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Implied volatility

Implied volatility

• Asset price process: (St = eXt )t≥0, with X0 = 0.

• No dividend, no interest rate.

• Black-Scholes-Merton (BSM) framework:

CBS(τ, k, σ) := E0

(
eXτ − ek

)
+

= N (d+)− ekN (d−) ,

d± := −
k

σ
√
τ
±

1

2
σ
√
τ .

• Spot implied volatility στ (k): the unique (non-negative) solution to

Cobserved(τ, k) = CBS(τ, k, στ (k)).

• Implied volatility: unit-free measure of option prices.

However the implied volatility is not available in closed form for most models. Its
asymptotic behaviour is available via (small/large k, τ) approximations.

Blanka Horvath Asymptotic expansions for fractional stochastic volatility models



Introduction
Main result and motivation

Corollaries and outlook
Proof

Implied volatility

Implied volatility

• Asset price process: (St = eXt )t≥0, with X0 = 0.

• No dividend, no interest rate.

• Black-Scholes-Merton (BSM) framework:

CBS(τ, k, σ) := E0

(
eXτ − ek

)
+

= N (d+)− ekN (d−) ,

d± := −
k

σ
√
τ
±

1

2
σ
√
τ .

• Spot implied volatility στ (k): the unique (non-negative) solution to

Cobserved(τ, k) = CBS(τ, k, στ (k)).

• Implied volatility: unit-free measure of option prices.

However the implied volatility is not available in closed form for most models. Its
asymptotic behaviour is available via (small/large k, τ) approximations.

Blanka Horvath Asymptotic expansions for fractional stochastic volatility models



Introduction
Main result and motivation

Corollaries and outlook
Proof

Implied volatility

Implied volatility (στ (k)) asymptotics as |k| ↑ ∞, τ ↓ 0 or τ ↑ ∞:

• Hagan-Kumar-Lesniewski-Woodward (2003/2015): small-maturity for the SABR
model

• Berestycki-Busca-Florent (2004): small-τ using PDE methods for diffusions.

• Henry-Labordère (2009): small-τ asymptotics using differential geometry.

• Forde et al.(2012), Jacquier et al.(2012): small/ large τ using large deviations.

• Lee (2003), Benaim-Friz (2009), Gulisashvili (2010-2012), Caravenna-Corbetta
(2016), De Marco-Jacquier-Hillairet (2013): |k| ↑ ∞.

• Laurence-Gatheral-Hsu-Ouyang-Wang (2012): small-τ in local volatility models.

• Fouque et al.(2000-2011): perturbation techniques for slow and fast
mean-reverting stochastic volatility models.

• Mijatović-Tankov (2012): small-τ for jump models.

• Bompis-Gobet (2015): asymptotic expansions in the presence of both local and
stochastic volatility using Malliavin calculus.

Related works:

• Deuschel-Friz-Jacquier-Violante (CPAM 2014), De Marco-Friz (2014): small-noise
expansions using Laplace method on Wiener space (Ben Arous-Bismut approach).

• Baudoin-Ouyang (2010): small-noise expansions in a fractional setting

• Forde-Zhang (2015): large deviations in a fractional stochastic volatility setting

• Guennon-Jacquier-Roome (2015): large deviations in a fractional Heston model
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Motivation

• Classical stochastic volatility models generate a constant short-maturity ATM
skew and a large-maturity one proportional to τ−1;

• However, short-term data suggests a time decay of the ATM skew proportional to
τ−α, α ∈ (0, 1/2).

• One solution: adding volatility factors (risk of over-parameterisation).
Gatheral’s Double Mean-Reverting, Bergomi-Guyon, each factor acting on a
specific time horizon.

• In the Lévy case (Tankov, 2010), the situation is different, as τ ↓ 0:

• in the pure jump case with
∫

(−1,1)
|x|ν(dx) <∞, then σ2

τ (0) ∼ cτ ;

• in the (α) stable case, σ2
τ (0) ∼ cτ 1−2/α for α ∈ (1, 2);

• for out-of-the-money options, σ2
τ (k) ∼

k2

2τ | log(τ)|
.
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Rough volatility models

• Gatheral-Jaisson-Rosenbaum and Bayer-Gatheral-Friz (2014,1015) proposed a
fractional volatility model:

dSt = St(σtdZt + µtdt),
σt = exp (Xt) ,

(1)

where
Xt = µWH

t − α(Xt −m)dt,

for µ, α > 0, m ∈ R for a Bm Z and a fBm motion WH with Hurst parameter H.

