Statistical estimation of the Oscillating Brownian Motion and application to volatility modeling

Paolo Pigato
Joint work with Antoine Lejay

INRIA Nancy, equipe TOSCA

Paris, 29/09/2016
1. Oscillating Brownian Motion, local time

2. An estimator based on quadratic variation

3. Application to volatility modeling
Consider the process in \mathbb{R} solution of

$$Y_t = Y_0 + \int_0^t \sigma(Y_t) dW_t$$

with

$$\sigma(x) = \begin{cases}
\sigma_+ & \text{for } x \geq 0 \\
\sigma_- & \text{for } x < 0
\end{cases}$$

The process is defined using the recipe of Ito-McKean to construct a process with given speed measure and scale function. It behaves like a Brownian motion which changes variance parameter each time it crosses 0. In this talk we also suppose $Y_0 = 0$ a.s., and fix the final time horizon $T = 1$.

The aim of the present work is to propose and analyze some estimators for the parameters of such process.
Tanaka formula and local time

For any continuous semimartingale M

\[|M_t| - |M_0| = \int_0^t \text{sgn}(M_s) dM_s + L_t^M(0) \]

With $x^+ = x \vee 0$; $x^- = (-x) \vee 0$, we also have

\[M_t^+ - M_0^+ = \int_0^t 1(M_s \geq 0) dM_s + \frac{1}{2} L_t^M(0) \]

\[M_t^- - M_0^- = -\int_0^t 1(M_s < 0) dM_s + \frac{1}{2} L_t^M(0) \]

where

\[L_t^M(0) := \lim_{\varepsilon \downarrow 0} \frac{1}{2\varepsilon} \int_0^t 1(|M_s| \leq \varepsilon) ds \]

in the local time of M at 0.
We apply the formula for the positive part to the OBM Y:

$$Y_t^+ = \int_0^t 1(Y_s \geq 0) \, dY_s + \frac{1}{2} \mathcal{L}^Y_t(0)$$

$$= \sigma_+ \int_0^t 1(Y_s \geq 0) \, dW_s + \frac{1}{2} \mathcal{L}^Y_t(0)$$

We hope to recover an estimator for σ_+ from the martingale part.
Approximation of quadratic variation

For fixed \(n \in \mathbb{N} \), we consider the time grid \(0, \frac{1}{n}, \frac{2}{n}, \ldots 1 \). For any processes \(M, \tilde{M} \) we set

\[
[M, \tilde{M}]_1^n = \sum_{k=1}^{n} (M_k/n - M_{(k-1)}/n) (\tilde{M}_k/n - \tilde{M}_{(k-1)}/n).
\]

This is an estimator of the quadratic covariation of \(M, \tilde{M} \). We also write

\[
[M]_1^n = \sum_{k=1}^{n} (M_k/n - M_{(k-1)}/n)^2,
\]

and this is a classic estimator of the quadratic variation.
We set

\[\xi_t = \int_0^t 1(Y_s \geq 0)\sigma(Y_s)\,dW_s = \sigma_+ \int_0^t 1(Y_s \geq 0)\,dW_s \]

This is a martingale with quadratic variation

\[\langle \xi \rangle_t = \int_0^t \sigma(Y_s)^2 1(Y_s \geq 0)\,ds = \sigma_+^2 \int_0^t 1(Y_s \geq 0)\,ds \]

From classic results on martingales (Discretization of processes, Jacod, Protter, 2012), we have the following convergences for \(n \to \infty \):

\((LLN) \quad [\xi]^n \xrightarrow{p} \langle \xi \rangle_1 = \sigma_+^2 \int_0^1 1(Y_s \geq 0)\,ds \)

\((CLT) \quad \sqrt{n} ([\xi]^n - \langle \xi \rangle_1) \xrightarrow{s.l.} \sqrt{2}\sigma_+ \int_0^1 1(Y_s \geq 0)\,dB_s \)

where \(B \) is an independent BM.
Estimation on Y^+

With our definition of ξ,

$$Y_t^+ = \xi_t + \frac{1}{2} L_t^Y$$

We do not observe ξ but Y^+. We have

$$[Y^+]_t = [\xi]_t - \frac{[L^Y]_t}{4} + [Y^+, L^Y]_t.$$

L_t^Y is increasing and does not contribute to the limit

$$[Y^+]_1 \to \sigma_+^2 \int_0^1 \mathbf{1}(Y_s \geq 0) ds = \sigma_+^2 Q_1^+$$

where we set $Q_1^+ = \text{Leb}\{s \in [0,1] : Y_s \geq 0\}$. For $0 < u < 1$

$$P(Q_1^+ \in du) = \frac{1}{\pi} \frac{1}{\sqrt{u(1-u)}} \frac{\sigma_+ / \sigma_-}{1 - (1 - (\sigma_+ / \sigma_-)^2)u} du.$$
Riemann sums

\[\bar{Q}_1^n(Y, +) = \sum_{k=1}^n \frac{1(Y_{k/n} \geq 0)}{n} \]

converge a.s. to the Lebesgue integral

\[\bar{Q}_1^n(Y, +) \xrightarrow{a.s.} \int_0^1 1(Y_s \geq 0)ds = Q_1^+ . \]

