Asymptotic expansions for fractional stochastic volatility models

Blanka Horvath

Department of Mathematics, Imperial College London

3rd London-Paris Bachelier Workshop on Mathematical Finance

Based on joint works with
with Philipp Harms and Antoine Jacquier and with
Christian Bayer, Peter Friz, Archil Gulisashvili and Benjamin Stemper

September 29, 2016
Implied volatility

- Asset price process: \((S_t = e^{X_t})_{t \geq 0}\), with \(X_0 = 0\).
- No dividend, no interest rate.
- Black-Scholes-Merton (BSM) framework:

\[
C_{BS}(\tau, k, \sigma) := \mathbb{E}_0 \left(e^{X_\tau} - e^{k} \right)_+ = \mathcal{N}(d_+) - e^{k} \mathcal{N}(d_-),
\]

\[
d_{\pm} := -\frac{k}{\sigma \sqrt{\tau}} \pm \frac{1}{2} \sigma \sqrt{\tau}.
\]

- Spot implied volatility \(\sigma_{\tau}(k)\): the unique (non-negative) solution to

\[
C_{\text{observed}}(\tau, k) = C_{BS}(\tau, k, \sigma_{\tau}(k)).
\]

- Implied volatility: unit-free measure of option prices.
Implied volatility

- Asset price process: \((S_t = e^{X_t})_{t \geq 0}\), with \(X_0 = 0\).
- No dividend, no interest rate.
- Black-Scholes-Merton (BSM) framework:

\[
C_{BS}(\tau, k, \sigma) := \mathbb{E}_0 \left(e^{X_\tau} - e^k \right)^+ = \mathcal{N}(d_+) - e^k \mathcal{N}(d_-),
\]

\[
d_{\pm} := -\frac{k}{\sigma \sqrt{\tau}} \pm \frac{1}{2} \sigma \sqrt{\tau}.
\]

- Spot implied volatility \(\sigma_{\tau}(k)\): the unique (non-negative) solution to

\[
C_{\text{observed}}(\tau, k) = C_{BS}(\tau, k, \sigma_{\tau}(k)).
\]

- Implied volatility: unit-free measure of option prices.

However the implied volatility is not available in closed form for most models. Its asymptotic behaviour is available via (small/large \(k, \tau\)) approximations.
Implied volatility ($\sigma_\tau(k)$) asymptotics as $|k| \uparrow \infty$, $\tau \downarrow 0$ or $\tau \uparrow \infty$:

- Mijatović-Tankov (2012): small-τ for jump models.
- Bompis-Gobet (2015): asymptotic expansions in the presence of both local and stochastic volatility using Malliavin calculus.

Related works:

- Baudoin-Ouyang (2010): small-noise expansions in a fractional setting
- Forde-Zhang (2015): large deviations in a fractional stochastic volatility setting
- Guennon-Jacquier-Roome (2015): large deviations in a fractional Heston model
Motivation

- Classical stochastic volatility models generate a constant short-maturity ATM skew and a large-maturity one proportional to τ^{-1};

- However, short-term data suggests a time decay of the ATM skew proportional to $\tau^{-\alpha}$, $\alpha \in (0, 1/2)$.

- One solution: adding volatility factors (risk of over-parameterisation). Gatheral’s Double Mean-Reverting, Bergomi-Guyon, each factor acting on a specific time horizon.

- In the Lévy case (Tankov, 2010), the situation is different, as $\tau \downarrow 0$:
 - in the pure jump case with $\int_{(-1,1)} |x| \nu(dx) < \infty$, then $\sigma_\tau^2(0) \sim c\tau$;
 - in the (α) stable case, $\sigma_\tau^2(0) \sim c\tau^{1-2/\alpha}$ for $\alpha \in (1, 2)$;
 - for out-of-the-money options, $\sigma_\tau^2(k) \sim \frac{k^2}{2\tau|\log(\tau)|}$.

Blanka Horvath

Asymptotic expansions for fractional stochastic volatility models
Rough volatility models

- Gatheral-Jaisson-Rosenbaum and Bayer-Gatheral-Friz (2014,1015) proposed a fractional volatility model:

\[
\begin{align*}
\frac{dS_t}{S_t} &= \sigma_t dZ_t + \mu_t dt, \\
\sigma_t &= \exp(X_t),
\end{align*}
\]

where

\[X_t = \mu W_t^H - \alpha(X_t - m)dt,
\]

for \(\mu, \alpha > 0\), \(m \in \mathbb{R}\) for a Bm \(Z\) and a fBm motion \(W^H\) with Hurst parameter \(H\).

- Time series of the Oxford-Man SPX realised variance as well as implied volatility smiles of the SPX suggest that \(H \in (0, 1/2)\): **short-memory** volatility.

- Is not statistically rejected by Ait-Sahalia-Jacod’s test (2009) for Itô diffusions.

- Main drawback: loss of Markovianity \((H \neq 1/2)\) rules out PDE techniques, and Monte Carlo is computationally intensive.
Today’s menu

1. Introduction
 - Implied volatility

2. Main result and motivation
 - Our framework and its scope
 - Examples
 - Density asymptotics

3. Corollaries and outlook
 - Short-time expansion
 - Tail expansion
 - Implied volatility asymptotics
 - Outlook: Refined expansions and moderate regimes

