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APPLICATION TO COMPOUND SDEs

Motivation: Stochastic PDEs

Consider a consistent stochastic utility process
(
U(t, x , ω)

)
t,x,ω . It is shown in

Progressive Stochastic Utilities [El Karoui,Mrad ’13] : The consistent utilities solves a
second-order fully nonlinear SPDE that can be solved by composition of stochastic
flows.
• The consistent utilities solves a second-order fully nonlinear SPDE:

dU(t, x , ω) = (−rtxUx +
1

2Uxx
||γRx + Uxηt ||2)(t, x , ω)dt + γ(t, x , ω)dWt (1)

• We associate to this equation two SDEs: SDE(µ, κ) and SDE(b, ν).
• If these SDEs admit a strong solutions X and Y , with X monotonic. Then the
utility SPDE can be solved by composition of stochastic flows, i.e. denoting by X
the inverse flow of X :

Ux (t, x , ω) = Yt(ux (0,Xt(x , ω)), ω), U(0, x , ω) = u(0, x)
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♣ Can we find a numerical scheme to approximate U using this Connection
between SPDE end two SDEs without discretizing the Dynamics of U (very
complicated in practice)?

♣ Assume XN converge to X with rate αX and YN to Y with rate αY .
• Does YN

t (ux (0,XN
t )) converges to Yt(ux (0,Xt))?

• What is the convergence rate and how it depends on αX and αY ?

♣ If it is possible, can we extends this results to more general SPDEs?

Questions.
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General Setting

Consider
• (E, |.|) be a separable Banach space.
• (Ω,F ,P) be a probability space.
• a random field, i.e. a F ⊗ B(Rd )-measurable mapping

(ω, x) ∈ (Ω,Rd ) 7→ F (ω, x) ∈ E, continuous in x for a.e. ω;
• a F-random variable Θ : Ω 7→ Rd .

Our Aim

• FN and ΘN are some approximations of F and Θ.
• Control in Lp the error ω ∈ Ω 7→ FN(ω,ΘN(ω))− F (ω,Θ(ω)) ∈ E.
• Strong approximation rates: crucial for Multi-Level Monte Carlo methods.

♠ F and Θ may be dependent.
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♣ A random map G(x , ω) satisfies Assumption (H) if for any p > 0, ∃αp ,Cp ∈
[0,+∞) s.t. ∥∥∥∥∥ sup

|x|≤λ
|G(·, x)|

∥∥∥∥∥
Lp

≤ C (H)
p λα

(H)
p , ∀λ ≥ 1.

♣ A random map H(x , y , ω) satisfies Assumption (H′) if ∃κ ∈ (0, 1] s.t. ∀p >
0,∃αp ,Cp ∈ [0,+∞) s.t.∥∥∥∥∥ sup

x 6=y,|x|≤λ,|y|≤λ
|H(·, x , y)|

∥∥∥∥∥
Lp

≤ C (H′)
p λα

(H′)
p , ∀λ ≥ 1.

Definition.
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(H1) The random map F satisfies Assumption (H) with coefficients C (H1)
p and α(H1)

p .

(H2) ∃κ ∈ (0, 1] s.t. |F (·,y)−F (·,x)|
|y−x|κ satisfies (H′) for some C (H2)

p and α(H2)
p .

(H3) The random map FN(·, x)− F (·, x) also satisfies (H) with coefficients CN,(H3)
p

and α(H3)
p .

(H4) ∀p > 0, ∃C (H4-a)
p , (CN,(H4-b)

p )N≥1 ∈ [0,+∞) s.t.

‖Θ‖Lp ∨
∥∥∥ΘN

∥∥∥
Lp
≤ C (H4-a)

p , ∀N ≥ 1, (H4-a)∥∥∥ΘN − Θ
∥∥∥

Lp
≤ CN,(H4-b)

p , ∀N ≥ 1. (H4-b)

Assumptions.
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♣ Had the random variable Θ be bounded by a finite constant Λ, we would

have directly obtained
∥∥FN(Θ)− F (Θ)

∥∥
Lp
≤ CN,(H3)

p Λα
(H3)
p .