• Time series of the Oxford-Man SPX realised variance as well as implied volatility
smiles of the SPX suggest that H ∈ (0, 1/2): short-memory volatility.

• Is not statistically rejected by Ait-Sahalia-Jacod’s test (2009) for Itô diffusions.

• Main drawback: loss of Markovianity (H 6= 1/2) rules out PDE techniques, and
Monte Carlo is computationally intensive.
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General setting:

dX εt = b1(εκ1 ,X εt ,Y
ε
t )dt + εβ

(
σ11(X εt ,Y

ε
t )dWH1

t + σ12(X εt ,Y
ε
t )dWH2

t

)
dY εt = b2(εκ2 ,X εt ,Y

ε
t )dt + εβ

(
σ21(X εt ,Y

ε
t )dWH1

t + σ22(X εt ,Y
ε
t )dWH2

t

)
.

(2)

Motivation: ”Classical” (Hi = 1
2

) case: Deuschel-Friz-Jacquier-Violante (2011)

dXεt = b(ε,Xεt )dt + ε
m∑
i=1

σi (X
ε
t )dW i

t , Xε0 = xε0 ∈ Rd

Fractional (Hi = H ∈ ( 1
4
, 1)) case: Baudoin-Ouyang (2015)

dXεt = b(ε,Xεt )dt + ε

m∑
i=1

σi (X
ε
t )d(WH)it , Xε0 = xε0 ∈ Rd

Assumptions made: b(ε, ·)→ σ0(·) and xε0 → x0 as ε→ 0, the weak Hörmander
condition for {σ0, σ1, . . . , σd} at x0, and vector fields are C∞-bounded (can be
relaxed).

Our main interest: H1 = 1
2
,H2 6= 1

2
.
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Our setting:

dX εt = b1(εκ1 ,Y εt )dt + εβσ1(Y εt )dWt

dY εt = b2(εκ2 ,Y εt )dt + εβσ2dW
H
t .

(2)

σ1 α-Hölder continuous, α ∈ (0, 1], σ2 > 0, (but can be extended to σ2(·) bounded
and elliptic) conditions on b1, b2 dictated by scaling and existence, and H 6= 1/2,
particular interest in H < 1/2.
To introduce correlation we consider B̃ and B independent, and set W = ρ̄B̃ + ρB and

WH =

∫ t

0
K(t, s)Bs

where K the Volterra kernel of the (standard) fBm WH .

Remark: The setting of Forde-Zhang ’16 is included. With a leap of faith
Gatheral-Jaisson-Rosenbaum ’14 and Bayer-Friz-Gatheral ’15 as well.
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Our setting:

dX εt = b1(εκ1 ,Y εt )dt + εβσ1(Y εt )dWt , X ε0 = xε0

dY εt = b2(εκ2 ,Y εt )dt + εβσ2dW
H
t , Y ε0 = yε0 .

(2)

Examples: Consider (X0,Y0) = (0, y0) and

dXt = −
Y 2
t

2
dt + YtdWt , dYt = (a + bYt)dt + cdWH

t . (3)

• Define (X εt ,Y
ε
t ) := (ε2H−1Xε2t ,Yε2t) ⇒ (2) with κ1 = 2H + 1, κ2 = 2 and

β = 2H, (xε0 , y
ε
0 ) = (0, y0):

dX εt = −ε2H+1 (Y εt )2

2
dt + ε2HY εt dWt , dY εt = ε2(a + bY εt )dt + ε2HcdWH

t .

(4)

• Define (X εt ,Y
ε
t ) := (ε2HXt , εHYt) ⇒ (2) with κ1 = 0, κ2 = β = H,

(xε0 , y
ε
0 ) = (0, εHy0):

dX εt = −
(Y εt )2

2
dt + εHY εt dWt , dY εt = (aεH + bY εt )dt + εHcdWH

t . (5)

Remark: Scaling (4) ⇒ short-time (cf. Forde-Zhang (2015)), scaling (5) ⇒ tails.
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(2)

Examples: Consider (X0,Y0) = (0, y0) and

dXt = −
Y 2
t

2
dt + YtdWt , dYt = (a + bYt)dt + cdWH

t . (3)

• Define (X εt ,Y
ε
t ) := (ε2H−1Xε2t ,Yε2t) ⇒ (2) with κ1 = 2H + 1, κ2 = 2 and

β = 2H, (xε0 , y
ε
0 ) = (0, y0):

dX εt = −ε2H+1 (Y εt )2

2
dt + ε2HY εt dWt , dY εt = ε2(a + bY εt )dt + ε2HcdWH

t .

