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Abstract. These lectures introduce stochastic models for noisy quantum dynamics with
applications to quantum computing. We review stochastic Schrodinger equations and Lind-
blad dynamics as effective descriptions of open quantum systems, and illustrate their use
in analyzing single-qubit gate fidelity. To model genuinely quantum noise, we introduce
bosonic Fock space and develop the Hudson—Parthasarathy theory of quantum stochastic
differential equations, providing a unitary dilation of Markovian open-system evolution with
general jump operators. The theory is illustrated through explicit qubit examples, including
dephasing and amplitude damping, with an emphasis on conceptual clarity.
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1 Classical noncommutative processes

As we have seen, a quantum circuit is essentially a noisy, controlled Schrédinger evolution. From
a physical perspective, this noise arises from the unavoidable interaction between the system
of interest and its environment. As a result, realistic quantum devices cannot be modeled as
closed systems evolving unitarily on a Hilbert space, but rather as open quantum systems, whose
effective dynamics are irreversible.

Throughout these notes, we denote by H a complex Hilbert space and %(H) the space of
bounded operators on H. We further consider the following subspaces of #(H) that play a
distinguishing role:

U(H) = {a € B(H):ala= Ig{} (unitary operators)
O(H) = {aec B(H): al = a} (observables)
2H)={ac O(H):a=0, trfa] =1} (density operators)
P(H) ={a€ O(H)a=[Y)(W], [Plsc =1} (pure states)
where af := 3T is the hermitian conjugate of an operator a € Z(H) and we will adopt the

bra-ket notation to distinguish between primal vectors |¢)) (ket) and dual vectors (¢| (bra) for
any vector 1 € H. Notice that 2 (H) is simply the subset of rank-1 projection operators.

1.1 Lindblad equation

A wide range of mathematical and physical models have been developed to describe open
quantum systems, spanning microscopic Hamiltonian descriptions of system-environment in-
teractions to phenomenological effective equations. Among these, one of the simplest and
most widely used frameworks is provided by the Lindblad (or Gorini-Kossakowski-Sudarshan-
Lindblad, GKSL) equation. Its importance stems from the fact that it provides the most general
form of a Markovian, time-homogeneous quantum evolution compatible with the basic principles
of quantum mechanics.

Rather than describing the system by a wave function, the Lindblad equation governs the
evolution of the density operator ¢t — p, € Z(H), which encodes both classical and quantum
uncertainty. The evolution with initial datum py € Z(H) is given by

d

Pt = " e+ e, L(p) = 3 Zj (2LjpLt - LiL;p - pLiL;), (GKSL)

where H € O(H) is a given system Hamiltonian, £* is the Lindblad (super)-operator, and
L; € %(7() are mutually orthogonal jump operators, describing the coupling to the environment.
The first term represents coherent unitary evolution, while the second term captures irreversible
processes such as decoherence, relaxation, and dissipation.

Remark 1.1 If L; € O(H) are observables, then the Lindblad operator takes the form
Lp) = =53 (L. (L.l

Remark 1.2 The use of * in .Z* indicates that .Z* is the adjoint of an operator .Z under an
appropriate scalar product. In this case, the scalar product considered is the Hilbert-Schmidt
scalar product (a,b) g5 = tr[ab] since the objects in question are observables. Therefore,

(2" (a), b) p(ae) = tr[(Z7(2))b] = tr[.L*(a)b] = trfaZ(b)] = (a,-Z(b)) s(30),



with
ZL@) =3 Zj(m:}aLj — LiLja—aLlL)).

A thorough informal derivation of the Lindblad equation is lengthy and complex, so we will
skip it here. However, from an operational point of view, the density operator p is an ensemble
of pure states a = |¢)(¢| € Z(H). In other words, p can be interpreted as the expectation of
the canonical random variable under a probability measure P on pure states &2(H), i.e.,

p:/y(j{)aP(da) € 7(H).

In the following, we will be interested in stochastic dilations or stochastic unravellings of
the Lindblad equation, i.e., we will look at &?(H)-valued processes for which their expectation
solves the Lindblad equation. The following sections provide examples of such processes, where
information about the environment is embedded into the model.

1.2 Stochastic Schrodinger equation

In the context of Rydberg atoms, the optical control system is a primary source of noise. In the
semiclassical limit of light-matter interactions, such noise sources can be considered classical.
Without going into the details of the physics, we introduce the stochastic Schrodinger equation,
which describes the evolution of a quantum system driven by classical noise sources.

