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Pricing and hedging problems

How to determine the prices of exotic options?

How to hedge the positions in exotic options by using underlying assets
and vanilla options?

» Model-specific approach: the price process of the underlying assets
(5t)t<7 are modelled by some parametric family of stochastic
processes.

» Model-independent approach: many possible models, weaker
economic assumptions

» Quasi-sure approach
» Pathwise approach

N
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Robust approach — an active field of research

Explicit bounds LB < POt < UB and robust super-/sub- hedges
Arbitrage considerations and robust FTAP
Pricing-hedging duality

Pathspace restrictions A & Q

Acciaio, Bayraktar, Beiglbock, Biagini, Bouchard, Brown, Burzoni, Cheridito,
Cox, Davis, Denis, Dolinsky, Dupire, Frittelli, Galichon, Gassiat, Guo,
Henry-Labordére, Hobson, Hou, Huesmann, Kallblad, Kardaras, Klimmek,
Kupper, Maggis, Martini, Mykland, Nadtochiy, Neuberger, Neufeld, Nutz,
Obt6j, Penker, Perkowski, Possamai, Promel, Raval, Riedel, Rogers,
Schachermayer, Soner, Spoida, Tan, Tangpi, Temme, Touzi, Wang ...
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Additional information

v

[F regular agent/ common knowledge/ public information

v

G D F informed agent with additional information represented by
the entire filtration

v

Hedging &: how much the additional information is worth?
Price p(§) — Price ¢(§)

v

Super-hedging price:
inf{x : 3(x, v)-super-hedges £}

vs market model price:

sup Ep(¢)
PeM

» No (duality) gap between these two values
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Set-up

» Yan Dolinsky and Mete Soner Martingale Optimal Transport and
Robust Hedging in Continuous Time, Probability Theory and
Related Fields. 160. (2014), 391-427.

» Zhaoxu Hou and Jan Obtdj On robust pricing-hedging duality in
continuous time.
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Traded assets and information

» Stock price S is the canonical process on
Q= {we ([0, T],RY) : w(0) = 1}
> [ is the filtration generated by S, i.e., F; :== 0(Ss : s < t)
> Xp, X1, ..., X, statically traded options which have prices P(X;) at time 0,
Xo=1and P(Xp) =1
> G is the enlarged filtration G, := F; VV H;, where H := (H;):<71 is another

filtration
G is called the initial enlargement of F with random variable Z if

Ht :O'(Z)
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Equivalence relation and atoms

» (£, F1) measurable space and G sub-o-field of Fr, w,w € Q
w and w are G-equivalent, w ~¢g w, if 1g(w) = Lg(@) holds V G € G
Note that w ~r, W <= w, = w, for each u < t,
and w ~o(Z) w = Z(w) = Z((fd)
» [w]g denotes the equivalence class, or atom, in Q where w belongs
to:

[Wlg=N{A:AcG,weA}
» (Q,G) is countably generated if there exists a sequence (Bp)nen C G
such that o((Bn)nen) = G. In this case each atom is G-measurable
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Trading strategies

» integral of g : [0, T] — R? of finite variation w.r.t. w € Q:

/0 g(u)dw(u) := g(t)w(t) — g(0)w(0) —/0 w(u)dg(u)
» 7:Q — D([0, T],RY) is G-adapted if 7; is G;-measurable, i.e. if
wrg & implies y(w)e = ¥(@)

and it is G-admissible strategy if moreover it has finite variation and
t

/ Y(w)udSu(w) > —M(w) Vw,t for some M € L°(Q,Go)
0

» A G-admissible semi-static strategy is a pair (X, ) where
X =A)+ 27:1 A; X; for some Gy-measurable random variables A; and
G-admissible strategy 7.
Initial cost of such a strategy is P(X) = Ay + Y. A/P(X)).
The set of all G-admissible semi-static strategies is denoted by A(G).

25



The super-hedging price

G-super-hedging price of £ on A € Fr:
VE(©)(w) := inf{P(X)(w) : 3(X,7) € A(G) such that
T
X(w) +/ Y(@),dS, (@) > £(w) for all © € A}
0

Proposition
The G-super-hedging price on S is constant on each [w] and given by

Ve (€)(w) = Vi)(€)

where [w] denotes the Gy-equivalence class containing w.

It holds that  V§(&) < V()
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The market model price

> The set of G-calibrated martingale measures concentrated on A € Fr:

MG = {P: S is a (P,G)-martingale, P(A) = 1
and Ep(X;|Go) = P(X;) for all i € {1, ..., n} P-a.s.}

> G-market price of £ on A € Fr:

PA(E)(w) :="sup_Ep(£|Go)(w)"
PeM§
Proposition
Assume each element of G is countably generated. Let P € M(;’;’P’Q. Then,
there exists a set QF € Gy with P(QF) = 1 and a version {P,} of the regular
conditional probabilities of P with respect to Go such that for each w € QF,

G
P, € M&P,[wlgo'
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The market model price

Let A € Fr. The G-market price of £ on A is defined by

P3(€)(w) = sup Ep,(£), weQ,
€ g’c‘,P,A

where Ep_(€) = Ep_(€) for w € QF and Ep_ (&) = —o0 for w € Q\QF.

Proposition
The G-market price on Q is constant on each [w] and given by

PG (£)(w) = PEy(€)

where [w] is Go-equivalent class containing w.

It holds that ~ PS(¢) < PE(¢)
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Easy inequality in the pricing-hedging duality

Lemma
The G-super-hedging price Vg’ (&) and the G-market model price PS’ €3]
of £ on Q satisfy

VE(€)(w) > PS(¢)(w) YweQ.

