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An inverse problem for Markov processes

Suppose X is an E-valued Markov process with
semi-group (Pt )t≥0 and infinitesimal generator A, where E
is some topological space. Given a function g and T > 0
does there exists an f so that

g(x) = PT f (x) := Ex [f (XT )]? (1)

If the answer to the above is affirmative, then we can
define a function u : [0,T ]× E 7→ R by u(t , ·) = PT−t f which
will solve

ut + Au = 0;
u(0, ·) = g; (2)

a backward PDE with an initial condition!
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Backward equations with an initial condition

A class of ill-posed PDEs akin to the one given in (2) has
been recently studied in Mathematical Finance literature in
the context of forward utilities (see, e.g., the works by
Nadtochiy as well as Tehranchi and Shkolnikov et al.) .
However, these works search for solutions of (2) over
[0,∞) while the linear inverse problem (1) is related to the
L2-solutions over a bounded interval [0,T ].

This is a crucial distinction as a solution over [0,∞)
necessarily require the initial condition, g, to be unbounded
while the inverse problem (1) with a solution in L2 implicitly
imposes boundary conditions on g given by the behaviour
of the diffusion. In particular, g must vanish at the natural
or absorbing boundaries.
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If g is a density then the linear inverse problem with
positivity constraint is the answer to the following question:

Given the European option price data at time-T can we
find an initial distribution for our favourite diffusion process
to obtain a model consistent with the observed option
prices?
As such, the solutions of (1) provide alternative “answers"
to certain questions in Mathematical Finance that are
traditionally attacked using Skorokhod embedding.

CAUTION: If (1) has a solution for a positive g, the solution
is not necessarily positive:

Consider X being Brownian motion and g(x) = x2.
Then, f (x) = x2 − T .
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One dimensional diffusions

In order to make the discussion precise let’s suppose X is
a one-dimensional diffusion on a natural scale on (l , r ) with
a given boundary behaviour, i.e. A = 1

2σ
2 d2

dx2 where σ is a
nonnegative measurable function. The associated speed
measure, m, on (l , r ) has density 2/σ2(x)dx on the interior,
I, of the domain.

Then, it is well-known that A is symmetric with respect to
m.
That is, if f and h are in D(A) ∩ L2(I,m) ∩ S, where S is the
class of functions satisfying the boundary conditions
stipulated by the behaviour of the diffusion at the boundary,
then

(Af ,h) = (f ,Ah),

where (f ,h) :=
∫

I f (x)h(x)m(dx) is the inner product on the
Hilbert space H = L2(I,m).
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The spectrum of A

Consider the eigenvalue problem

Aφ = −λφ, φ ∈ S.

The values of λ for which the above equation has a
nontrivial solution make up the spectrum of A.
If none of the boundaries are natural it was shown by
Joanne Elliott (1954) that the spectrum of A is discrete.
Moreover, there exists a function p(t , x , y ) symmetric in x
and y and continuous in all variables such that for any
continuous f vanishing at the boundaries of I we have

Pt f (x) =
∫

I
p(t , x , y )m(dy ).
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The function p(t , x , y ) has the representation

p(t , x , y ) =
∞∑

n=0

e−λntφn(x)φn(y ),

where ) ≤ λ0 ≤ λ1 ≤ . . . λn ≤ . . . are the eigenvalues
increasing to∞ and φns are corresponding eigenfunctions.
Moreover, (φn) is an orthonormal sequence, i.e ‖φn‖ = 1
and (φn, φm) = 0 for n 6= m.

The spectral expansion of the transition density in
presence of natural boundaries is obtained by H. P.
McKean. In this case the spectrum is not necessarily
discrete and the eigenfunctions are not necessarily square
integrable.
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Introducing the inverse operator

To make the presentation simpler let’s redefine Pt so that
Pt f (x) =

∫
I p(t , x , y )f (y )m(dy ). (Pt ) is still a kernel but it is

sub-Markovian, i.e. Pt1 < 1 if one of the boundaries are
absorbing.

To ease the exposition we will assume that there are no
natural boundaries but all the results will continue to hold
when a natural boundary is present after appropriate
modifications.
Note that if f ∈ H and vanishes at the absorbing
boundaries, then

Pt f =
∞∑

n=0

e−λnt (φn, f )φn.

Thus, if g = Pt f , we can recover f from g via

f =
∞∑

n=0

eλnt (φn,g)φn.
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The above gives us a recipe to solve our inverse problem.
In order to determine the domain of P−1

t first note that
g ∈ S ∩H ∩D(A∞) if g = Pt f for t > 0 whenever f ∈ H.

Let D(P−1
t ) be the class of functions, g, in S ∩H ∩D(A∞)

such that
∞∑

n=0

e2λnt (g, φn)2 <∞.

Then, we may define

P−1
t : g ∈ D(P−1

t ) 7→
∞∑

n=0

eλnt (g, φn)φn.

It is worth to note that the sum in the above definition
converges absolutely and uniformly on the compact
squares of I × I.
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Note, however, that since λn →∞, eλnt →∞, indicating
that P−1

t is an unbounded operator.

Unboundedness of the operator in particular implies that
one cannot have a solution for every g and the domain of
the operator P−1

T is dense.
The last observation is both bad and good news: Even if
we cannot have a solution to the original problem, we can
get arbitrarily close to a solution.
Remark: If A were bounded, i.e. if X were a Markov chain,
then P−1

t would have the full domain being a bounded
operator.
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An example

The simplest example of functions in D(P−1
t ) is g = p(u, z, ·) for

u > t and z ∈ I. Indeed, since

g =
∞∑

n=0

e−λnuφn(z)φn,

∞∑
n=0

e2λnt (g, φn)2 =
∞∑

n=0

e−2λn(u−t)φ2
n(z) = p(2(u − t), z, z) <∞.