4. Proof
 - Notations
 - Sketch of the proof
General setting:

\[
dX_t^\epsilon = b_1(\epsilon^{K_1}, X_t^\epsilon, Y_t^\epsilon) dt + \epsilon^\beta \left(\sigma_{11}(X_t^\epsilon, Y_t^\epsilon) dW_{t}^{H_1} + \sigma_{12}(X_t^\epsilon, Y_t^\epsilon) dW_{t}^{H_2} \right)
\]

\[
dY_t^\epsilon = b_2(\epsilon^{K_2}, X_t^\epsilon, Y_t^\epsilon) dt + \epsilon^\beta \left(\sigma_{21}(X_t^\epsilon, Y_t^\epsilon) dW_{t}^{H_1} + \sigma_{22}(X_t^\epsilon, Y_t^\epsilon) dW_{t}^{H_2} \right).
\]
General setting:

\[
\begin{align*}
 dX^\epsilon_t &= b_1(\epsilon^{\kappa_1}, X^\epsilon_t, Y^\epsilon_t)dt + \epsilon^\beta \left(\sigma_{11}(X^\epsilon_t, Y^\epsilon_t)dW^H_{H_1} + \sigma_{12}(X^\epsilon_t, Y^\epsilon_t)dW^H_{H_2} \right) \\
 dY^\epsilon_t &= b_2(\epsilon^{\kappa_2}, X^\epsilon_t, Y^\epsilon_t)dt + \epsilon^\beta \left(\sigma_{21}(X^\epsilon_t, Y^\epsilon_t)dW^H_{H_1} + \sigma_{22}(X^\epsilon_t, Y^\epsilon_t)dW^H_{H_2} \right).
\end{align*}
\]

Motivation: "Classical" ($H_i = \frac{1}{2}$) case: Deusche-Friz-Jacquier-Violante (2011)

\[
dX^\epsilon_t = b(\epsilon, X^\epsilon_t)dt + \epsilon \sum_{i=1}^{m} \sigma_i(X^\epsilon_t)dW^i_t, \quad X^\epsilon_0 = x^\epsilon_0 \in \mathbb{R}^d
\]
General setting:

\[
\begin{align*}
 dX_t^\epsilon &= b_1(\epsilon^{\kappa_1}, X_t^\epsilon, Y_t^\epsilon)dt + \epsilon^{\beta} \left(\sigma_{11}(X_t^\epsilon, Y_t^\epsilon)dW_t^{H_1} + \sigma_{12}(X_t^\epsilon, Y_t^\epsilon)dW_t^{H_2} \right) \\
 dY_t^\epsilon &= b_2(\epsilon^{\kappa_2}, X_t^\epsilon, Y_t^\epsilon)dt + \epsilon^{\beta} \left(\sigma_{21}(X_t^\epsilon, Y_t^\epsilon)dW_t^{H_1} + \sigma_{22}(X_t^\epsilon, Y_t^\epsilon)dW_t^{H_2} \right).
\end{align*}
\]

Motivation: "Classical" \((H_i = \frac{1}{2})\) case: Deuschel-Friz-Jacquier-Violante (2011)

\[
dX_t^\epsilon = b(\epsilon, X_t^\epsilon)dt + \epsilon \sum_{i=1}^{m} \sigma_i(X_t^\epsilon)dW_t^i, \quad X_0^\epsilon = x_0^\epsilon \in \mathbb{R}^d
\]

Fractional \((H_i = H \in (\frac{1}{4}, 1))\) case: Baudoin-Ouyang (2015)

\[
dX_t^\epsilon = b(\epsilon, X_t^\epsilon)dt + \epsilon \sum_{i=1}^{m} \sigma_i(X_t^\epsilon)d(W^H)_t^i, \quad X_0^\epsilon = x_0^\epsilon \in \mathbb{R}^d
\]
General setting:

\[
\begin{align*}
 dX_t^\varepsilon &= b_1(\varepsilon^{\kappa_1}, X_t^\varepsilon, Y_t^\varepsilon) dt + \varepsilon^\beta \left(\sigma_{11}(X_t^\varepsilon, Y_t^\varepsilon) dW_t^{H_1} + \sigma_{12}(X_t^\varepsilon, Y_t^\varepsilon) dW_t^{H_2} \right) \\
 dY_t^\varepsilon &= b_2(\varepsilon^{\kappa_2}, X_t^\varepsilon, Y_t^\varepsilon) dt + \varepsilon^\beta \left(\sigma_{21}(X_t^\varepsilon, Y_t^\varepsilon) dW_t^{H_1} + \sigma_{22}(X_t^\varepsilon, Y_t^\varepsilon) dW_t^{H_2} \right).
\end{align*}
\]

Motivation: "Classical" ($H_i = \frac{1}{2}$) case: Deuschel-Friz-Jacquier-Violante (2011)

\[
dX_t^\varepsilon = b(\varepsilon, X_t^\varepsilon) dt + \varepsilon \sum_{i=1}^m \sigma_i(X_t^\varepsilon) dW_t^i, \quad X_0^\varepsilon = x_0^\varepsilon \in \mathbb{R}^d
\]

Fractional ($H_i = H \in (\frac{1}{4}, 1)$) case: Baudoin-Ouyang (2015)

\[
dX_t^\varepsilon = b(\varepsilon, X_t^\varepsilon) dt + \varepsilon \sum_{i=1}^m \sigma_i(X_t^\varepsilon) d(W^H)_t^i, \quad X_0^\varepsilon = x_0^\varepsilon \in \mathbb{R}^d
\]

Assumptions made: $b(\varepsilon, \cdot) \to \sigma_0(\cdot)$ and $x_0^\varepsilon \to x_0$ as $\varepsilon \to 0$, the weak Hörmander condition for $\{\sigma_0, \sigma_1, \ldots, \sigma_d\}$ at x_0, and vector fields are C^∞-bounded (can be relaxed).
General setting:

\[
\begin{align*}
 dX_t^\varepsilon &= b_1(\varepsilon^{\kappa_1}, X_t^\varepsilon, Y_t^\varepsilon) dt + \varepsilon^\beta \left(\sigma_{11}(X_t^\varepsilon, Y_t^\varepsilon) dW_{t}^{H_1} + \sigma_{12}(X_t^\varepsilon, Y_t^\varepsilon) dW_{t}^{H_2} \right), \\
 dY_t^\varepsilon &= b_2(\varepsilon^{\kappa_2}, X_t^\varepsilon, Y_t^\varepsilon) dt + \varepsilon^\beta \left(\sigma_{21}(X_t^\varepsilon, Y_t^\varepsilon) dW_{t}^{H_1} + \sigma_{22}(X_t^\varepsilon, Y_t^\varepsilon) dW_{t}^{H_2} \right).
\end{align*}
\]