♣ The extension to non bounded r.v. Θ is non trivial and is being achieved in
our general Theorem and its proof.

♣ The following result is instrumental in our analysis. In particular, it enables
to justify that the quantities of study are well defined as Lp random variables.

Remarks.
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Intermediate Result:Inspired from [Kohatsu-Higa, A. and Sanz-SolŐ, M. (1997)]

Let G be a F ⊗ B(E)-measurable mapping taking values in E satisfying (H)

that is for any p > 0, ∃α(G)
p ∈ [0,+∞) and C (G)

p ∈ [0,+∞) for which∥∥∥∥∥ sup
|x|≤λ

|G(·, x)|

∥∥∥∥∥
Lp

≤ C (G)
p λα

(G)
p , ∀λ ≥ 1. (2)

Let ξ be a random variable taking values in E , with finite Lp norms for any
p > 0. Then for any p > 0, ω 7→ G(ω, ξ(ω)) ∈ Lp and for any finite conjugate
exponents r and s (r−1 + s−1 = 1), we have the estimate

‖G(ξ)‖Lp
≤ C (G)

pr (ζ(r))1/(pr) 2α
(G)
pr +1/p

(
1 + ‖ξ‖α

(G)
pr +1/p

L
s(α

(G)
pr p+1)

)

where ζ(r) :=
∑

n≥1 n
−r is the Riemann zeta function.

Proposition.
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⇒ As a direct consequence of the above result, we deduce that F (Θ) is any
Lp (owing to (H1) and (H4-a)).

⇒Moreover we can also apply it to G = FN and ξ = ΘN in view of (H4-a) and
since (2) is satisfied (owing to (H1) and (H3)): Thus, FN(ΘN) also belongs
to any Lp .

Remarks.
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Using twice Hölder inequalities, we obtain

E
(
|G(·, ξ)|p

)
≤
∑
n≥1

E
(

sup
|x|≤n

|G(·, x)|p1n−1≤|ξ|<n

)

≤
∑
n≥1

(
E
(

sup
|x|≤n

|G(·, x)|pr
))1/r

P (n − 1 ≤ |ξ| < n)1/s

≤ [C (G)
pr ]p

∑
n≥1

1
n

nα
(G)
pr p+1P (n − 1 ≤ |ξ| < n)1/s

≤ [C (G)
pr ]p

∑
n≥1

1
nr

1/r ∑
n≥1

ns(α
(G)
pr p+1)P (n ≤ |ξ| + 1 < n + 1)

1/s

≤ [C (G)
pr ]p (ζ(r))1/r

(
E
(

(|ξ| + 1)s(α
(G)
pr p+1)

))1/s
.

Therefore, ‖G(ξ)‖Lp ≤ C (G)
pr (ζ(r))1/(pr)

(
1 + ‖ξ‖L

s(α
(G)
pr p+1)

)α(G)
pr +1/p

where we

have used the Minkowsky inequality. We complete our statement by using

(a + b)γ ≤ 2(γ−1)+
(
aγ + bγ

)
≤ 2γ

(
aγ + bγ

)
for any non-negative a, b, γ.

Proof.
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General Result

Assume (H1)-(H2)-(H3)-(H4-a)-(H4-b). Then for any p > 0 and any p2 > p,
there is a constant c(1) independent on N such that

∥∥∥FN(ΘN)− F (Θ)
∥∥∥

Lp
≤ c(1)

 CN,(H3)
2p︸ ︷︷ ︸

‖FN (θ)−F (θ)‖Lp

+ [CN,(H4-b)
κp2 ]κ︸ ︷︷ ︸

[‖ΘN−Θ‖Lp2
]κ

 , ∀N ≥ 1.