(4)

• Define (X εt ,Y
ε
t ) := (ε2HXt , εHYt) ⇒ (2) with κ1 = 0, κ2 = β = H,

(xε0 , y
ε
0 ) = (0, εHy0):

dX εt = −
(Y εt )2

2
dt + εHY εt dWt , dY εt = (aεH + bY εt )dt + εHcdWH

t . (5)

Remark: Scaling (4) ⇒ short-time (cf. Forde-Zhang (2015)), scaling (5) ⇒ tails.
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Theorem (Harms-H-Jacquier)

Consider an SDE of the form (2). Then the density of X εT admits an expansion

fε(T , x) = exp

(
−

Λ(x)

ε2β
+

Λ′(x)X̂T

εβ

)
ε−min(κ1,β)

(
c0 +O(εδ(κ1,β))

)
, as ε→ 0,

where

Λ(x) = inf

{
1

2
‖k‖2
HH

, k ∈ Kx
x0,y0

}
=

1

2
‖k0‖2

HH
,

and

dX̂t =
[
∂xb

(
0, φk0

t

)
+ ∂xσ

(
φh0
t

)
· k̇0(t)

]
X̂tdt+∂εβb

(
0, φk0

t

)
dt, X̂0 = ∂εβ x

ε
0 |ε=0 ,

where φk0 denotes the ODE solution of the same SDE (2) replacing εβdW by k̇0 and
xε0 by x0.
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Corollary: Varadhan-type asymptotics

Corollary (short-time asymptotics in Stein-Stein) dYt = (a + bYt)dt + cdWH
t

Consider the Stein-Stein model (Xt ,Yt) as in (3) with X0 = 0, Y0 = y0 > 0. Then in a
neighbourhood of (x0, y0) the density of Xt satisfies the following asymptotic expansion
as t → 0

fX (t, x) = exp

(
Λ(x)

t2H

)
t−H

(
1

2π
+O(tδ(H,H+1/2))

)
where

Λ(x) = inf

{
1

2
‖k‖2
HH

, k ∈ Kx
x0,y0

}
.

Proof: Take T = 1, ε2 = t and consider (X εt ,Y
ε
t ) := (ε2H−1Xε2t ,Yε2t) with X ε0 = 0,

Y ε0 = y0 > 0. ⇒ Short-time scaling:

dX εt = −ε2H+1 (Y εt )2

2
dt + ε2HY εt dWt , dY εt = ε2(a + bY εt )dt + ε2HcdWH

t , (4)

Note that the drift vanishes in the limit ε→ 0 and xε0 = x0 = 0.

⇒ (X̂t , Ŷt) ≡ 0, so that there is no 1/εβ = 1/tβ/2 term in the exponential.
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Corollary: tail asymptotics

Corollary (tail expansion in Stein-Stein) dYt = (a + bYt)dt + cdWH
t

Consider the Stein-Stein model (3) with X0 = 0, Y0 = y0 > 0. Then as x →∞,

fX (t, x) = exp
(
−c1x + c2x

1/2
) 1

x1/2

(
c0 +O

(
x1/2

))
where c1 := Λ(1), c2 := X̂tΛ′(1).

Note that the expression on the RHS is independent of the Hurst-parameter!

Proof: Consider (X εT ,Y
ε
T ) := (ε2HXT , ε

HYt) with X ε0 = ε2HX0 and Y ε0 = εHY0.

dX εt = −
(Y εt )2

2
dt + εHY εt dWt , dY εt = (aεH + bY εt )dt + εHcdWH

t , (5)

Note that X εt
∆
= ε2HXt . ⇒ P(X εt ≥ y) = P(Xt ≥ y/ε2H), ⇒

fX (t, y/ε2H) = ε2H fε(t, y). Take y = 1, that is x := ε−2H . By the theorem,

fε(t, 1) ≈ exp
(
− Λ(1)

ε2H
+ . . .

