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The oscillating Brownian Motion

Consider the process in R solution of

Yt = Y0 +

∫ t

0
σ(Yt)dWt

with

σ(x) =
{ σ+ for x ≥ 0
σ− for x < 0

The process is defined using the recipe of Ito-McKean to
construct a process with given speed measure and scale
function. It behaves like a Brownian motion which changes
variance parameter each time it crosses 0. In this talk we also
suppose Y0 = 0 a.s., and fix the final time horizon T = 1.

The aim of the present work is to propose and analyze some
estimators for the parameters of such process.
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Tanaka formula and local time

For any continuous semimartingale M

|Mt | − |M0| =

∫ t

0
sgn(Ms)dMs + LMt (0)

With x+ = x ∨ 0; x− = (−x) ∨ 0, we also have

M+
t −M+

0 =

∫ t

0
1(Ms ≥ 0)dMs +

1

2
LMt (0)

M−t −M−0 = −
∫ t

0
1(Ms < 0)dMs +

1

2
LMt (0)

where

LMt (0) := lim
ε↓0

1

2ε

∫ t

0
1(|Ms | ≤ ε)ds

in the local time of M at 0.
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We apply the formula for the positive part to the OBM Y :

Y +
t =

∫ t

0
1(Ys ≥ 0)dYs +

1

2
LYt (0)

= σ+

∫ t

0
1(Ys ≥ 0)dWs +

1

2
LYt (0)

We hope to recover an estimator for σ+ from the martingale
part.
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Approximation of quadratic variation

For fixed n ∈ N, we consider the time grid 0, 1
n ,

2
n , . . . 1. For

any processes M, M̄ we set

[M, M̄]n1 =
n∑

k=1

(Mk/n −M(k−1)/n)(M̄k/n − M̄(k−1)/n).

This is an estimator of the quadratic covariation of M, M̄. We
also write

[M]n1 =
n∑

k=1

(Mk/n −M(k−1)/n)2,

and this is a classic estimator of the quadratic variation.
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We set

ξt =

∫ t

0
1(Ys ≥ 0)σ(Ys)dWs = σ+

∫ t

0
1(Ys ≥ 0)dWs

This is a martingale with quadratic variation

〈ξ〉t =

∫ t

0
σ(Ys)21(Ys ≥ 0)ds = σ2

+

∫ t

0
1(Ys ≥ 0)ds

From classic results on martingales (Discretization of processes,
Jacod, Protter, 2012), we have the following convergences for
n→∞:

(LLN) [ξ]n1
p−→ 〈ξ〉1 = σ2

+

∫ 1

0
1(Ys ≥ 0)ds

(CLT )
√
n ([ξ]n1 − 〈ξ〉1)

sl−→
√

2σ+

∫ 1

0
1(Ys ≥ 0)dBs

where B is an independent BM.
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Estimation on Y +

With our definition of ξ,

Y +
t = ξt +

1

2
LYt

We do not observe ξ but Y +. We have

[Y +]nt = [ξ]nt −
[LY ]n1

4
+ [Y +, LY ]n1.

LYt is increasing and does not contribute to the limit

[Y +]n1
p−→ σ2

+

∫ 1

0
1(Ys ≥ 0)ds = σ2

+Q
+
1

where we set Q+
1 = Leb{s ∈ [0, 1] : Ys ≥ 0}. For 0 < u < 1

P(Q+
1 ∈ du) =

1

π

1√
u(1− u)

σ+/σ−
1− (1− (σ+/σ−)2)u

du.
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Estimation of occupation time

Riemann sums

Q̄n
1 (Y ,+) =

n∑
k=1

1(Yk/n ≥ 0)

n

converge a.s. to the Lebesgue integral

Q̄n
1 (Y ,+)

a.s.−−→
∫ 1

0
1(Ys ≥ 0)ds = Q+

1 .

We define now σ̂n+, the estimator for σ+, as

(σ̂n+)2 =
[Y +]n1

Q̄n
1 (Y ,+)

We can define analogously σ̂n−, the estimator for σ−. We have

σ̂n = (σ̂n+, σ̂
n
−)

p−→ (σ+, σ−)
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Rate of convergence?