Theorem 1.

Quite intuitively, the global approximation error inherits from that on F and that on Θ
modified by the local Hölder regularity of x 7→ F (ω, x).

• FN − F” = ”O(N−γF ) in any Lp

• ΘN −Θ” = ”O(N−γΘ ) in any Lp

The order of Lp-convergence of FN(ΘN)− F (Θ) is min(γF , κγΘ).

Corollary.
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Write FN(ΘN) − F (Θ) =
[
FN(ΘN)− F (ΘN)

]
+
[
F (ΘN)− F (Θ)

]
. First, a direct

application of previous Proposition (for r = s = 2) with (H3) and (H4-a) yields

∥∥∥FN(ΘN)− F (ΘN)
∥∥∥

Lp
≤ CN,(H3)

2p (ζ(2))1/(2p) 2α
(H3)
2p +1/p

1 +
∥∥∥ΘN

∥∥∥α(H3)
2p +1/p

L
2(α

(H3)
2p p+1)


≤ CN,(H3)

2p (ζ(2))1/(2p) 2α
(H3)
2p +1/p

(
1 + [C (H4-a)

2(α
(H3)
2p p+1)

]
α

(H3)
2p +1/p

)
.

Consider now the second term F (ΘN)− F (Θ): Set

Hκ(ω, λ) := sup
x 6=y,|x|≤λ,|y|≤λ

|F (ω, y)− F (ω, x)|
|y − x|κ

and write |F (ΘN)− F (Θ)| ≤ Hκ(|ΘN | ∨ |Θ|)|ΘN − Θ|κ. Then the Hölder inequality
with p-conjugate numbers (p1, p2) (i.e. p−1

1 + p−1
2 = p−1) gives∥∥∥F (ΘN)− F (Θ)

∥∥∥
Lp
≤
∥∥∥Hκ(|ΘN | ∨ |Θ|)

∥∥∥
Lp1

∥∥∥ΘN − Θ
∥∥∥κ

Lκp2
.

Proof (I).
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The first factor is upper bound using previous Proposition (for r = s = 2) with
(H2) and (H4-b), it readily leads to∥∥∥F (ΘN)− F (Θ)

∥∥∥
Lp

≤
∥∥∥Hκ(|ΘN | ∨ |Θ|)

∥∥∥
Lp1

∥∥∥ΘN −Θ
∥∥∥κ

Lκp2

≤ C (H2)
2p1

(ζ(2))1/(2p1) 2α
(H2)
2p1

+1/p1

1 +
∥∥∥|ΘN | ∨ |Θ|

∥∥∥α(H2)
2p1

+1/p1

L
2(α

(H2)
2p1

p1+1)

 [CN,(H4-b)
κp2 ]κ

≤ C (H2)
2p1

(ζ(2))1/(2p1) 2α
(H2)
2p1

+1/p1

(
1 + [2C (H4-a)

2(α
(H2)
2p1

p1+1)
]
α

(H2)
2p1

+1/p1

)
[CN,(H4-b)
κp2 ]κ.

We are done.

Proof (II).
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In some situations, checking the assumptions (H1-H2-H3) may be difficult
since we evaluate the Lp-norms of a maximum.

• When x is a time variable, we may rely on Doob inequalities and other
martingale estimates to achieve this.

• In other situations, it becomes much more complicated. One can apply
the general Kolmogorov continuity criterion for random fields (see
Theorem 1.4.1 p.31 of the refernce book of H. Kunita), but it does not
yield the quantitative estimates we are looking for, in particular regarding
the polynomial growth factor in (H1-H2-H3).

Alternatively, here we use the Garsia-Rodemich-Rumsey lemma which gives
refinement compared to the Kolmogorov criterion.

