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Game options

Extend the setup of American options by allowing the seller to
cancel the contract (introduced by Kifer in 2000).

If the buyer exercises the contract at time τ , he gets ξτ from
the seller
If the seller cancels at σ before τ , then he has to pay ζσ to
the buyer
ζt − ξt ≥ 0, for all t represents the penalty for the seller for
the cancellation of the contract.

The seller pays to the buyer the payoff I(τ, σ) := ξτ1τ≤σ + ζσ1τ>σ
at the terminal time τ ∧ σ.
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Literature

In a perfect complete market, Kifer (2000) shows both in the
CRR discrete time-model and in the Black-Scholes model (with ξ
and ζ continuous), that the superhedging price is equal to the
value function of a Dynkin game:

u0 = sup
τ

inf
σ

EQ[ξ̃τ1τ≤σ + ζ̃σ1τ>σ] = inf
σ

sup
τ

EQ[ξ̃τ1τ≤σ + ζ̃σ1τ>σ],

where ξ̃t , ζ̃t are the discounted values of ξt ,ζt and EQ represents
the expectation under the unique martingale probability measure
Q of the market model.
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Literature

Other works: on pricing of games options or more sophisticated
game-type financial contracts (e.g. swing game options)

↪→ In the discrete time: Dolinsky and Kifer (2007), Dolinsky and
al. (2011)

↪→ In the continuous time perfect market model with continuous
payoffs - Hamadène (2006), Kifer (2013)

↪→ Pricing of game options in a market with default - Bielecki
and al. (2009)
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Contribution

Study the game options (pricing and superhedging) in the
case of imperfections in the market taken into account via
the nonlinearity of the wealth dynamics (in the case when
there also exists the possibility of a default and the payoffs
are irregular).
Study game options under model uncertainty, in particular
ambiguity on the default probability.
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Model

Let (Ω,G,P) be a complete probability space equipped with
a unidimensional standard Brownian motion W
a jump process N defined by Nt = 1ϑ≤t for any t ∈ [0,T ],
where ϑ is a r.v. which modelizes a default time. We assume
that this default can appear at any time that is P(ϑ > t) > 0
for any t ∈ [0,T ].

We denote by G = {Gt ,0 ≤ t ≤ T} the complete natural filtration
of W and N. We suppose that W is a G-brownian motion.
Let M be the compensated martingale of the process N:

Mt = Nt −
∫ t

0
λsds .

The process (λt ) is called intensity. λ vanishes after the default
time ϑ.
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Financial market

3 assets: prices S0,S1,S2 satisfying:
dS0

t = S0
t rtdt

dS1
t = S1

t [µ1
t dt + σ1

t dWt ]

dS2
t = S2

t [µ2
t dt + σ2

t dWt − dMt ].

The price process S2 admits a discontinuity at time ϑ.
All processes σ1, σ2, r , µ1, µ2 are G-predictable. We set
σ = (σ1, σ2)′. We assume
σ1, σ2 > 0, and the coefficients σ1, σ2, µ1, µ2, (σ1)−1, (σ2)−1

are bounded. The interest rate r is lower bounded.
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Financial market

Let us consider an investor, endowed with an initial wealth x .
At t , he chooses the amount ϕ1

t (resp. ϕ2
t ) invested S1 (resp

S2).
ϕ2 vanishes after ϑ.
ϕ. = (ϕ1

t , ϕ
2
t )′ is called risky assets stategy.

Let V x ,ϕ
t (or Vt ) = value of the portfolio.
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Linear pricing

Perfect market model

dVt = (rtVt + ϕ1
t θ

1
t σ

1
t − λtϕ

2
t θ

2
t )dt + ϕ′tσtdWt − ϕ2

t dMt ,

where θ1
t :=

µ1
t − rt

σ1
t

and θ2
t := −

µ2
t − σ2

t θ
1
t − rt

λt
1t≤ϑ.

Consider an European option with maturity T and payoff ξ. The
unique solution (X ,Z ,K ) of the linear BSDE with default:

−dXt = −(rtXt + (Zt + σ2
t Kt )θ

1
t + Ktθ

2
t λt )︸ ︷︷ ︸

g(t ,y ,z,k)=−(rt y+(z+σ2
t k1t≤ϑ))θ

1
t +θ

2
t λt k

dt − ZtdWt − KtdMt ; XT = ξ.

provides the replicating portfolio. The heging strategy ϕ is such
that

ϕ′tσt = Zt ; ϕ2
t = −Kt .

