19	39		•	•
5	39	6	6	6	41			19	9	25	12	34		•
6	37	5	5	5	5	43	•	17	8	13	24	8	32	•
7	35	5	5	5	5	5	40	17	6	12	14	12	8	31

Next time

- Back to a semicentralized market setting but now with incomplete information about investor types
- Myerson-Satherwaite (88): Impossibility theorem
- Two alternative price-setting mechanisms
 - Screening by dealers (TIOLI)
 - Directed (aka competitive) search
- Open problems