(Simplified Assumptions).
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Assumptions: How To Get Uniform Estimates From Local Ones

Let ρ, Ψ : R+ −→ R+ be continuous and strictly increasing functions vanishing
at zero and such that limt→+∞Ψ(t) = +∞. Suppose that φ : Rd −→ E is a
continuous function with values on the separable Banach space (E, |.|). Denote
by Br the open ball in Rd centered at 0 with radius r . Then, provided

Γ =

∫
Br

∫
Br

Ψ
( |φ(x)− φ(y)|

ρ(|x − y |)

)
dx dy < +∞

it holds, for all x , y ∈ Br ,

|φ(x)− φ(y)| ≤ 8
∫ 2|x−y|

0
Ψ−1

( 4d+1Γ

λdu2d

)
ρ(du)

where λd is a universal constant depending only on d .

Proposition (Garsia-Rodemich-Rumsey, control of modulus of continuity).
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Assumptions: How To Get Uniform Estimates From Local Ones

Let p > d . Let G is F ⊗ B(Rd )- measurable mapping (ω, x) ∈ Ω × Rd 7→
G(, ω, x) ∈ E, continuous in x for a.e. ω s.t. G(x) is in Lp for any x and
there exist constants C (G) ∈ [0,+∞), β(G) ∈ (d/p, 1] and τ (G) ∈ [0,+∞)
satisfying

‖G(x)− G(y)‖Lp
≤ C (G)|x − y |β

(G)
(1 + |x |+ |y |)τ

(G)
, ∀(x , y) ∈ Rd × Rd .

Then, (H1) and (H2) holds true: i.e., for any β ∈ (0, β(G) − d/p),

sup
λ≥1

λβ−τ
(G)−β(G)

∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|G(y)− G(x)|
|y − x |β

∥∥∥∥∥
Lp

< +∞,

sup
λ≥1

λ−τ
(G)−β(G)

∥∥∥∥∥ sup
|x|≤λ

|G(x)|

∥∥∥∥∥
Lp

< +∞,

Proposition.
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AN APPLICATION TO COMPOUND SDEs

♣ Standard filtered probability space (Ω,F,P) supporting two q-dimensional standard
Brownian motions W = (W 1, . . . ,W q) and B = (B1, . . . ,Bq) on [0,T ]. W and B
may be dependent.

♣ Two Rd -valued stochastic processes X and Y , solutions of the SDEs (with Lipschitz
coefficients)

dXt(x) = µ(t,Xt(x))dt +

q∑
i=1

σi (t,Xt(x))dW i
t , X0(x) = x ,

dYt(y) = b(t,Yt(y))dt +

q∑
i=1

γi (t,Yt(y))dB i
t , Y0(y) = y ,

♣ Denote by XN
T (x) (resp. YN

T (y)) the related Euler scheme with time step T/N of
XT (x) (resp. YT (y)).

Aim: Approximation of Xt(Yt(y)) by XN
t (YN

t (y)), t ∈ [0,T ]
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(HP1) The coefficients µ and σ are Lipschitz continuous in space uniformly in time.
∃CX s.t. ∀t ∈ [0,T ] and x, y ∈ Rd{

|µ(t, x)− µ(t, y)| ≤ CX |x − y |, |µ(t, 0)| ≤ CX ,

|σ(t, x)− σ(t, y)| ≤ CX |x − y |, |σ(t, 0)| ≤ CX .
(HP1)

(HP2) µ and σ are continuously space-differentiable functions such that their deriva-
tives are δ-Hölder for a certain exponent δ ∈ (0, 1].{

|∇xµ(t, x)−∇xµ(t, y)| ≤ CX,∇|x − y |δ, |∇xµ(t, x)| ≤ CX,∇,

|∇xσ(t, x)−∇xσ(t, y)| ≤ CX,∇|x − y |δ, |∇xσ(t, x)| ≤ CX,∇.
(HP2)

(HP3) µ and σ are αX -Hölder continuous in time, locally in space,

|µ(t, x)− µ(s, x)| + |σ(t, x)− σ(s, x)| ≤ CX (1 + |x|)|t − s|α
X
. (HP3)