Motivation: "Classical" ($H_i = \frac{1}{2}$) case: Deuschel-Friz-Jacquier-Violante (2011)

\[
dX_t^\varepsilon = b(\varepsilon, X_t^\varepsilon) dt + \varepsilon \sum_{i=1}^{m} \sigma_i(X_t^\varepsilon) dW_t^i, \quad X_0^\varepsilon = x_0^\varepsilon \in \mathbb{R}^d
\]

Fractional ($H_i = H \in (\frac{1}{4}, 1)$) case: Baudoin-Ouyang (2015)

\[
dX_t^\varepsilon = b(\varepsilon, X_t^\varepsilon) dt + \varepsilon \sum_{i=1}^{m} \sigma_i(X_t^\varepsilon) d(W^H)_t^i, \quad X_0^\varepsilon = x_0^\varepsilon \in \mathbb{R}^d
\]

Assumptions made: $b(\varepsilon, \cdot) \rightarrow \sigma_0(\cdot)$ and $X_0^\varepsilon \rightarrow x_0$ as $\varepsilon \rightarrow 0$, the weak Hörmander condition for $\{\sigma_0, \sigma_1, \ldots, \sigma_d\}$ at x_0, and vector fields are C^∞-bounded (can be relaxed).

Our main interest: $H_1 = \frac{1}{2}, H_2 \neq \frac{1}{2}$.

Blanka Horvath

Asymptotic expansions for fractional stochastic volatility models
Our setting:

\[dx_t^\epsilon = b_1(\epsilon^{\kappa_1}, Y_t^{\epsilon})dt + \epsilon^\beta \sigma_1(Y_t^{\epsilon})dW_t \]
\[dY_t^\epsilon = b_2(\epsilon^{\kappa_2}, Y_t^{\epsilon})dt + \epsilon^\beta \sigma_2 dW_t^H. \]
Our setting:

\begin{align*}
 dX_t^\epsilon &= b_1(\epsilon^{\kappa_1}, Y_t^\epsilon)dt + \epsilon^\beta \sigma_1(Y_t^\epsilon) dW_t \\
 dY_t^\epsilon &= b_2(\epsilon^{\kappa_2}, Y_t^\epsilon)dt + \epsilon^\beta \sigma_2 dW_t^H.
\end{align*}

(2)

\(\sigma_1\) \(\alpha\)-Hölder continuous, \(\alpha \in (0, 1]\), \(\sigma_2 > 0\), (but can be extended to \(\sigma_2(\cdot)\) bounded and elliptic) conditions on \(b_1, b_2\) dictated by scaling and existence, and \(H \neq 1/2\), particular interest in \(H < 1/2\).
Our setting:

\begin{align}
 dX_t^\varepsilon &= b_1(\varepsilon^{\kappa_1}, Y_t^\varepsilon)dt + \varepsilon^{\beta} \sigma_1(Y_t^\varepsilon)dW_t \\
 dY_t^\varepsilon &= b_2(\varepsilon^{\kappa_2}, Y_t^\varepsilon)dt + \varepsilon^{\beta} \sigma_2 dW_t^H.
\end{align}

(2)

\(\sigma_1\) \(\alpha\)-Hölder continuous, \(\alpha \in (0, 1]\), \(\sigma_2 > 0\), (but can be extended to \(\sigma_2(\cdot)\) bounded and elliptic) conditions on \(b_1, b_2\) dictated by scaling and existence, and \(H \neq 1/2\), particular interest in \(H < 1/2\).

To introduce correlation we consider \(\tilde{B}\) and \(B\) independent, and set \(W = \bar{\rho}\tilde{B} + \rho B\) and

\[W^H = \int_0^t K(t, s)B_s\]

where \(K\) the Volterra kernel of the (standard) fBm \(W^H\).
Our setting:

\[
\begin{align*}
 dX_t^\epsilon &= b_1(\epsilon^{\kappa_1}, Y_t^\epsilon)dt + \epsilon^\beta \sigma_1(Y_t^\epsilon)dW_t \\
 dY_t^\epsilon &= b_2(\epsilon^{\kappa_2}, Y_t^\epsilon)dt + \epsilon^\beta \sigma_2 dW_t^H.
\end{align*}
\]

\(\sigma_1\) \(\alpha\)-Hölder continuous, \(\alpha \in (0, 1]\), \(\sigma_2 > 0\), (but can be extended to \(\sigma_2(\cdot)\) bounded and elliptic) conditions on \(b_1, b_2\) dictated by scaling and existence, and \(H \neq 1/2\), particular interest in \(H < 1/2\).

To introduce correlation we consider \(\tilde{B}\) and \(B\) independent, and set \(W = \bar{\rho}\tilde{B} + \rho B\) and

\[W^H = \int_0^t K(t, s)B_s\]

where \(K\) the Volterra kernel of the (standard) fBm \(W^H\).