This defines a change of variables Φ(Z ,K ) := (ϕ1, ϕ2).
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Nonlinear pricing

The imperfect market modelMg

The imperfections in the market are taken into account via the
nonlinearity of the dynamics of the wealth V x ,φ

t :

−dVt = g(t ,Vt , ϕt
′σt , ϕ

2
t )dt + ϕt

′σtdWt − ϕ2
t dMt ,

Consider an European option with maturity S ∈ [0,T ] and
terminal payoff ξ. The unique solution (X ,Z ,K ) of the nonlinear
BSDE with default

−dXt = g(t ,Xt ,Zt ,Kt )dt − ZtdWt − KtdMt , XS = ξ.

gives the hedging price (X ) and the hedging strategy
(ϕ1, ϕ2) := Φ(Z ,K ).
This leads to a nonlinear pricing system (introduced by El
Karoui-Quenez), denoted by Eg : ∀S ∈ [0,T ], ∀ ξ ∈ L2

Eg
t ,S[ξ] := Xt (S, ξ), t ∈ [0,S].
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Nonlinear pricing

The imperfect market modelMg

Examples of imperfections:

Different borrowing and lending interest rates Rt and rt with
Rt ≥ rt .
g(t ,Vt , ϕtσt ,−ϕ2

t ) =
−(rtVt + ϕ1

t θ
1
t σ

1
t − ϕ2

t λtθ
2
t ) + (Rt − rt )(Vt − ϕ1

t − ϕ2
t )−

Large investor whose trading strategy ϕt impacts the market
prices: rt (ω) = r̄(t , ω, ϕt ) and similarly for σ1, σ2, θ1, θ2.

g(t ,Vt , ϕtσt ,−ϕ2
t ) = −r̄(t , ϕt )Vt−ϕ1

t (θ̄1σ̄1)(t , ϕt )+ϕ2
t λt θ̄

2(t , ϕt ).
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Nonlinear pricing and hedging

The imperfect market modelMg

Definition [Driver, λ-admissible driver]
A function g is said to be a driver if g : [0,T ]× Ω× R3 → R;
(ω, t , y , z, k) 7→ g(ω, t , y , z, k) is P ⊗ B(R3)− measurable,
and g(.,0,0,0) ∈ H2.
A driver g is called a λ-admissible driver if moreover there
exists a constant C ≥ 0 such that dP ⊗ dt-a.s. ,

for each (y , z, k), (y1, z1, k1), (y2, z2, k2),

|g(ω, t , y , z1, k1)− g(ω, t , y , z2, k2)| ≤ C(|z1 − z2|+
√
λt |k1 − k2|),

and

(g(ω, t , y1, z, k)− g(ω, t , y2, z, k))(y1 − y2) ≤ C|y1 − y2|2.

The positive real C is called the λ-constant associated with driver
g.
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Nonlinear pricing and hedging of Game options

Definition 1: For each initial wealth x , a super-hedge against
the game option is a pair (σ, ϕ) of a s.t. σ ∈ T and a strategy ϕ
such that

V x ,ϕ
t ≥ ξt , 0 ≤ t ≤ σ and V x ,ϕ

σ ≥ ζσ a.s.
(Kifer 2000)

A(x) := set of all super-hedges associated with x .

Definition 2: Define

u0 := inf{x ∈ R, ∃(σ, ϕ) ∈ A(x)}.

if inf is attained 7→ u0 is a super-hedging price.
if inf is not attained 7→ u0 is a "nearly" super-hedging
price.
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Nonlinear pricing and hedging of Game options

Definition 3: A natural price for the seller of the game option is
the g-value defined by

Y (0) := inf
σ∈T

sup
τ∈T
Eg[I(τ, σ)],

where I(τ, σ) := ξτ1τ≤σ + ζ1σ<τ .
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Nonlinear pricing and hedging of Game options

Aim

Characterization of the superhedging price
Characterization of the superhedging strategy
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Nonlinear pricing and hedging of Game options

Main mathematical tool
Let ξ and ζ such that ξt ≤ ζt , ξT = ζT a.s. and satisfying the
Mokobodzki’s condition.

Definition (DRBSDE(g, ξ, ζ))

− dYt = g(t ,Yt ,Zt , kt )dt + dAt − dA′t − ZtdWt − KtdMt

YT = ξT ,

ξt ≤ Yt ≤ ζt , 0 ≤ t ≤ T a.s.,

A and A′ are nondecreasing RCLL predictable processes with
A0 = 0,A′0 = 0 and such that{ ∫ T

0 (Yt− − ξt−)dAt = 0 a.s. and
∫ T

0 (ζt− − Yt−)dA′t = 0 a.s.
dAt ⊥ dA′t .
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Nonlinear pricing and hedging of Game options

Case I: ζ is left lower-s.c. along stopping times

Theorem (Characterization)