Our estimator for σ+ is

(σ̂n+)2 =
[Y +]n1

Q̄n
1 (Y ,+)

Problem: in CLT, convergence in law! Cannot divide by a
random sample size.

yStable convergence in law
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Stable convergence (Rényi)

n ∈ N, Zn r.v defined on the same probability space (Ω,F ,P)
Zn converges stably in law to Z if:

EYf (Zn)→ ẼYf (Z )

(Z is a random variable defined on an extension, (Ω̃, F̃ , P̃r))
for all bounded continuous functions f and all bounded random
variables Y on (Ω,F ).

Stable convergence in law implies convergence in law

if Zn and Z , Yn and Y are r. v. s.t.

Zn → Z , stable in law Yn → Y , in probability

then
(Yn,Zn)→ (Y ,Z ) stable in law
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Central Limit Theorem

Estimator:

(σ̂n+)2 =
[Y +]n1

Q̄n
1 (Y ,+)

where

[Y +]nt = [ξ]nt −
[LY ]n1

4
+ [Y +, LY ]n1.

Martingale part: stable in law convergence

(CLT )
√
n ([ξ]n1 − 〈ξ〉1)

sl−→
√

2

∫ t

0
σ+1(Ys ≥ 0)dBs

Local time?

Occupation time?
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Local time part

We prove the following convergence:

√
n

(
− [LY ]n1

4
+ [Y +, LY ]n1

)
p−→ − 2

√
2

3
√
π

(
σ+σ−
σ+ + σ−

)
LY1

adapting techniques from Rates of convergence to the local
time of a diffusion, Jacod, 1998, and using convergence results
for discretization of martingales (see for example Limit theorem
for stochastic processes, Jacod, Shiryaev)
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Summing up
√
n
(
[Y +]n1 − 〈ξ〉1

)
sl−→
√

2

∫ 1

0
σ2

+1(Ys > 0)dB̄s −
2
√

2

3
√
π

(
σ+σ−
σ+ + σ−

)
LY1 .

Recall the estimator

(σ̂n+)2 =
[Y +]n1

Q̄n
1 (Y ,+)

where

Q̄n
1 (Y ,+) =

n∑
k=1

1(Yk/n ≥ 0)

n

is an approximation of the occupation time

Q+
1 = Leb(s ∈ [0, 1] : Ys ≥ 0)
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Speed of convergence for occupation time

For SDEs with smooth coefficients, the speed of convergence of
the occupation time is n3/4− (Ngo, Ogawa), but there are no
results for discontinuous coefficients.
We prove that for Y OBM with Y0 = 0, the following
convergence holds:

√
n
(
Q̄n

1 (Y ,+)− Q+
1

) p−→ 0

again with techniques involving local time and martingales.
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Main theorem

The following convergence holds

√
n

(
(σ̂n+)2 − σ2

+

(σ̂n−)2 − σ2
−

)
sl−→


√

2σ2
+

Q+
1

∫ 1
0 1(Ys > 0)dB̄s

√
2σ2

−
1−Q+

1

∫ 1
0 1(Ys < 0)dB̄s


−

(
1

Q+
1
1

1−Q+
1

)
2
√

2

3
√
π

(
σ−σ+

σ+ + σ−

)
L1(Y ),

where B̄ is a BM independent of Y .

Occupation time ⇔ actual sample size
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Main theorem

We can rewrite such convergence as follows:

√
n

(
(σ̂n+)2 − σ2

+

(σ̂n−)2 − σ2
−

)
l−→


√

2σ2
+√

Λ

(
N1 − 8

3
√
π

1
r+1

ξ
√

1−Λ√
(1−Λ)+Λr2

)
√

2σ2
−√

1−Λ

(
N2 − 8

3
√
π

1
1/r+1

ξ
√

Λ√
Λ+(1−Λ)/r2

)


where r = σ+/σ−, ξ,N1,N2,Λ are mutually independent,
ξ ∼ exp(1), N1,N2 ∼ N(0, 1) and Λ follows the modified
arcsine law with density given by:

pΛ(τ) =
1

πτ1/2(1− τ)1/2

r

1− (1− r2)τ
.
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An asymptotic bias is present in σ̂n. This bias has the same
order (∼ 1/

√
n) as the ‘natural fluctuations” of the estimator.