Remark: The setting of Forde-Zhang '16 is included. With a leap of faith Gatheral-Jaisson-Rosenbaum '14 and Bayer-Friz-Gatheral '15 as well.
Our setting:

\[dX_t^\epsilon = b_1(\epsilon^{\kappa_1}, Y_t^\epsilon) dt + \epsilon^\beta \sigma_1(Y_t^\epsilon) dW_t, \quad X_0^\epsilon = x_0^\epsilon \]

\[dY_t^\epsilon = b_2(\epsilon^{\kappa_2}, Y_t^\epsilon) dt + \epsilon^\beta \sigma_2 dW_t^H, \quad Y_0^\epsilon = y_0^\epsilon. \]
Our setting:

\[
\begin{align*}
 dX_t^\epsilon &= b_1(\epsilon^{\kappa_1}, Y_t^\epsilon)dt + \epsilon^\beta \sigma_1(Y_t^\epsilon)dW_t, \quad X_0^\epsilon = x_0^\epsilon \\
 dY_t^\epsilon &= b_2(\epsilon^{\kappa_2}, Y_t^\epsilon)dt + \epsilon^\beta \sigma_2 dW_t^H, \quad Y_0^\epsilon = y_0^\epsilon.
\end{align*}
\] (2)
Our setting:

\[
\begin{align*}
 dX_t^\epsilon &= b_1(\epsilon^{\kappa_1}, Y_t^\epsilon) dt + \epsilon^\beta \sigma_1(Y_t^\epsilon) dW_t, \quad X_0^\epsilon = x_0^\epsilon \\
 dY_t^\epsilon &= b_2(\epsilon^{\kappa_2}, Y_t^\epsilon) dt + \epsilon^\beta \sigma_2 dW_t^H, \quad Y_0^\epsilon = y_0^\epsilon.
\end{align*}
\]

\(2\)

Examples: Consider \((X_0, Y_0) = (0, y_0)\) and

\[
\begin{align*}
 dX_t = -\frac{Y_t^2}{2} dt + Y_t dW_t, \quad dY_t = (a + b Y_t) dt + c dW_t^H.
\end{align*}
\]

\(3\)
Our setting:

\[
\begin{align*}
 dX_t^\varepsilon &= b_1(\varepsilon^{\kappa_1}, Y_t^\varepsilon)dt + \varepsilon^\beta \sigma_1(Y_t^\varepsilon)dW_t, \quad X_0^\varepsilon = x_0^\varepsilon \\
 dY_t^\varepsilon &= b_2(\varepsilon^{\kappa_2}, Y_t^\varepsilon)dt + \varepsilon^\beta \sigma_2 dW_t^H, \quad Y_0^\varepsilon = y_0^\varepsilon.
\end{align*}
\]

Examples: Consider \((X_0, Y_0) = (0, y_0)\) and

\[
dX_t = -\frac{Y_t^2}{2} dt + Y_t dW_t, \quad dY_t = (a + b Y_t) dt + c dW_t^H.
\]

- Define \((X_t^\varepsilon, Y_t^\varepsilon) := (\varepsilon^{2H-1}X_t^\varepsilon, Y_t^\varepsilon) \Rightarrow (2)\) with \(\kappa_1 = 2H + 1\), \(\kappa_2 = 2\) and \(\beta = 2H\), \((x_0^\varepsilon, y_0^\varepsilon) = (0, y_0)\):

\[
\begin{align*}
 dX_t^\varepsilon &= -\varepsilon^{2H+1} \frac{(Y_t^\varepsilon)^2}{2} dt + \varepsilon^{2H} Y_t^\varepsilon dW_t, \quad dY_t^\varepsilon = \varepsilon^2 (a + b Y_t^\varepsilon) dt + \varepsilon^{2H} c dW_t^H.
\end{align*}
\]
Our setting:

\[
\begin{align*}
\frac{dX_t^\varepsilon}{\varepsilon} &= b_1(\varepsilon^{\kappa_1}, Y_{t}^\varepsilon) dt + \varepsilon^\beta \sigma_1(Y_{t}^\varepsilon) dW_t, \\
X_0^\varepsilon &= x_0^\varepsilon \\
\frac{dY_t^\varepsilon}{\varepsilon} &= b_2(\varepsilon^{\kappa_2}, Y_{t}^\varepsilon) dt + \varepsilon^\beta \sigma_2 dW_t^H, \\
Y_0^\varepsilon &= y_0^\varepsilon.
\end{align*}
\]

(2)

Examples: Consider \((X_0, Y_0) = (0, y_0)\) and

\[
\begin{align*}
\frac{dX_t}{2} &= -\frac{Y_t^2}{2} dt + Y_t dW_t, \\
\frac{dY_t}{2} &= (a + b Y_t) dt + c dW_t^H.
\end{align*}
\]

(3)

- Define \((X_t^\varepsilon, Y_t^\varepsilon) := (\varepsilon^{2H-1}X_{\varepsilon t}^2, \varepsilon^{2} Y_{\varepsilon t}^2) \Rightarrow (2)\) with \(\kappa_1 = 2H + 1, \kappa_2 = 2\) and \(\beta = 2H, (x_0^\varepsilon, y_0^\varepsilon) = (0, y_0)\):

\[
\begin{align*}
\frac{dX_t^\varepsilon}{\varepsilon} &= -\varepsilon^{2H+1}\frac{(Y_{t}^\varepsilon)^2}{2} dt + \varepsilon^{2H} Y_t^\varepsilon dW_t, \\
\frac{dY_t^\varepsilon}{\varepsilon} &= \varepsilon^2 (a + b Y_t^\varepsilon) dt + \varepsilon^{2H} c dW_t^H.
\end{align*}
\]

(4)

- Define \((X_t^\varepsilon, Y_t^\varepsilon) := (\varepsilon^{2H}X_t, \varepsilon^H Y_t) \Rightarrow (2)\) with \(\kappa_1 = 0, \kappa_2 = \beta = H, (x_0^\varepsilon, y_0^\varepsilon) = (0, \epsilon^H y_0)\):

\[
\begin{align*}
\frac{dX_t^\varepsilon}{\varepsilon} &= -\frac{(Y_{t}^\varepsilon)^2}{2} dt + \varepsilon^H Y_t^\varepsilon dW_t, \\
\frac{dY_t^\varepsilon}{\varepsilon} &= (a\varepsilon^H + b Y_t^\varepsilon) dt + \varepsilon^H c dW_t^H.
\end{align*}
\]