)
1
εH

, hence

fX (t, x) ≈ exp
(
− Λ(1)

ε2H + . . .
)
εH = exp (−Λ(1)x + . . .) 1

x1/2 .
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fε(t, 1) ≈ exp
(
− Λ(1)

ε2H
+ . . .

)
1
εH

, hence

fX (t, x) ≈ exp
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ε2H + . . .
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εH = exp (−Λ(1)x + . . .) 1
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From density to implied volatility: small-time

Recall the Black-Scholes density expansion:

fBS(t, x) ∼ t−1/2 exp

(
−

1

2t

(
x − x0

σ

)2
)
, as t → 0, for any x ∈ R.

(We normalise the spot here, so that x0 = 0).

Our theorem (corollary) says that in the Stein-Stein model (3), we have

fX(t, x) ∼ cst t−H exp

(
−
d2(x0, y0; x)

2t2H

)
, as t → 0.

Matching the leading-orders gives

σBS(t, x) ∼
|x |

d(x0, y0; x)
tH−1/2 as t → 0.
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From density to implied volatility: tails

Recall the Black-Scholes density expansion:

fBS(t, x) ∼ exp

(
−

x2

2σ2t
−

x

4

)
as x →∞, for any t > 0.

Our theorem (corollary) says that in the Stein-Stein model (3), we have

fX(t, x) ∼
cst

x1/2
exp

(
−c1x + c2

√
x
)
, as x →∞.

Matching the leading-orders gives

−c1x + c2
√
x ∼ −

x2

2σ2t
−

x

4
,

and we recover Roger Lee’s formula independently of the Hurst exponent in (3).
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Outlook: Moderate regimes

• Moderate Regimes (in the sense of Friz-Gerhold-Pinter ’16) interpolate between

out-of-the-money calls with fixed strike
(

log K
S0

)
= k > 0 and at-the-money

k = 0 calls: Now kt = ctθ ⇒ MOTM (for 0 < θ < 1
2

) and AATM (for larger θ)

• Reflects market data: options closer expiry ⇒ strikes closer to the money
first observed by Mijatović-Tankov on FX markets

• The moderate regime (MOTM) permits explicit computations for the rate
function Λ(k) in terms of the model parameters
Moderate deviations⇒ Advantage over OTM (large deviations) case where the
Λ(k) often related to geodesic distance problems and not explicitly available.

• MOTM expansions naturally involve quantities very familiar to practitioners,
notably spot (implied) volatility, implied volatility skew . . .

• In some cases (fractional volatility models) the scaling θ permits a fine-tuning to
understand the behavior and derivatives of the energy function.
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Moderate regimes for rough volatility

Rescalings =⇒ We tacitly agreed to consider P
(
Xt ≈ t1/2−Hx

)
. Now it is only a

small step to consider instead (for some suitable small θ > 0)

P
(
Xt ≈ t1/2−H+θx

)
.

Theorem (Bayer-Friz-Gulisashvili-H-Stemper)

Consider a moderately out-of-the-money call kt = x1/2−H+θ; θ ∈ (0,H) resp.
θ ∈ (0, 2H

3
). Then as t → 0, the following (non-Markovian extention of Osajima-

energy-expansion) holds

log c(kt , t) ≈
1

2
Λ′′(0)

x2

t2H−2θ
+

1

6
Λ′′′(0)

x3

t2H−3θ
,

where we have explicit expressions: Λ′′(0) = 1
σ0

) and Λ′′′(0) = −ρ 6σ′0
σ4

0
〈K , 1〉.

Here K denotes the Volterra kernel and 〈K , 1〉 :=
∫ 1

0

∫ t
0 K(t, s)dsdt.
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Notations

• H: absolutely continuous paths [0,T ]→ R2 starting at 0 such that
∥∥∥ḣ∥∥∥2

H
<∞.

• HH := KHH and k := KHh, where KH denotes the Volterra kernel.

• For fixed (x0, y0) ∈ R2, φk is the (unique) ODE solution to

φ̇kt = σ0

(
φkt

)
dt +

m∑
i=1

σi

(
φht

)
dkit , φk0 = (x0, y0).

• Denote ψk := Π1φ
k its projection on to the first coordinate X .

• Ka :=
{
k ∈ HH : ψk

T = a ∈ R
}
6= ∅ (”by Hörmander condition”).