Since the local time is positive, σ̂n+ has a probability greater
than 1/2 to be smaller than σ+, and the same holds for σ̂n−.
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A modified estimator

We define now a different estimator for σ+:

mn
+ =

√
[Y +,Y ]n1
Q̄n

1 (Y ,+)
, mn

− =

√
[Y−,Y ]n1
Q̄n

1 (Y ,−)

The following convergence holds for n→∞:

√
n

(
(mn

+)2 − σ2
+

(mn
−)2 − σ2

−

)
sl−→


√

2σ2
+

Q+
1

∫ 1
0 1(Ys > 0)dB̄s

√
2σ2

−
1−Q+

1

∫ 1
0 1(Ys < 0)dB̄s


where B̄ is a BM independent of Y .
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We can rewrite such convergence as follows:

√
n

(
(mn

+)2 − σ2
+

(mn
−)2 − σ2

−

)
l−→

 √
2σ2

+√
Λ
N1√

2σ2
−√

1−Λ
N2


N1,N2,Λ are mutually independent, N1,N2 ∼ N(0, 1) and Λ
follows the modified arcsine law.



Statistical
estimation of

the Oscillating
Brownian

Motion and
application to

volatility
modeling

Paolo Pigato

Oscillating
Brownian
Motion, local
time

An estimator
based on
quadratic
variation

Application to
volatility
modeling

Comparison between the estimators

√
n((σ̂n+)2 − σ2

+) (dashed) and
√
n((mn

+)2 − σ2
+) (solid)
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Comparison between the estimators and the
theoretical limit distribution

√
n((σ̂n+)2 − σ2

+) (dashed),
√
n((mn

+)2 − σ2
+) (solid) and the

theoretical limit (red)
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Application to volatility modeling

In the Black & Scholes Model, the detrended log-price follows

dXt = σdWt

with σ positive constant, W Brownian Motion. One possible
generalization of this model is to let σ depend on the price
variable X (local volatility model). The oscillating Brownian
motion can be seen as an example of such models, with

σ(x) =
{ σ+ for x ≥ 0
σ− for x < 0

Simplest way to account of

Leverage effect (volatility negatively correlated with the
value of the stock)

Volatility clustering



Statistical
estimation of

the Oscillating
Brownian

Motion and
application to

volatility
modeling

Paolo Pigato

Oscillating
Brownian
Motion, local
time

An estimator
based on
quadratic
variation

Application to
volatility
modeling

Literature on regime switching models

Large literature on threshold models: threshold
autoregressive models (TAR) and especially self exciting
TAR (SETAR), H. Tong, . . .

Self exciting threshold interest rates models, M. Decamps,
M. Goovaerts, and W. Schoutens.
Relation between the SET-Vasicek model and the OBM?

Filling the gaps, A. Lipton and A. Sepp.
Tiled volatility models are considered in connection with
option pricing and implied volatility

On a continuous time stock price model with regime
switching, delay, and threshold, P. P. Mota and M. L.
Esquivel.
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Maximum likelihood estimation of the threshold

Given an empirical time series X = (Xt)t , we do not only
estimate the parameters of the OBM, but also the threshold,
using a MLE method.
For a fixed threshold r , we consider the time series X− r and
estimate on it σ̂+, σ̂−, using our estimator. We then compute
the log-likelihood

Λ(r) =
∑
i

log p(Xi ,Xi+1, σ+, σ−, r),

and chose as threshold the level r̂ maximizing Λ.
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Log-likelihood Λ(r) for Procter & Gamble
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Price and threshold for Procter & Gamble
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Log-likelihood Λ(r) for CA Technologies Inc
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Price and threshold for CA Technologies Inc
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Comparison with Mota Esquivel

Table: Estimated parameters

OBM RS

Stock r σ− σ+ r σ− σ+

P & G 62.24 0.014 0.012 61.9 0.013 0.013
McDonalds 52.4 0.013 0.018 54.6 0.014 0.016

CA Inc 25.07 0.025 0.013 22.16 0.033 0.015
Microsoft 21.8 0.034 0.017 22.8 0.034 0.016
Citigroup 40.7 0.075 0.011 43.1 0.076 0.011
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Log-likelihood Λ(r) for S&P 500
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Price and threshold for S&P 500
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The algorithm detects the 2009 crisis!
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Thanks!

paolo.pigato@inria.fr

Post-doc at INRIA Nancy, equipe TOSCA.


	Oscillating Brownian Motion, local time
	An estimator based on quadratic variation
	Application to volatility modeling