(5)
Our setting:

\[dX^\varepsilon_t = b_1(\varepsilon^{\kappa_1}, Y^\varepsilon_t)dt + \varepsilon^\beta \sigma_1(Y^\varepsilon_t)dW_t, \quad X^\varepsilon_0 = x^\varepsilon_0 \]
\[dY^\varepsilon_t = b_2(\varepsilon^{\kappa_2}, Y^\varepsilon_t)dt + \varepsilon^\beta \sigma_2 dW^H_t, \quad Y^\varepsilon_0 = y^\varepsilon_0. \]

Examples: Consider \((X_0, Y_0) = (0, y_0)\) and

\[dX_t = -\frac{Y_t^2}{2} dt + Y_t dW_t, \quad dY_t = (a + b Y_t) dt + c dW^H_t. \]

- Define \((X^\varepsilon_t, Y^\varepsilon_t) := (\varepsilon^{2H-1} X_\varepsilon^{2t}, Y^{2H}_t) \Rightarrow (2)\) with \(\kappa_1 = 2H + 1, \kappa_2 = 2\) and \(\beta = 2H, (x^\varepsilon_0, y^\varepsilon_0) = (0, y_0)\):

\[dX^\varepsilon_t = -\varepsilon^{2H+1} \frac{(Y^\varepsilon_t)^2}{2} dt + \varepsilon^{2H}Y^\varepsilon_t dW_t, \quad dY^\varepsilon_t = \varepsilon^2(a + b Y^\varepsilon_t) dt + \varepsilon^{2H} c dW^H_t. \]

- Define \((X^\varepsilon_t, Y^\varepsilon_t) := (\varepsilon^{2H} X_t, \varepsilon^H Y_t) \Rightarrow (2)\) with \(\kappa_1 = 0, \kappa_2 = \beta = H, (x^\varepsilon_0, y^\varepsilon_0) = (0, \varepsilon^H y_0)\):

\[dX^\varepsilon_t = -(Y^\varepsilon_t)^2 dt + \varepsilon^H Y^\varepsilon_t dW_t, \quad dY^\varepsilon_t = \varepsilon^H(a + b Y^\varepsilon_t) dt + \varepsilon^H c dW^H_t. \]

Remark: Scaling (4) \Rightarrow short-time (cf. Forde-Zhang (2015)), scaling (5) \Rightarrow tails.
Theorem (Harms-H-Jacquier)

Consider an SDE of the form (2). Then the density of X^ε_T admits an expansion

$$f_\varepsilon(T, x) = \exp \left(-\frac{\Lambda(x)}{\varepsilon^{2\beta}} + \frac{\Lambda'(x)\hat{X}_T}{\varepsilon^\beta} \right) \varepsilon^{-\min(\kappa_1, \beta)} \left(c_0 + O(\varepsilon^{\delta(\kappa_1, \beta)}) \right), \quad \text{as } \varepsilon \to 0,$$

where

$$\Lambda(x) = \inf \left\{ \frac{1}{2} \|k\|^2_{\mathcal{H}_H}, k \in \mathcal{K}_{x_0, y_0}^x \right\} = \frac{1}{2} \|k_0\|^2_{\mathcal{H}_H},$$

and

$$d\hat{X}_t = \left[\partial_x b \left(0, \phi^k_0 \right) + \partial_x \sigma \left(\phi^h_0 \right) \cdot \dot{k}_0(t) \right] \hat{X}_t dt + \partial_{\varepsilon^\beta} b \left(0, \phi^k_0 \right) dt, \quad \hat{X}_0 = \partial_{\varepsilon^\beta} x_0^\varepsilon \big|_{\varepsilon = 0},$$

where ϕ^k_0 denotes the ODE solution of the same SDE (2) replacing $\varepsilon^\beta dW$ by \dot{k}_0 and x_0^ε by x_0.
Corollary: Varadhan-type asymptotics

Consider the Stein-Stein model \((X_t, Y_t)\) as in (3) with \(X_0 = 0, Y_0 = y_0 > 0\). Then in a neighbourhood of \((x_0, y_0)\) the density of \(X_t\) satisfies the following asymptotic expansion as \(t \to 0\)

\[
f_X(t, x) = \exp \left(\frac{\Lambda(x)}{t^{2H}} \right) t^{-H} \left(\frac{1}{2\pi} + \mathcal{O}(t^{\delta(H,H+1/2)}) \right)
\]

where

\[
\Lambda(x) = \inf \left\{ \frac{1}{2} \|k\|_{H_2}^2, k \in K_{x_0,y_0}^\times \right\}.
\]
Corollary: Varadhan-type asymptotics

Consider the Stein-Stein model \((X_t, Y_t)\) as in (3) with \(X_0 = 0, Y_0 = y_0 > 0\). Then in a neighbourhood of \((x_0, y_0)\) the density of \(X_t\) satisfies the following asymptotic expansion as \(t \to 0\)

\[
f_X(t, x) = \exp \left(\frac{\Lambda(x)}{t^{2H}} \right) t^{-H} \left(\frac{1}{2\pi} + O(t^{\delta(H,H+1/2)}) \right)
\]

where

\[
\Lambda(x) = \inf \left\{ \frac{1}{2} \|k\|^2_{\mathcal{H}_H} : k \in \mathcal{K}_{x_0,y_0}^x \right\}.
\]

Proof: Take \(T = 1, \varepsilon^2 = t\) and consider \((X_\varepsilon^t, Y_\varepsilon^t) := (\varepsilon^{2H-1}X_{\varepsilon^2t}, Y_{\varepsilon^2t})\) with \(X_0^\varepsilon = 0, Y_0^\varepsilon = y_0 > 0\). \(\Rightarrow\) Short-time scaling:

\[
dX_\varepsilon^t = -\varepsilon^{2H+1} \frac{(Y_\varepsilon^t)^2}{2} dt + \varepsilon^{2H} Y_\varepsilon^t dW_t, \quad dY_\varepsilon^t = \varepsilon^2 (a + bY_\varepsilon^t) dt + \varepsilon^{2H} cdW_t^H, \quad (4)
\]

Note that the drift vanishes in the limit \(\varepsilon \to 0\) and \(x_0^\varepsilon = x_0 = 0\).