PROOF: G-super-replicating portfolio (X, ) € AM(G) on [w]g, and

G
measure P € M[w]go.

{P,} regular conditional probabilities of P with respect to Gy
Since P(M = const) = 1,

Ep(§) < Ep <X + /OT’Yud5u> < Ep(X).
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Duality



Atoms and path restriction

v

Let G =F Vv o(2)

Additional information arrives entirely at time 0

v

v

Atoms of Gy are simply atoms of o(Z)

Each atom can be seen as path restriction since on each atom the
filtration G and F coincide, i.e., for each w

v

VGeGy IFeF st [wlgNG=lwlgNF
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Duality for G =F Vv 0(2)

Theorem
Let G =TV 0(Z) and assume that for each value ¢ of Z we have

P?Z:c}(g) = VFZZC}(@

for any bounded uniformly continuous &.
Suppose that assumptions of Theorem Hou Obftdj are satisfied.
Then, duality in G holds, i.e.,

Ve (€)(w) = PG (€)(w)

for any bounded uniformly continuous &.

PROOF: One can show that:

Pl (&) = Pir_y (€) < V(G (&) = ViZ_g(9)
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[HO] Beliefs: approximate pricing-hedging duality

Approximation of A: A° = {w € Q :infycallw —v|| <&}
V(&) :=inf{P(X) : 3(X,7) € A(F), e >0s.t. X + /OT'yudSu > ¢ on A%}
Pa(€) = lim sup Ep(€) where
N pegte
MES = {P: S is a (P,F)-mart.,P(A°) = 1 — ¢ and |Ep(X;) — P(X;)| < eVi}
Theorem (Hou & Obtdj)

Assume that all payoffs X; are bounded and uniformly continuous and that for
all e > 0 there exists P € M]E\’E.
Then for any bounded uniformly continuous £ : Q — R

Va(€) = Pa(©).

This theorem implies that

Pa(€) < Va(§) < Va(§) = Pa(§)
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Duality for G =F Vv 0(2)

Theorem
Let G =F VvV o(Z) and assume that for each value c of Z we have

P«?Z:c}(g) = ﬁfZ:c}(g)

for any bounded uniformly continuous &.
Suppose that assumptions of Theorem Hou Obfdj are satisfied.
Then, duality in G holds, i.e.,

VG ()(w) = PG(€)(w)

for any bounded uniformly continuous &.

EXAMPLE: Assume no options and d = 1. No duality gap in G holds:

> Z =supscpo,7] | In St
> /= ]]-{a<5t<thE[O,T]} where a <1< b
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Dynamic programming principle



Dynamic approach

Additional information o(Z) is disclosed at time Ty € (0, T):
Gy = Fyfort €0, T1) and G: = Fr Vo(Z) for t € [T1, T]

Assume Z satisfies

S (wln.n :

Z (7) f wr >0 -

Z(w) = wry Boen for r.v. Z on Q|1 7.
1 if wT, = 0

This encodes the idea that the additional information concerns only the

evolution of prices after time T; irrespectively of the prices before time T;.

Theorem
Duality in G holds, i.e., V§(&) = P§(€) holds for any bounded uniformly
continuous &.
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Dynamic approach

Firstly solve the problem for each atom of G1, on [Ty, T] separately
by the same arguments as for F V ¢(Z)

v

v

Secondly aggregate atoms of G, into atoms of Fr,

v

Apply dynamic principle
Thus the problem is now reduced to [0, T3] and trading w.r.t

v

Vg:[O,T](g) _ V£7[07T1](V§1[T1~,T](£)) _ Vg[O,Tl](Pg:[TLT](g))
= PRSI T g)) = P TN(e).

20 /25



Dynamic programming principle

Proposition

Let & be uniformly continuous.
(i) Define

-
Vg”[Tl’T](g)(w) = inf{X dy e A(G) S-t-x+/ YudSy > & on [w]}-ﬁ}'
Ty

Then, VU™ T (&) is u.c. and

ng’[o’T](f) _ Vga[O,Tl] (Vg’[Tl’T](f))

eirom Ep(€). Then, PETTVTI(¢) is

[w] Fr,

(ii) Define Pg’[Tl’T](f)(w) = sup,_

u.c. and G,[0,T F,[0,T- G,[Th,T
PQ’[ ; ](f) _ 'DQ7[ Tl (Pﬂ’[ 1, ](5))
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Conclusions

» Formulation of the duality problem for a general filtration with
possibly non trivial initial o-field

» Translating original problem to the path restriction language from
Hou & Obtdj in case of an initial enlargement

» Disclosure of an additional information after initial time and
dynamic programming principle



THANK You!
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Dynamic programming principle

The path modification mapping a*"” by

V| 0,T1] ® ZWHTLT] w € BV
a(w) = V|[o 1] ® u)|[7-1 ] wE BY
w w¢ B UBY

If the strategy -y super-replicates on BY, the strategy ’y a+
super-replicates on B” and £(V) < £(v) + eg(Hv — vH)

If P e MG T then P=Poa € METT] and

[Ep(€) — E(&)] < eglllv —vI])

ﬂ[n,r)
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Informational metrics

Quantification of the value of the information

Initial enlargement — distances between o-fileds d(G, H):

sup inf sup P(GAH)V sup inf sup P(GAH
Geg HEH pem ( ) HeH GE9 PeMm ( )

sup sup Ep| sup Eqg(¢)— sup Eg(&)
0<€<1 PeM QEM[‘”]Q QGM[‘*’]H
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