Given an observable L € ¢ (H) and a real-valued smooth process (3¢, the Schrédinger equation
driven by the time-dependent observable B,L € & () may be expressed as an evolution in the
space of unitaries % (H):

dU; = iLU; dfy, Up = lg.

In this simple case, the solution may be explicitly expressed as
U; = exp(i(Bt — Bo)L)ls.
Remark 1.3 When H = C", 7% (H) is a compact Lie group with Lie algebra
o (H)={ac B(H):al = —a} = {iac B(H):ae O(H)},

i.e., the space of skew-hermitian matrices. The Lie algebra <7 () can be equipped with a real
inner product given by the Hilbert-Schmidt scalar product

(a,b) (3 = —tr(afb) = R tr(ab'),
which is positive-definite on o7 (3H). The associated norm is then

|3|?<y(n) = (a,3) o/(n) = tr(aal).
Similarly, the space ¢(H) of observables may be equipped with the Hilbert-Schmidt scalar
product (a, b) g = tr(a’b) € R.

From a geometrical perspective, the unitary evolution is the exponential map applied to the
time-dependent right-invariant vector field a; : Z(H) — &(H), a,(U) = iB:HU = a;(l30)U.
Throughout, we will consider right-multiplication, with U always acting on the right. O

In the presence of noise, however, 3; may no longer be smooth. Nevertheless, if f; = wy is
the Brownian motion, then the It6 formula applies and we get for U; = exp(iw¢L)lg,

AUy = (iLdw; — L7 dt)U; = iLU; o dwy,

where odw; denotes the Stratonovich integral. This is precisely a stochastic Schrédinger equa-
tion with one noise operator L and one driving noise wy.



1.3 Unitary-valued processes

More generally, we consider a set & = {H, L1,...,Ls} C O(H) of orthonormal observables on
the n-dimensional complex Hilbert space H under the Hilbert-Schmidt scalar product on &(H),
where 1 < d < n? is the number of noise channels. These observables will often be called noise
operators. Further, let w;},..., wf be independent standard real-valued Brownian motions and
Bi, ..., B¢ be Ito processes of the form

where b{ is an absolutely continuous process and 7, > 0.
Define the &/(H)—valued (possibly degenerate) Brownian driver

= —itH+Y iL;B] €o(H).
Xt l Zj@ i By (30)
The intrinsic % (H)-valued diffusion process solves the Stratonovich SDE
dUt = OdXt Ut, U() = |g—(, (SSE)

or in components

dU, = —iHU, dt + LU, db) + LU, o dw?,

t U Zjljttzjﬁljto t
where H is a system Hamiltonian. The matrix-valued quadratic variation of x is
00e =D il ®ily

If d = n?, the driver is elliptic (non-degenerate). If d < n?, the covariance has rank d and the
process is hypoelliptic (degenerate), exploring only the connected subgroup

exp(Hy) C U (H), Ay =Lie{iH,iLy,...,iL,} C o/ (H).

Clearly, there are situations where @y = o/ (H) for d < n?, in which case, the full group of
unitaries is explored, i.e., exp(#y) = % (H).
In It6 form, the equivalent SDE reads

dU, = (dy; + 3 dt) Uy, J=-1 L2,
t ( Xt ) t 2 Zj Vil
where J is the Laplace-Beltrami operator associated with the right-invariant connection.

Remark 1.4 When H =0, d = 1, we find, as in the deterministic case, the explicit solution

U; = exp(i(bt + \/'_ywt)L)Igf

In particular, U; commutes with L for all ¢ > 0. &



Towards the Lindblad equation To obtain the Lindblad equation (GKSL) from the stochastic
Schrodinger equation (SSE), we consider noise profiles of the form

. t .
Bg:/ouj(r)dr+wg, j=1,...,d,

Now let pg € Z(H) be an initial datum for the Lindblad equation and U; be the solution to
(SSE). Then, the Z(H)-valued process a; == Uy po UtT satisfies
day = dU; po U] + Uy po dUJ + dU; po AU
= (dx¢ + (—iH + ) dt) ag + a,(dx] + (—iH + 3)Tdt) + dx; ap dx]
= —i[H}, a,dt +izj [Lj, a5 dw! + 1 Z]- vj(2L;ja, Ly — L%a, — a,L?) dt
= —i[H}, a;) dt + L(a;) dt + i Zj V1L, a] dw?,

where we set the Hamiltonian Hy' .= H — . u;(t)L; and

~

L) =3 CLipLi—Lip=pL}),  Lj=L;

Hence, taking the expectation, we obtain for the density operator p; = E[a;] € Z(H) the
Lindblad equation
dpr = —i[H{', pi] dt + 27 (py) dt,

where we used the fact that £* = .Z since L; € O(H).