\(\Rightarrow\) \((\hat{X}_t, \hat{Y}_t) \equiv 0\), so that there is no \(1/\varepsilon^\beta = 1/t^{\beta/2}\) term in the exponential.
Corollary: tail asymptotics

Consider the Stein-Stein model (3) with $X_0 = 0$, $Y_0 = y_0 > 0$. Then as $x \to \infty$,

$$f_X(t, x) = \exp \left(-c_1 x + c_2 x^{1/2} \right) \frac{1}{x^{1/2}} \left(c_0 + O \left(x^{1/2} \right) \right)$$

where $c_1 := \Lambda(1)$, $c_2 := \hat{X}_t \Lambda'(1)$.

Note that the expression on the RHS is independent of the Hurst-parameter!
Corollary: tail asymptotics

Consider the Stein-Stein model (3) with $X_0 = 0$, $Y_0 = y_0 > 0$. Then as $x \to \infty$,

$$f_X(t, x) = \exp\left(-c_1 x + c_2 x^{1/2}\right) \frac{1}{x^{1/2}} \left(c_0 + \mathcal{O}\left(x^{1/2}\right)\right)$$

where $c_1 := \Lambda(1)$, $c_2 := \hat{X}_t \Lambda'(1)$.

Note that the expression on the RHS is independent of the Hurst-parameter!

Proof: Consider $(X_t^\epsilon, Y_t^\epsilon) := (\epsilon^{2H} X_t, \epsilon^H Y_t)$ with $X_0^\epsilon = \epsilon^{2H} X_0$ and $Y_0^\epsilon = \epsilon^H Y_0$.

$$dX_t^\epsilon = -\frac{(Y_t^\epsilon)^2}{2} dt + \epsilon^H Y_t^\epsilon dW_t, \quad dY_t^\epsilon = (a \epsilon^H + b Y_t^\epsilon) dt + \epsilon^H cdW_t^H, \quad (5)$$

Note that $X_t^\epsilon \overset{\Delta}{=} \epsilon^{2H} X_t$. $\Rightarrow \mathbb{P}(X_t^\epsilon \geq y) = \mathbb{P}(X_t \geq y/\epsilon^{2H})$, $\Rightarrow f_X(t, y/\epsilon^{2H}) = \epsilon^{2H} f_\epsilon(t, y)$. Take $y = 1$, that is $x := \epsilon^{-2H}$. By the theorem,

$$f_\epsilon(t, 1) \approx \exp\left(-\frac{\Lambda(1)}{\epsilon^{2H}} + \ldots\right) \frac{1}{\epsilon^H}, \text{ hence}$$

$$f_X(t, x) \approx \exp\left(-\frac{\Lambda(1)}{\epsilon^{2H}} + \ldots\right) \epsilon^H = \exp \left(-\Lambda(1)x + \ldots\right) \frac{1}{x^{1/2}}.$$
From density to implied volatility: small-time

Recall the Black-Scholes density expansion:

\[f_{BS}(t, x) \sim t^{-1/2} \exp \left(-\frac{1}{2t} \left(\frac{x - x_0}{\sigma} \right)^2 \right), \quad \text{as } t \to 0, \quad \text{for any } x \in \mathbb{R}. \]

(We normalise the spot here, so that \(x_0 = 0 \)).

Our theorem (corollary) says that in the Stein-Stein model (3), we have

\[f_X(t, x) \sim \text{cst } t^{-H} \exp \left(-\frac{d^2(x_0, y_0; x)}{2t^{2H}} \right), \quad \text{as } t \to 0. \]
From density to implied volatility: small-time

Recall the Black-Scholes density expansion:

\[f_{BS}(t, x) \sim t^{-1/2} \exp \left(-\frac{1}{2t} \left(\frac{x - x_0}{\sigma} \right)^2 \right), \quad \text{as } t \to 0, \text{ for any } x \in \mathbb{R}. \]

(We normalise the spot here, so that \(x_0 = 0 \)).

Our theorem (corollary) says that in the Stein-Stein model (3), we have

\[f_X(t, x) \sim \text{cst} \ t^{-H} \exp \left(-\frac{d^2(x_0, y_0; x)}{2t^{2H}} \right), \quad \text{as } t \to 0. \]

Matching the leading-orders gives

\[\sigma_{BS}(t, x) \sim \frac{|x|}{d(x_0, y_0; x)} t^{H-1/2} \quad \text{as } t \to 0. \]
From density to implied volatility: tails

Recall the Black-Scholes density expansion:

\[f_{BS}(t, x) \sim \exp \left(-\frac{x^2}{2\sigma^2 t} - \frac{x}{4} \right) \quad \text{as } x \to \infty, \text{ for any } t > 0. \]

Our theorem (corollary) says that in the Stein-Stein model (3), we have

\[f_X(t, x) \sim \frac{\text{cst}}{x^{1/2}} \exp \left(-c_1 x + c_2 \sqrt{x} \right), \quad \text{as } x \to \infty. \]
From density to implied volatility: tails

Recall the Black-Scholes density expansion:

\[f_{BS}(t, x) \sim \exp \left(-\frac{x^2}{2\sigma^2 t} - \frac{x}{4} \right) \quad \text{as} \quad x \to \infty, \quad \text{for any} \quad t > 0. \]

Our theorem (corollary) says that in the Stein-Stein model (3), we have

\[f_X(t, x) \sim \frac{\text{cst}}{x^{1/2}} \exp \left(-c_1 x + c_2 \sqrt{x} \right), \quad \text{as} \quad x \to \infty. \]

Matching the leading-orders gives

\[-c_1 x + c_2 \sqrt{x} \sim -\frac{x^2}{2\sigma^2 t} - \frac{x}{4}, \]

and we recover Roger Lee’s formula independently of the Hurst exponent in (3).
Outlook: Moderate regimes