Moreover,

P−1
t g(x) =

∞∑
n=0

e−λn(u−t)φn(z)φn(x) = p(u − t , z, x),

as one would also guess from the semi-group relation

p(u, z, x) =
∫

I
p(t , x , y )p(u − t , z, y )m(dy )

in view of the symmetry of p.
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How to determine whether g ∈ D(P−1
t )

It turns out that there is a ‘simple’ criterion that will provide
the answer to our question.
Define the operator J α for α > 0 by

J αg(t , x) :=
∫ ∞

0
J0(2
√

ts)e−αsPsg(x)ds,

where J0 is the Bessel function of the first kind of order 0. If
X is transient α can be taken equal 0.
One can show easily that t 7→ (J αg(t , ·),g) is convex and
decreasing to 0 as t →∞.
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Coming back to our original question of whether g belongs
to D(P−1

T ), the answer lies in the tail behaviour of
(J αg(t , ·),g).
In fact, it is fairly easy to show that g ∈ D(P−1

T ) if and only if∫ ∞
0

I0(2
√

2Tt)
∫ ∞

0
J0(2
√

ts)e−αs(Psg,g)dsdt <∞,

where I0 is the modified Bessel function of the first kind of
order 0.
We also have the inversion formula

P−1
T g = e−αT

∫ ∞
0

I0(2
√

Tt)
∫ ∞

0
J0(2
√

ts)e−αsPsgdsdt . (3)
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Alternative construction using a Picard iteration

For λ ≥ 0 consider the λ-potential operator:

Uλ :=
∫ ∞

0
e−λtPtdt .

Then, J αg is the unique solution of the following Cauchy
problem:

d
dt

j(t , ·) = −Uαj(t , ·)

j(0, ·) = Uαg.

Consequently, if we set

j0(s, ·) = Uαg,

jn+1(s, ·) = Uαg −
∫ t

0
Uαjn(r , ·)dr ,

(jn(·, ·))n≥0 converges in L2([0, t ]× E,ds ×m) to (J αs g)s∈[0,t ]
if t < α, where ds denotes the Lebesgue measure on [0, t ].
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Regularisation

The most common method in practice is the Tikhonov
regularisation, which in our set up corresponds to the solution
of

Pt f + γf = g, γ > 0, g ∈ L2(m).

The above is a special case of the following:

Theorem 1

Suppose that φ : R+ 7→ R+ is continuous with
lim infx→∞ φ(x) > 0 and supx≥0 e−txφ(x) <∞. Then,

(1− γ)Pt f + γφ(−A)f = g, γ ∈ (0,1), (4)

has a unique solution for any g ∈ L2(m) and t > 0. Moreover,
the solution has the property that

(1− γ)f = arg min
h∈L2(m)

‖Pth − g‖2 +
γ

1− γ
(Ptφ(−A)h,h). (5)
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The assumption that lim infx→∞ φ(x) > 0 cannot be
dispensed easily if (4) is to have a solution for any given
g ∈ L2(m). To wit take φ(x) = e−tx . Then (4) becomes
Pt f = g, which does not have a solution in general.
For each γ ∈ (0,1) denote by fγ the solution of (4). Assume
further that g ∈ D(P−1

t ). Then

lim
γ→0
‖fγ − P−1

t g‖ = 0.

Although looking abstract the above theorem furnishes us
with a plethora of concrete examples for regularising the
inverse problem. Before giving some concrete examples
let us consider the following corollary.
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Mixing with jump processes

Suppose that K is a bounded positive operator such that
K = ψ(−A) for some bounded continuous function
ψ : R+ 7→ [0,1] and γ ∈ (0,1) is arbitrary. In an enlargement of
the probability space there exists a Markov process Y such that

Y = ξX + (1− ξ)J,

where ξ is a Bernoulli random variable with P(ξ = 1) = γ, J is a
jump Markov process with generator

Bf = Kf − f , f ∈ L2(m),

and ξ, J and X are mutually independent. Moreover,
D(Q−1

t ) = L2(m), where (Qt ) is the semigroup associated to Y .
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Examples

Fix T ∗ > 0 and let K = PT ∗ . Then, J is a Markov jump
process that remains constant between the jumps of a
Poisson process with unit parameter and moves between
the points of E according to the transition function PT ∗ or is
sent to the cemetery state with probability
1−

∫
E p(T ∗, x , y )m(dy ).

In particular, when X is a Brownian motion, the process Y
is a Brownian motion with probability γ and a compound
Poisson process with normally distributed jumps with
probability 1− γ .

One can also consider K = λUλ for some λ > 0.
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What is missing?

A comparison result:
Recall that Falkner (1983) has shown (under duality
assumption and another mild condition) for a general
transient Markov process, X , with potential operator U that
if Uµ ≤ Uν for measures µ and ν, then one can find a
stopping time τ such that Xτ has law µ if ν is the
distribution of X0.

A comparison result of this nature would be really useful.
Note that in order for g ∈ D(P−1

T ) it is necessary that
Ug ≤ Uh for some h ∈ D(P−1

T ).
However, this necessary condition is not sufficient: Let g
be the distribution of Xτ , where τ = inf{t ≥ T : |Xt | > a}
and X is a standard Brownian motion killed as soon as it
exits a finite interval. g cannot be in D(P−1

T ) since it has a
point mass.
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