(HP4) µ and σ are continuously space-differentiable functions such that their deriva-
tives are αX -Hölder continuous in time, locally in space,

|∇xµ(t, x)−∇xµ(s, x)|+|∇xσ(t, x)−∇xσ(s, x)| ≤ CX,∇(1+|x|)|t−s|α
X
. (HP4)

Assumptions ( For X ).
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(HP1) and (HP3) are satisfied for b and γ (instead of µ and σ) with a Hölder
coefficient αY (instead of αX ).

Assumptions (For Y ).

The compound Euler scheme XN
. (YN

. ) converges to X.(Y.) in any Lp-norm,
at the order β := min(αX , αY , 1

2 ) w.r.t. N: For any p > 0, there is a finite
constant Cp such that for any t ∈ [0,T ]

sup
t∈[0,T ]

∥∥∥XN
t (YN

t )− Xt(Yt)
∥∥∥

Lp
≤ CpN−β , ∀N ≥ 1.

Theorem 2.
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SKETCH OF PROOF

Assume (HP1). For any p > 0, ∃Cp,(3) and Cp,(4) s.t.

‖Xt(x)‖Lp ≤ Cp,(3)(1 + |x|), (3)

‖Xt(x)− Xt(y)‖Lp ≤ Cp,(4)|x − y | (4)

for any (t, x, y) ∈ [0,T ]× Rd × Rd .

Proposition.

Assume Assumption (HP1). For any p > 0 and any β ∈ (0, 1), there exist generic
constants Cp,(5) and Cp,(6) such that, for any t ∈ [0,T ],

sup
t∈[0,T ]

∥∥∥∥∥ sup
|x|≤λ

|Xt(x)|

∥∥∥∥∥
Lp

≤ Cp,(5)λ, ∀λ ≥ 1, (5)

sup
t∈[0,T ]

∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|Xt(x)− Xt(y)|
|y − x|β

∥∥∥∥∥
Lp

≤ Cp,(6)λ
1−β

, ∀λ ≥ 1. (6)

Corollary (From local to uniform estimates).

These estimates are also valid for XN .
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SKETCH OF PROOF

Assume (HP2). For any p > 0 ∃Cp,(7) and Cp,(8) s.t.

‖∇Xt(x)‖Lp ≤ Cp,(7), (7)

‖∇Xt(x)−∇Xt(y)‖Lp ≤ Cp,(8)|x − y |δ (8)

for any (t, x, y) ∈ [0,T ]× Rd × Rd .

Proposition.

Assume (HP1) and (HP2). For any p > 0 and any β ∈ (0, δ), ∃Cp,(9), Cp,(10) and
Cp,(11) s.t.,

sup
t∈[0,T ]

∥∥∥∥∥ sup
|x|≤λ

|∇Xt(x)|

∥∥∥∥∥
Lp

≤ Cp,(9)λ
δ
, ∀λ ≥ 1, (9)

sup
t∈[0,T ]

∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|∇Xt(x)−∇Xt(y)|
|y − x|β

∥∥∥∥∥
Lp

≤ Cp,(10)λ
δ−β

, ∀λ ≥ 1,(10)

sup
t∈[0,T ]

∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|Xt(x)− Xt(y)|
|y − x|

∥∥∥∥∥
Lp

≤ Cp,(11)λ
δ
, ∀λ ≥ 1. (11)

Corollary (From local to uniform estimates).
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SKETCH OF PROOF

To obtain locally uniform in space convergence results, the supplementary assumptions
of regularity in space and time for ∇xµ and ∇xσi (see (HP2) and (HP4)) are
seemingly important. Thus classical strong convergence Theorem can be generalized
to the following crucial one.