The superhedging price u0 = g-value of the game option, i.e.

u0 = inf
σ∈T

sup
τ∈T
Eg

0,τ∧σ[I(τ, σ)] = sup
τ∈T

inf
σ∈T
Eg

0,τ∧σ[I(τ, σ)]

Let (Y ,Z ,K ,A,A′) be the solution of the DRBSDE(g, ξ, ζ).
We have u0 = Y0. Let σ∗ := inf{t ≥ 0, Yt = ζt} and
ϕ∗ := Φ(Z ,K ). Then, (σ∗, ϕ∗) is a superhedge.
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Nonlinear pricing and hedging of Game options

Main step in the proof : Links between DRBSDEs and
Generalized Dynkin Game (Dum.-Quenez-Sulem, EJP(2016)).

If Y denotes the solution of the DRBSDE(g, ξ, ζ), we have:

Y0 =

g-value︷ ︸︸ ︷
inf
σ

sup
τ
Eg

0,τ∧σ[I(τ, σ)] = sup
τ

inf
σ
Eg

0,τ∧σ[I(τ, σ)]︸ ︷︷ ︸
Value Generalized Dynkin Game

.

In other words, the solution of the doubly reflected BSDE
corresponds to the value function of an optimal stopping game
with nonlinear expectation (Generalized Dynkin Game).

Remark : There does not a priori exist τ∗ such that (τ∗, σ∗) is
a saddle point for the game problem.



Game options Nonlinear pricing and hedging

Nonlinear pricing and hedging of Game options

Case II: ξ and ζ are only RCLL processes

When ζ is only RCLL, there does not necessarily exist a
super-hedge against the option.

Theorem
The "nearly" superhedging price u0 = g-value of the game
option, i.e.

u0 = inf
σ∈T

sup
τ∈T
Eg

0,τ∧σ[I(τ, σ)] = sup
τ∈T

inf
σ∈T
Eg

0,τ∧σ[I(τ, σ)]

For each ε > 0, let σε := inf{t ≥ 0 : Yt ≥ ζt − ε}. Let us consider
the risky assets strategy ϕ∗ := Φ(Z ,K ). We have

V Y0,ϕ
∗

t ≥ ξt , 0 ≤ t ≤ σε a.s. and V Y0,ϕ
∗

σε ≥ ζσε − ε a.s.

In other terms, the pair (σε, ϕ
∗) is an ε-super-hedge for the initial

capital amount Y0.
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Nonlinear pricing and hedging of Game options with
uncertainty on the model

Let G : [0,T ]× Ω× R3 × U → R ;
(t , ω, z, k ,u) 7→ G(t , ω, y , z, k ,u), be a given measurable
function (satisfying "good" assumptions).
For each u ∈ U , the associated driver is given by
gu(t , ω, y , z, k) := G(t , ω, y , z, k ,ut (ω)).
To each ambiguity parameter u, corresponds a market
modelMu where the wealth process V u,x ,ϕ satisfies

−dV u,x ,ϕ
t = G(t ,V u,x ,ϕ

t , ϕtσt ,−ϕ2
t ,ut )dt − ϕtσtdWt − ϕ2

t dMt ;

V u,x ,ϕ
0 = x .
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Nonlinear pricing and hedging of Game options with
uncertainty on the model

In the market modelMu, the nonlinear pricing system is
given by Egu

:= {Egu

t ,S, S ∈ [0,T ], t ∈ [0,S]}.
For each u ∈ U , we denote by Y u(0) the g-value of the
game option in the market modelMu. It is equal to Y u

0 ,
where (Y u,Z u,K u,Au,A′u) is the unique solution of the
DRBSDE(gu, ξ, ζ).
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Nonlinear pricing and hedging of Game options with
uncertainty on the model

The seller being adverse to ambiguity, a natural value price of
the game option, called g-value, is

Y (0) := inf
σ∈T

sup
u∈U

sup
τ∈T
Egu

0,τ∧σ[I(τ, σ)].
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Nonlinear pricing and hedging of Game options with
uncertainty on the model

Definition 1: For each initial wealth x , a super-hedge against
the game option is a pair (σ, ϕ) of a s.t. σ ∈ T and a portfolio
strategy ϕ such that for each u ∈ U , V u,x ,ϕ

t ≥ ξt , 0 ≤ t ≤ σ
and V u,x ,ϕ

σ ≥ ζσ a.s.

A(x) := set of all super-hedges associated with x .