Note, however, that we recover the Lindblad equation with only Hermitian jump operators
in this way, i.e., L; € 0(3). To consider general jump operators, we have to leave the realm
of classical noise and talk about quantum noise, which will be the main topic of the remaining
sections in this lecture series.

Remark 1.5 We note that if pg € Z(H) is a pure state, then a; is a € Z(H)-valued process,
i.e., a; is almost surely a pure state for all times. &
1.4 Example: 1-qubit fidelity of the Hadamard gate

In quantum computing, one is often interested in the fidelity of a quantum gate, i.e., a unitary
operation, where the fidelity of two density operators p,o € Z2(H) is defined by

l 2
Fp,0) = tr[(Voovp)t| .
When, p = |[¢)(¢| € Z(H) is a pure state, then the fidelity reduces to

F(p,0) = (¢,01) = tr[po].

If 0 = |p){p| € P(H) is also a pure state, then it simplifies to F(p, o) = [(¢, p)|?, which is
much simpler than the case for general density operators. Let’s see how the SSE can be used
to compute the fidelity of a quantum gate.

Say, we would like to implement a Hadamard gate on a single qubit on the Hilbert space
H = C? = span{ep, e;}. The Hadamard gate is given by

leo) + le1) leo) — le1) 1 /1 1
th%@ﬂ‘i‘%(eﬂ:ﬁ(l _1),
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Figure 1: Computing the fidelity of a quantum gate

with the corresponding eigenpairs (1,e) and (—1,e_), where

e t+e e —e

e, = ,  e_ .
Y V2

By spectral calculus, we obtain

Un = (Dles)(ex] + (~1)le-)(e—| = les) (4] + e e_)(e_|

)
— exp(—imle_){e_|) = ¢~ Hyi=le_)(e_| = b(lxc — o).

In other words, iHy, € o/ (H) generates the Hadamard gate after evolving for time ¢ = 7, i.e.,
U, = exp(—itHy) solves the Schrodinger equation

AU, = —iH U, dt, Uy = lus.

Notice that Hy, € Z(H) happens to be a rank-1 projection on the unit vector e_ € K.
In the presence of noise, however, we instead have

AUP = —iHUP 0 dBy, Uy =y,

From Remark 1.4, we obtain the explicit form Ut[3 = exp(—if+Hy).
Suppose we have a noisy pulse 3; = ¢ + \/yw;. Then the fidelity between the desired pure

state |Uyp) (Uph| and the noisy pure state |Utﬁ¢><Utﬁw| for any unit vector ¢ € H is
FP () = [(UP o, Up)? = [(UfUPw, ) € [0,1].
Using the formulas obtained above, we easily deduce that
UJUP = exp(—iyAw Hy) = les)(es] + e V1% e_)(e_|.
Since {ey,e_} forms an orthonormal basis for H, 1 = 1;e; + ¢_e_, for which we obtain

FE(0) = (yey + e V1% e+ e )
= [y + [ PeVIO? = 1= 2(1 = cos(yAwe)) [ [P 2.

From this, we can deduce all statistical properties of the fidelity, e.g., its expectation
E[Ff (¢)] = 1 — 2(1 = Efcos(yywo)]) [+ |- = 1 = 2(1 = e72) [ob [Py 2,
and variance
VIFP )] = E|(FF(4) — EIFP (0)))?] = 4E| (cos(y/Fwr) — e72)? o [
= 4(1 — 2E[cos(yAwy)]e 2 + e ) [ [ |t = 4(1 — e 7)o [Hlu |4,

where we used the fact that E[cos(,/yw;)] = exp(—7t/2).



Exercise 1.1 Compute the fidelity of the Hadamard gate using the Lindblad equation.

Question: Can we improve the fidelity by implementing a different pulse?

In [3], we introduced a variational quantum algorithm to do just this, where the fidelity was
used as a regularizer to a deterministic optimal control problem. For instance, given a desired
pure state |¢q) (4| € Z(H) at time t = T, one solves the problem

T
win |(va. Uren)? = A [ EIFf eolat
0
subject to the deterministic Schrodinger equation
dU; = —iHU; dby, Up = lgg,

and where
E[Ff (eo)] = 5 (1 + Elcos(b + v/7awy))).