Assume (HP1), (HP2), (HP3), (HP4) and let β = min(α, 1
2 ). For any p > 0,

there exists a generic constant Cp,(12) such that∥∥∥∥∥supu≤t
|Xu(x)− XN

u (x)− Xu(y) + XN
u (y)|

∥∥∥∥∥
Lp

≤ Cp,(12)(1+|x|+|y |)
|x − y | + |x − y |δ

Nβ

(12)
for all x, y ∈ Rd and t ∈ [0,T ].

Theorem 3 (Theorem Strong convergence (new results)).

We can now derive estimates locally uniformly in space, using the
Garsia-Rodemich-Rumsey lemma applied to G(x) = Xt(x)− XN

t (x).
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SKETCH OF PROOF

Under Assumptions (HP1)-(HP4), for any p > 0 there exists a finite generic
constant Cp,(13) such that, for any t ∈ [0,T ],

sup
t∈[0,T ]

∥∥∥∥∥ sup
|x|≤λ

|Xt(x)− XN
t (x)|

∥∥∥∥∥
Lp

≤
Cp,(13)

Nβ
λ2, ∀λ ≥ 1. (13)

Theorem 4.

The rest of the proof of supt∈[0,T ]

∥∥XN
t (YN

t )− Xt(Yt)
∥∥

Lp
= O(N−β) follows by

applying the main theorem.
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Comeback to The Utility SPDE

Let b and γ regular enough and Ys,t(y), s ≤ t ∈ [0,T ] the strong solution of

dYs,t(y) = b(t,Ys,t(y))dt + γ(t,Ys,t(y))dWt , Ys,s(y) = y

They are four approaches for computing the inverse flow: ξs,t(y) := (Ys,t)−1(y)

i) as an inverse of a (random) function;

ii) as a forward in time SPDE;

iii) as a forward in time SDE with stochastic coefficients;

iv) as a backward in time SDE with standard coefficients.
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i) Inverse flow as an inverse of a function: This means that we seek to directly invert
the function y 7→ Yt(s, y) without exploiting its stochastic dynamics. As such, we can
use a dichotomy method or a Newton method: this would essentially require to
compute a sequence of Euler schemes of Yt(s, y) for different y . This can be
performed but we look for a less expensive scheme.
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ii) Inverse flow as a forward in time SPDE: We recall the dynamics of ξs,t(x) in the
forward variable t, see [H. Kunita ’97, Theorem 4.4.2 p.148] or [El Karoui & Mrad ’13,
Theorems 2.5 and 2.6].

Assume, in addition to Assumption (HP1), that b and γ are of class C3 with
bounded derivatives such that ∂3

xb and ∂3
xγ are δ-Hölder (δ > 0). Then, for

any given s, the inverse flow ξ is a semimartingale with respect to t and evolves
as

dξs,t(x) = −∂xξs,t(x)
[[
b(t, x)− ∂xγ(t, x) · γ(t, x)

]
dt + γ(t, x) · dBt

]
+

1
2
∂xxξs,t(x)|γ(t, x)|2dt. (14)

Lemma.

Certainly this SPDE is simpler than (1), but its discretization gives rise to delicate
issues.
• We have inevitably to approximate ∂xξs,t and ∂xxξs,t , using a finite differences
method for example, which requires the resolution in the full space (or on a grid
in x). This is computationally demanding.

• In addition, it seems really difficult to obtain error estimates in that context.
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iii) Inverse flow as a forward in time SDE with stochastic coefficients: Alternatively,
we may re-interpret ξs,t as a SDE, in order to be a position to use existing
approximation schemes (like Euler schemes). Namely, using

∂xξs,t(x) =
1

(∂yYs,t)(ξs,t(x))
, ∂xxξs,t(x) = −

∂yyYs,t

(∂yYs,t)3
(ξs,t(x)),

we easily deduce that (14) rewrites

dξs,t(x) =
[
−
[
b(t, x)− ∂xγ(t, x) · γ(t, x)

]
(∂yYs,t)(ξs,t(x))

−
1
2
∂yyYs,t

(∂yYs,t)3
(ξs,t(x))|γ(t, x)|2

]
dt

−
γ(t, x)

(∂yYs,t)(ξs,t(x))
· dBt .