Definition 2: Define

u0 := inf{x ∈ R, ∃(σ, ϕ) ∈ A(x)}.

if inf is attained 7→ u0 is a super-hedging price.
if inf is not attained 7→ u0 is a "nearly" super-hedging
price.
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Nonlinear pricing and hedging of Game options with
uncertainty on the model

Particular case: ζ is lower s.c. along stopping times

Theorem (Characterization)
The superhedging price u0 of the game option coincides with the
g-value of the game option, that is

u0 = inf
σ∈T

sup
u∈U

sup
τ∈T
Egu

0,τ∧σ[I(τ, σ)].

Let (Y ,Z ,K ,A,A′) be the solution of the DRBSDE(g,ξ,ζ), where

g(t , ω, y , z, k) := sup
u∈U

gu(t , ω, y , z, k).

We have u0 = Y0.
Let σ∗ := inf{t ≥ 0, Yt = ζt} and ϕ∗ := Φ(Z ,K ). The pair
(σ∗, ϕ∗) is a super-hedge.
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Nonlinear pricing and hedging of Game options with
uncertainty on the model

Proof: A key point is to identify the g-value to the solution Y of
the DRBSDE(g, ξ, ζ).

1. Optimization principle with BSDEs
• supu supτ E

gu

0,τ∧σ[I(τ, σ)] = supτ supu E
gu

0,τ∧σ[I(τ, σ)] =

supτ E
g
0,τ∧σ[I(τ, σ)].

We get

inf
σ

sup
u

sup
τ
Egu

0,τ∧σ[I(τ, σ)] = inf
σ

sup
τ
Eg

0,τ∧σ[I(τ, σ)].

2. Links between DRBSDEs and Generalized Dynkin Game
(Dum.-Quenez-Sulem, EJP(2016)).

inf
σ

sup
τ
Eg

0,τ∧σ[I(τ, σ)] = Y0.
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Nonlinear pricing and hedging of Game options with
uncertainty on the model

Theorem (Interchange inf− sup)

We have the following equalities:

inf
σ∈T

sup
u∈U

sup
τ∈T
Egu

0,τ∧σ[I(τ, σ)] = sup
u∈U

inf
σ∈T

sup
τ∈T
Egu

0,τ∧σ[I(τ, σ)]

sup
u∈U

sup
τ∈T

inf
σ∈T
Egu

0,τ∧σ[I(τ, σ)].

Financial interpretation:
The superhedging price of the game option in the case with
ambiguity coincides with the supremum over u ∈ U of the
(superhedging) prices Y u

0 corresponding to the market models
Mu.
When U is compact, there exists an optimal u∗ 7→ worst case
scenario.
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Nonlinear pricing and hedging of Game options with
uncertainty on the model

Main idea of the proof:

In order to show equality (1): we establish an optimization
principle for DRBSDEs (using a measurable selection
theorem).
Equality (2) is obtained using the Generalized Dynkin
Games.



Game options Nonlinear pricing and hedging

Nonlinear pricing and hedging of Game options with
uncertainty on the model

General case: ξ and ζ are only RCLL processes

When ζ is only RCLL, there does not necessarily exist a
super-hedge against the option.

Theorem
The g-value of the game option coincides with the "nearly"
superhedging price, that is Y0 = u0.
For each ε > 0, let σε := inf{t ≥ 0 : Yt ≥ ζt − ε}. Let us consider
the risky assets strategy ϕ∗ := Φ(Z ,K ). The pair (σε, ϕ

∗) is an
ε-super-hedge for the seller.
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Nonlinear pricing and hedging of Game options with
uncertainty on the model

Example with ambiguity on the default probability. Suppose
that G is defined by:

G(t , ω, u, y , z, k) = β(t , ω, u)z + γ(t , ω, u)k + f (t , ω, z, k),

with β, γ bounded. Let Qu be the probability measure which
admits Z u

T as density with respect to P, where (Z u
t ) is the

solution of the following SDE:

dZ u
t = Z u

t [β(t ,ut )dWt + γ(t ,ut )dMt ]; Z u
0 = 1.

Under Qu, W u
t := Wt −

∫ t
0 β(s,us)ds is a Brownian motion and

Mu
t := Mt −

∫ t
0 λs(1 + γ(s,us))ds is a martingale independant of

W u.
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Nonlinear pricing and hedging of Game options with
uncertainty on the model

For each u ∈ U , the market modelMu can be seen as a market
model associated with a probability Qu, where the dynamics of
the wealth process can be written

−dVt = f (t ,Vt ,Zt ,Kt )dt − ZtdW u
t − KtdMu

t .

The gu-evaluation of an option with maturity S and payoff ξ ∈
Lp(FS) with p > 2, can be written

Eu
0,S(ξ) = E f

Qu ,0,S(ξ).

The nonlinear price system in the market modelMu is the
f -evaluation under the probability measure Qu.
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