• Λ(a) := inf
{

1
2
‖k‖2

H : k ∈ Ka

}
.
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Proof of the theorem 1

dXt = −ε2H+1 1

2
Y 2
t dt + ε2HYtdWt , dYt = ε2HdWH

t ,

with the same initial condition X0 = Y0 = 0.

Density: fε(T , x) = exp

[
−

Λ(x)

ε4H
+

Λ′(x)X̂T

ε2H

]
ε−2H

(
c0 +O(ε2H)

)
.

Proof: Take x ∈ R and a C∞-bounded function F such that F (x) = 0.

fε(T , x)e−F (x)/ε4H
=

1

2πε2H

∫
R
E
{

exp

[
i(ζ, 0) ·

(
X εT − (x , 0)

ε2H

)
−

F (X εT )

ε4H

]}
dζ.

Choose F such that F (·) + Λx0 (·) has a non-degenerate minimum at z. This implies

that k 7→ F (φkT (x0, y0)) + 1
2
‖k‖2
HH

has a non-degenerate minimum at k0 ∈ H.

(For instance F (z) = λ|z − x |2 − [Λx0,y0 (z)− Λx0,y0 (x)] with λ > 0).
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Proof of the theorem 2
Replace ε2HdB (B := (W ,WH)) in the SDE by ε2HdW + k̇0.

Call the corresponding Girsanov-transformed process Z̃εt = (X̃ εt , Ỹ
ε
t ):

dX̃ ε = −ε2H+1 1

2
Ỹ 2dt + Ỹ ε(ε2HdWt + (k̇0)1), dỸ = ε2HdWH

t + (k̇0)2.

Girsanov factor

G = exp

(
−

1

ε2H

∫ T

0
ψ(k0)tdBt −

1

2ε4H
‖k0‖2

HH

)
.

Therefore

f (x ,T )e−F (x)/4ε4H
=

1

2πε2H

∫
R
E
[
eε

2H iζ(X̃T−x)−ε−4HF (X̃T )G
]
dζ

=
1

2πε2H

∫
R
E
[
e(∗)

]
dζ

where

(∗) = ε2H iζ(X̃T − x)− ε−4HF (X̃T )− ε−2H
∫ T

0
ψ(γ)tdBt − ε−4H 1

2
‖γ‖2

1/2,H .
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Proof of the theorem 2
Replace ε2HdB (B := (W ,WH)) in the SDE by ε2HdW + k̇0.

Call the corresponding Girsanov-transformed process Z̃εt = (X̃ εt , Ỹ
ε
t ):

dX̃ ε = −ε2H+1 1

2
Ỹ 2dt + Ỹ ε(ε2HdWt + (k̇0)1), dỸ = ε2HdWH

t + (k̇0)2.

Girsanov factor

G = exp

(
−

1

ε2H

∫ T

0
ψ(k0)tdBt −

1

2ε4H
‖k0‖2

HH

)
.

By a stochastic Taylor expansion of Z̃εt = (X̃ εt , Ỹ
ε
t ) for ε2H → 0,

exp

−F
(
X̃ εt

)
ε4H

 = exp

[
−1

ε4H

(
F (x)− ε2H

∫ T

0
ψ(k0)tdBt − ε2H X̂T · Λ′x0

(x) +O(ε4H)

)]

Blanka Horvath Asymptotic expansions for fractional stochastic volatility models



Introduction
Main result and motivation

Corollaries and outlook
Proof

Notations
Sketch of the proof

Proof of the theorem 2
Replace ε2HdB (B := (W ,WH)) in the SDE by ε2HdW + k̇0.

Call the corresponding Girsanov-transformed process Z̃εt = (X̃ εt , Ỹ
ε
t ):

dX̃ ε = −ε2H+1 1

2
Ỹ 2dt + Ỹ ε(ε2HdWt + (k̇0)1), dỸ = ε2HdWH

t + (k̇0)2.

Girsanov factor

G = exp

(
−

1

ε2H

∫ T

0
ψ(k0)tdBt −

1

2ε4H
‖k0‖2

HH

)
.

By a stochastic Taylor expansion of Z̃εt = (X̃ εt , Ỹ
ε
t ) for ε2H → 0,

exp

−F
(
X̃ εt

)
ε4H

 = exp

[(
1

ε2H

∫ T

0
ψ(k0)tdBt +

1

ε2H
X̂T · Λ′x0

(x) +O(1)

)]
.

The rest of the proof follows Ben Arous’ proof for X εT .
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Thank you!
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