- Moderate Regimes (in the sense of Friz-Gerhold-Pinter ’16) interpolate between out-of-the-money calls with fixed strike \(\log \frac{K}{S_0} = k > 0 \) and at-the-money \(k = 0 \) calls: Now \(k_t = ct^\theta \Rightarrow \text{MOTM (for } 0 < \theta < \frac{1}{2} \text{)} \) and \(\text{AATM (for larger } \theta \text{)} \)

- Reflects market data: options closer expiry \(\Rightarrow \) strikes closer to the money first observed by Mijatović-Tankov on FX markets

- The moderate regime (MOTM) permits explicit computations for the rate function \(\Lambda(k) \) in terms of the model parameters
 Moderate deviations \(\Rightarrow \) Advantage over OTM (large deviations) case where the \(\Lambda(k) \) often related to geodesic distance problems and not explicitly available.

- MOTM expansions naturally involve quantities very familiar to practitioners, notably spot (implied) volatility, implied volatility skew . . .

- In some cases (fractional volatility models) the scaling \(\theta \) permits a fine-tuning to understand the behavior and derivatives of the energy function.
Moderate regimes for rough volatility

Rescalings \implies We tacitly agreed to consider $\mathbb{P}(X_t \approx t^{1/2-H} x)$. Now it is only a small step to consider instead (for some suitable small $\theta > 0$)

$$
\mathbb{P}
\left(X_t \approx t^{1/2-H+\theta} x\right).
$$
Rescalings \[\implies\] We tacitly agreed to consider \(\mathbb{P}\left(X_t \approx t^{1/2-H} x \right)\). Now it is only a small step to consider instead (for some suitable small \(\theta > 0\))

\[
\mathbb{P}\left(X_t \approx t^{1/2-H+\theta} x \right).
\]

Theorem (Bayer-Friz-Gulisashvili-H-Stemper)

Consider a moderately out-of-the-money call \(k_t = x^{1/2-H+\theta}; \ \theta \in (0, H)\) resp. \(\theta \in (0, \frac{2H}{3})\). Then as \(t \to 0\), the following (non-Markovian extension of Osajima-energy-expansion) holds

\[
\log c(k_t, t) \approx \frac{1}{2} \Lambda''(0) \frac{x^2}{t^{2H-2\theta}} + \frac{1}{6} \Lambda'''(0) \frac{x^3}{t^{2H-3\theta}},
\]

where we have explicit expressions: \(\Lambda''(0) = \frac{1}{\sigma^2_0}\) and \(\Lambda'''(0) = -\rho \frac{6\sigma^2_0}{\sigma^4_0} \langle K, 1 \rangle\).

Here \(K\) denotes the Volterra kernel and \(\langle K, 1 \rangle := \int_0^1 \int_0^1 K(t, s) ds dt\).
Notations

- \mathcal{H}: absolutely continuous paths $[0, T] \rightarrow \mathbb{R}^2$ starting at 0 such that $\| \dot{h} \|^2_\mathcal{H} < \infty$.
- $\mathcal{H}_H := K_H \mathcal{H}$ and $k := K_H h$, where K_H denotes the Volterra kernel.
- For fixed $(x_0, y_0) \in \mathbb{R}^2$, ϕ^k is the (unique) ODE solution to
 \[
 \dot{\phi}^k_t = \sigma_0 (\phi^k_t) \, dt + \sum_{i=1}^m \sigma_i (\phi^h_t) \, dk^i_t, \quad \phi^k_0 = (x_0, y_0).
 \]
- Denote $\psi^k := \Pi_1 \phi^k$ its projection on to the first coordinate X.
- $\mathcal{K}_a := \{ k \in \mathcal{H}_H : \psi^k_T = a \in \mathbb{R} \} \neq \emptyset$ ("by Hörmander condition").
- $\Lambda(a) := \inf \left\{ \frac{1}{2} \| k \|^2_\mathcal{H} : k \in \mathcal{K}_a \right\}$.
Proof of the theorem 1

\[dX_t = -\epsilon^{2H+1} \frac{1}{2} Y_t^2 dt + \epsilon^{2H} Y_t dW_t, \quad dY_t = \epsilon^{2H} dW_t^H, \]

with the same initial condition \(X_0 = Y_0 = 0 \).

Density: \(f_\epsilon(T, x) = \exp \left[-\frac{\Lambda(x)}{\epsilon^{4H}} + \frac{\Lambda'(x) \hat{X}_T}{\epsilon^{2H}} \right] \epsilon^{-2H} \left(c_0 + \mathcal{O}(\epsilon^{2H}) \right) \).
Proof of the theorem 1

\[dX_t = -\epsilon^{2H+1} \frac{1}{2} Y_t^2 \, dt + \epsilon^{2H} Y_t \, dW_t, \quad dY_t = \epsilon^{2H} dW_t^H, \]

with the same initial condition \(X_0 = Y_0 = 0. \)

Density: \(f_\epsilon(T, x) = \exp \left[-\frac{\Lambda(x)}{\epsilon^{4H}} + \frac{\Lambda'(x) \hat{X}_T}{\epsilon^{2H}} \right] \epsilon^{-2H} \left(c_0 + O(\epsilon^{2H}) \right). \)

Proof: Take \(x \in \mathbb{R} \) and a \(C^\infty \)-bounded function \(F \) such that \(F(x) = 0. \)

\[f_\epsilon(T, x) e^{-F(x)/\epsilon^{4H}} = \frac{1}{2\pi \epsilon^{2H}} \int_{\mathbb{R}} \mathbb{E} \left\{ \exp \left[i(\zeta, 0) \cdot \left(\frac{X_T^\epsilon - (x, 0)}{\epsilon^{2H}} \right) - \frac{F(X_T^\epsilon)}{\epsilon^{4H}} \right] \right\} d\zeta. \]