Here, one is interested in determining a gate Ur that maps eg to 14, while keeping the fidelity
expectation of the evolution under control.



2 Quantum Noise and Fock Space

As shown in the previous section, SSEs driven by classical noise provide a useful class of stochas-
tic unravellings of Lindblad dynamics. However, this approach is fundamentally limited: it pro-
duces only Lindblad generators with Hermitian jump operators. To describe general irreversible
quantum dynamics—including spontaneous emission, particle loss, and counting processes—we
must move beyond classical noise and introduce quantum noise.

Recall that in Section 1, the stochastic dilation a; = UtpoUtT , led, after taking expectations,
to a Lindblad equation with Hermitian noise operators L;r- = L;j. While such Lindblad operators
model dephasing and diffusion-type noise, they cannot describe dissipative processes such as
amplitude damping, where the jump operator is non-Hermitian. An important example is the
jump operator L = o_ = |0)(1] on a single qubit describing spontaneous emission due to black
body radiation.

From a physical perspective, this reflects the fact that classical noise models only randomize
phases or energies. Truly quantum processes involve the exchange of quanta with an environ-
ment, and therefore require a non-commutative noise model.

Unitary dilations and infinite environments

A guiding principle in the theory of open quantum systems is that irreversibility arises from
neglecting environmental degrees of freedom in the following sense. One considers the composite
Hilbert space Hiot = Hsys@Heny, describing the universe and consists of the system Hys and
an environment Heyy. In this setting, one obtains a unitary evolution

Ut : Hiot — Hiot
The reduced evolution of the system state is then obtained by tracing out the environment,

Pt = T3, [Ut(PO®penV)UtT] € 9(i}fsy8)>

where pg € 2(Hsys) is the initial state on the system and peny € Z(Henv) is a given state on
the environment. Requiring Markovianity and time-homogeneity of the evolution inevitably
forces the environment to possess infinitely many degrees of freedom. In continuous time, this
naturally leads to a description in terms of bosonic quantum fields.

2.1 Bosonic Fock space

The bosonic (or symmetric) Fock space of a complex Hilbert space X is defined as

F(X) = P xon,

n€eNp

where K®" denotes the n-fold symmetric tensor product, i.e.,
fex® o flo(ur,...,un)) = f(ui,...,u,) for any permutation o,

and by convention K®° := C. The bosonic Fock space §(X) inherits the scalar product from X
defined by

<®u(n), @U(n)>{€(ﬂ<) = Z <u(n), U(n)>ﬂ<®”'
n€ENg



We define the exponential vectors
1
e(u) = @ —u®" u e X,

and the distinguished vector Q := e(0) = 1G0@ - - - € §(X), called the vacuum vector.
It turns out that the set of exponential vectors &(X) is total in F(X), i.e., the linear span of
&(X) is dense in §(XK). This fact will be helpful for us in the future. Since,

1
(e(u),e(v))g@) = a(%”)& =ewx ek,

neNp
the exponential vectors are normalizable. These normalized exponential vectors
— o= 3llul3
V(u) = e 2ke(u), uelk,

are called coherent vectors.
For time-continuous noise, the canonical choice is

X = L*(Ry,N; C%) = L*(Ry,N) ® C,
where d € N represents the number of noise channels and N is the Lebesgue measure. From
now on, we will only consider this choice with d = 1 and call F(X) our noise environment.
2.2 Creation, annihilation, and gauge processes
On the bosonic Fock space F(X), one defines operator-valued processes on &(X):

the annihilation processes A(t), the creation processes Af(t),

the gauge (or counting) processes N(t).

Heuristically, A(t) annihilates a quantum in channel j arriving before time ¢ > 0, Af(¢) creates
such a quantum, and N(¢) counts quanta in the channels. Together, these processes encode
absorption, emission, and counting statistics in a unified operator-theoretic framework and
form the building blocks of quantum stochastic calculus, serving as driving noises in the Hudson-
Parthasarathy theory of quantum processes.

Definition 2.1 Let D be a total subset of a complex Hilbert space K.

(i) A random variable X is an element of .Z(D; H), where
Z(D;H) = {Z : D — H linear : D C dom (Z) N dom (ZT)}.
(i) A stochastic process in H is a family (x(t)):cr, of random variables such that
Ry >t x(t)n is Borel measurable for every n € D.
(iii) A martingale is a map Ry > ¢ — my € K satisfying
m; € L*([0,1],N) and 1, qm =ms for every s < t.