This is a SDE but with stochastic coefficients. Designing a simulation scheme is quite
delicate. Indeed,
• the local Lipschitz constants of the stochastic coefficients are unbounded and
delicate to control; it rules out the use of standard Euler schemes;

• these coefficients depend on ∂yYs,t and ∂yyYs,t and their evaluation requires to
compute the solution y 7→ Ys,t(y) for many y . It seems to be as costly as the
approach i).
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iv) Inverse flow as a backward in time SDE with standard coefficients: Last, we may
consider the dynamics of ξs,t(x) in the variable s: doing so, we aim at computing the
inverse of Y backward in time instead of forward in time. This approach relies on the
following key result.

Under Assumptions of Lemma 26, the inverse flow ξs,t(x) is also a semimartin-
gale with respect to s (for any given t, x) and satisfies the following backward
SDE (using the Backward Brownian motion

←−
B )

dξs,t(x) = −
[
b(s, ξs,t(x))−∂xγ(s, ξs,t(x))·γ(s, ξs,t(x))

]
ds−γ(s, ξs,t(x))·d

←−
B s ,

for s ≤ t and with ξt,t(x) = x .

Lemma (H. Kunita, Theorem 4.2.10 p.131).
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From this, the approximation of ξs,t is made possible simply using a standard Euler
scheme with time step T/N,
• Set ξNt,t(x) = x and let tN be defined by tN = kN

T
N with kN ∈ N and

tN < t ≤ tN + T
N ;

• For s ∈ (tN , t], set

ξNs,t(x) = x −
[
b(t, x)− ∂xγ(t, x) · γ(t, x)

]
(t − s)− γ(t, x) · (Bt − Bs);

• For k ≤ kN and s ∈ ((k − 1) T
N , k

T
N ], set

ξNs,t(x) = ξN
k T

N ,t
(x)−

[
b(k

T
N
, ξN

k T
N ,t

(x))− ∂xγ(k
T
N
, ξN

k T
N ,t

(x)) · γ(k
T
N
, ξN

k T
N ,t

(x))
]
(k

T
N
− s)

− γ(k
T
N
, ξN

k T
N ,t

(x)) · (Bk T
N
− Bs).
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Assume that
• the coefficients (µ, σ) of the SDE X satisfy Assumptions (HP1), (HP2),
(HP3) and (HP4) (which α-parameter is denoted by αX ),

• the coefficients (b − ∂xγ · γ, γ) of ξ.,t satisfy Assumptions (HP1) and
(HP3) (which α-parameter is denoted by αY ).

Then, for any concave function u with Lipschitz marginal utility ux , the com-
pound Euler scheme XN

. (ux (ξN. )) converges to Ux (., .) (solution to the SPDE
of the form (1)) in any Lp-norm, at the order β := min(αX , αY , 1

2 ) w.r.t. N:
For any p > 0 and any t ∈ [0,T ],∥∥∥XN

0,t(ux (ξN0,t(x)))− Ux (t, x)
∥∥∥

Lp
= O(N−β).

Theorem 5.
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APPLICATIONS TO STOCHASTIC PROCESSES

♣ Application to unbiased simulation scheme: Multi-Level Monte Carlo (MLMC)
methods.
♣ Application to stochastoc process:

(i) THE CASE OF SEMIMARTINGALES AT RANDOM TIMES
• Example 1: Martingale at random times.
• Example 2: Local times at random time and random level.

(ii) THE CASE OF NON-SEMIMARTINGALES.
• Example 1: Fractional Brownian motion at random times.
• Example 2: Diffusion process in Brownian time.

♣ Backward resampling of Euler schemes.
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Figure: Thank you for your attention
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