Choose \(F \) such that \(F(\cdot) + \Lambda_{x_0}(\cdot) \) has a non-degenerate minimum at \(z \). This implies that \(k \mapsto F(\phi_T^k(x_0, y_0)) + \frac{1}{2} \|k\|^2_{\mathcal{H}_H} \) has a non-degenerate minimum at \(k_0 \in H. \)

(For instance \(F(z) = \lambda|z - x|^2 - [\Lambda_{x_0, y_0}(z) - \Lambda_{x_0, y_0}(x)] \) with \(\lambda > 0 \)).
Proof of the theorem 2

Replace $\varepsilon^{2H} dB \ (B := (W, W^H))$ in the SDE by $\varepsilon^{2H} dW + \dot{k}_0$.
Call the corresponding Girsanov-transformed process $\tilde{Z}_t^\varepsilon = (\tilde{X}_t^\varepsilon, \tilde{Y}_t^\varepsilon)$:

\[
d\tilde{X}^\varepsilon = -\varepsilon^{2H+1} \frac{1}{2} \tilde{Y}^2 dt + \tilde{Y}^\varepsilon (\varepsilon^{2H} dW_t + (\dot{k}_0)_1), \quad d\tilde{Y} = \varepsilon^{2H} dW^H_t + (\dot{k}_0)_2.
\]

Girsanov factor

\[
G = \exp \left(-\frac{1}{\varepsilon^{2H}} \int_0^T \psi(\dot{k}_0)_t dB_t - \frac{1}{2\varepsilon^{4H}} \|\dot{k}_0\|_2^2 \right).
\]

Therefore

\[
f(x, T) e^{-\frac{F(x)}{4\varepsilon^{4H}}} = \frac{1}{2\pi\varepsilon^{2H}} \int_\mathbb{R} \mathbb{E} \left[e^{\varepsilon^{2H}i\zeta(\tilde{X}_T - x) - \varepsilon^{-4H}F(\tilde{X}_T)G} \right] d\zeta
\]

\[
= \frac{1}{2\pi\varepsilon^{2H}} \int_\mathbb{R} \mathbb{E} \left[e^{(*)} \right] d\zeta
\]

where

\[
(*) = \varepsilon^{2H} i\zeta(\tilde{X}_T - x) - \varepsilon^{-4H} F(\tilde{X}_T) - \varepsilon^{-2H} \int_0^T \psi(\gamma)_t dB_t - \varepsilon^{-4H} \frac{1}{2} \|\gamma\|^2_{1/2,H}.
\]
Proof of the theorem 2

Replace $\varepsilon^{2H}dB (B := (W, W^H))$ in the SDE by $\varepsilon^{2H}dW + \dot{k}_0$.

Call the corresponding Girsanov-transformed process $\tilde{Z}_t^\varepsilon = (\tilde{X}_t^\varepsilon, \tilde{Y}_t^\varepsilon)$:

$$d\tilde{X}_t^\varepsilon = -\varepsilon^{2H+1} \frac{1}{2} \tilde{Y}_t^2 dt + \tilde{Y}_t^\varepsilon (\varepsilon^{2H}dW_t + (\dot{k}_0)_1), \quad d\tilde{Y}_t^\varepsilon = \varepsilon^{2H}dW_t^H + (\dot{k}_0)_2.$$

Girsanov factor

$$G = \exp \left(-\frac{1}{\varepsilon^{2H}} \int_0^T \psi(k_0)_t dB_t - \frac{1}{2\varepsilon^{4H}} \|k_0\|_2^2 \right).$$

By a stochastic Taylor expansion of $\tilde{Z}_t^\varepsilon = (\tilde{X}_t^\varepsilon, \tilde{Y}_t^\varepsilon)$ for $\varepsilon^{2H} \to 0$,

$$\exp \left(\frac{-F(\tilde{X}_t^\varepsilon)}{\varepsilon^{4H}} \right) = \exp \left[\frac{-1}{\varepsilon^{4H}} \left(F(x) - \varepsilon^{2H} \int_0^T \psi(k_0)_t dB_t - \varepsilon^{2H} \hat{X}_T \cdot \Lambda'_{x_0}(x) + O(\varepsilon^{4H}) \right) \right]$$
Proof of the theorem 2

Replace $\varepsilon^{2H}dB \ (B := (W, WH))$ in the SDE by $\varepsilon^{2H}dW + \dot{k}_0$.

Call the corresponding Girsanov-transformed process $\tilde{Z}^\varepsilon = (\tilde{X}^\varepsilon, \tilde{Y}^\varepsilon)$:

$$d\tilde{X}^\varepsilon = -\varepsilon^{2H+1} \frac{1}{2} \tilde{Y}^2 dt + \tilde{Y}^\varepsilon (\varepsilon^{2H}dW_t + (\dot{k}_0)_1), \quad d\tilde{Y}^\varepsilon = \varepsilon^{2H}dWH_t + (\dot{k}_0)_2.$$

Girsanov factor

$$G = \exp \left(-\frac{1}{\varepsilon^{2H}} \int_0^T \psi(k_0)_t dB_t - \frac{1}{2\varepsilon^{4H}} \|k_0\|_H^2 \right).$$

By a stochastic Taylor expansion of $\tilde{Z}^\varepsilon = (\tilde{X}^\varepsilon, \tilde{Y}^\varepsilon)$ for $\varepsilon^{2H} \to 0$,

$$\exp \left(\frac{-F(\tilde{X}^\varepsilon)}{\varepsilon^{4H}} \right) = \exp \left[\left(\frac{1}{\varepsilon^{2H}} \int_0^T \psi(k_0)_t dB_t + \frac{1}{\varepsilon^{2H}} \tilde{X}^\varepsilon \cdot \Lambda'_{x_0}(x) + O(1) \right) \right].$$

The rest of the proof follows Ben Arous' proof for X_T^ε.

Blanka Horvath
Asymptotic expansions for fractional stochastic volatility models
Thank you!