Example 2.2 A simple martingale is m; = 1{g 4, which we shall call the canonical martingale.
Other martingales include m; = v1jy 4, where v € X is an arbitrary function.

Notice that nothing about the definition above is stochastic in the usual sense.



Annihilation and creation processes. The annihilation and creation operators corresponding
to a martingale m are defined on exponential vectors e(u), u € K by

Aa(B)e(u) = (m, uhe(w),  Al(H)e(u) = % _elutem)

These operators are densely defined, mutually adjoint, and they satisfy the so-called canonical
commutation relations

Aa(t), AL(9)] = (me,ms) Igxy,  [An(t), An(s)] = [AL(E), Al(s)] = 0. (CCR)
Due to the martingale property of m, we also have that
(An(t) — An(s))e(u) = (m — ms, u)e(u) = (1[5 gme, u)e(u).

These relations give rise to the quantum It6 table that we will see in the following section.
With respect to the coherent vector P(u) € F(K), u € K, one has

(W (w), An(t)(w)) = (mg, u) = (P(w), AL(H)b(u)),
(W (u), [Aa(t), Al (s)(w)) = (my,my).

In particular, in the vacuum vector Q = {(0), we find

(Q, An()Q) = (Q,AL1)Q) =0, (Q, Aa()AL(5)Q) = (m,m,),

which shows that the self-adjoint field operators B, = Am—i—AI1 reproduce the covariance structure
of classical Brownian motion for the canonical martingale m; = 14, i.e.,

(Q, By ()Bl(5)Q) = tAs.
Thus, classical noise is recovered as a commutative subtheory of quantum noise.
Exercise 2.1 Use the Zassenhaus formula and the fact that
[Aa(t), [Aa(t), AL = [AL(1), [Aa(t), AL(D)]] =0 for all ¢ >0,
to show that for every r € R,
Eo o780 = (Q, "B 00) = exp(~4r2m k).

Conclude from this that, under the vacuum vector Q, the field operator B(¢) is a Gaussian
random variable with mean 0 and variance ¥ = |jm||%.

What would change if we replace the vacuum Q with a coherent vector {(u)?

Gauge processes. The gauge processes N(t) counts the number of quanta in the channel up to
time t > 0. Their expectation on coherent vectors P (u) is given by

(W (), N (u)) = /[0 () ds =l
In particular, its distribution is given by
By [0 = ((u), ™ Op(u)) = exp (e~ 1) ullk),

i.e., in the coherent state \(u), N(¢) has a Poisson statistics with intensity |u|?N.

In these lectures, we only have time to focus on the creation and annihilation processes. A
proper treatise of the gauge process requires more preparation, but its inclusion in the following
theory may be done without too much trouble.

10



2.3 Fock-Wiener isometry

The Wiener-Ito-Segal isomorphism provides a precise mathematical link between classical and
quantum noise, which identifies the canonical bosonic Fock space with an L?-space over classical
Wiener space.

More precisely, let (C(Ry;R),F, W) be a classical Wiener probability space with canonical
process (X¢)ier, with Xy(w) = w(t), w € C(R4;R). Then there exists a unitary isomorphism

U: F(K) = L*(C(R,;R), W),
called the Fock-Wiener (or Wiener-Ito-Segal) isometry, with the following properties:

(i) The vacuum vector Q is mapped to the constant function 1.

(ii) Exponential vectors correspond to stochastic exponentials of Brownian motion, i.e.,

t 1
U(P(ulpy))(w) = exp </ u(s) dXs(w) — §||u1[0’t]“§<> for t > 0.
0
Recall that the right-hand side is an exponential martingale and that the family of such
functions is total in L?(C(Ry;R), W).

(iii) Multiple Wiener integrals of order n correspond to the n-particle sector K™,

Under this isometry, the self-adjoint field operator B(t) acts as multiplication by the classical
Brownian motion W;. In particular,

UB(HU™ =W,

viewed as a multiplication operator on the commutative algebra L>°(C(R4;R), W). This identi-
fication shows that classical stochastic calculus is faithfully embedded into quantum stochastic
calculus as the restriction to a commuting subalgebra of field operators.

Remark 2.3 (1) Notice that the coherent states {(u) € F(X) play the role of changing the
reference measure W by the drift field v € K.

(2) A similar construction holds for Poisson processes on the Skorokhod space. &

11