We define now \(\hat{\sigma}^+_n \), the estimator for \(\sigma_+ \), as

\[(\hat{\sigma}^+_n)^2 = \frac{[Y]^+_n}{\bar{Q}_1^n(Y, +)} \]

We can define analogously \(\hat{\sigma}^-_n \), the estimator for \(\sigma_- \). We have

\[\hat{\sigma}^n = (\hat{\sigma}^+_n, \hat{\sigma}^-_n) \xrightarrow{p} (\sigma_+, \sigma_-) \]
Our estimator for σ_+ is

$$(\hat{\sigma}_n^+)^2 = \frac{[Y^+]_1^n}{\bar{Q}_1^n(Y, +)}$$

Problem: in CLT, convergence in law! Cannot divide by a random sample size.

Stable convergence in law
Stable convergence (Rényi)

\[n \in \mathbb{N}, \ Z_n \text{ r.v defined on the same probability space } (\Omega, \mathcal{F}, \mathbb{P}) \]

\[Z_n \text{ converges stably in law to } Z \text{ if:} \]

\[\mathbb{E} Yf(Z_n) \to \tilde{\mathbb{E}} Yf(Z) \]

\((Z \text{ is a random variable defined on an extension, } (\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})) \)

for all bounded continuous functions \(f \) and all bounded random variables \(Y \) on \((\Omega, F) \).

- Stable convergence in law implies convergence in law
- if \(Z_n \) and \(Z \), \(Y_n \) and \(Y \) are r. v. s.t.

\[Z_n \to Z, \text{ stable in law} \quad Y_n \to Y, \text{ in probability} \]

then

\[(Y_n, Z_n) \to (Y, Z) \quad \text{stable in law} \]
Central Limit Theorem

Estimator:

\[(\hat{\sigma}^n_+)^2 = \frac{[Y^+]_1^n}{Q^n_1(Y, +)}\]

where

\[[Y^+]_t^n = [\xi]^n_t - \frac{[L^Y]_1^n}{4} + [Y^+, L^Y]_1^n.\]

- Martingale part: stable in law convergence

\[(CLT) \quad \sqrt{n} ([\xi]^n_1 - \langle \xi \rangle_1) \xrightarrow{s_l} \sqrt{2} \int_0^t \sigma_+ 1(Y_s \geq 0) dB_s\]

- Local time?
- Occupation time?
We prove the following convergence:

$$\sqrt{n} \left(-\frac{[L_1^n]}{4} + [Y^+, L_1^n] \right) \overset{p}{\longrightarrow} -\frac{2\sqrt{2}}{3\sqrt{\pi}} \left(\frac{\sigma_+\sigma_-}{\sigma_+ + \sigma_-} \right) L_1^Y$$

adapting techniques from *Rates of convergence to the local time of a diffusion*, Jacod, 1998, and using convergence results for discretization of martingales (see for example *Limit theorem for stochastic processes*, Jacod, Shiryaev)
Summing up

\[\sqrt{n} \left([Y^+]_1^n - \langle \xi \rangle_1 \right) \]

\[\overset{sl}{\rightarrow} 2 \int_0^1 \sigma_+^2 1(Y_s > 0) d\bar{B}_s - \frac{2\sqrt{2}}{3\sqrt{\pi}} \left(\frac{\sigma_+ \sigma_-}{\sigma_+ + \sigma_-} \right) L_1^Y. \]

Recall the estimator

\[(\hat{\sigma}_+^n)^2 = \frac{[Y^+]_1^n}{Q_1^n(Y,+)} \]

where

\[Q_1^n(Y,+)= \sum_{k=1}^n \frac{1(Y_{k/n} \geq 0)}{n} \]

is an approximation of the occupation time

\[Q_1^+ = \text{Leb}(s \in [0,1] : Y_s \geq 0) \]
Speed of convergence for occupation time

For SDEs with smooth coefficients, the speed of convergence of the occupation time is $n^{3/4-}$ (Ngo, Ogawa), but there are no results for discontinuous coefficients. We prove that for Y OBM with $Y_0 = 0$, the following convergence holds:

$$\sqrt{n} \left(\bar{Q}_1^n(Y, +) - Q_1^+ \right) \overset{p}{\to} 0$$

again with techniques involving local time and martingales.
Main theorem

The following convergence holds

\[
\sqrt{n} \left((\hat{\sigma}_+^n)^2 - \sigma_+^2 \right) \overset{s.l.}{\rightarrow} \begin{pmatrix}
\frac{\sqrt{2}\sigma_+^2}{Q_1^+} \int_0^1 1(Y_s > 0) \, d\overline{B}_s \\
\frac{\sqrt{2}\sigma_-^2}{1-Q_1^+} \int_0^1 1(Y_s < 0) \, d\overline{B}_s \\
- \left(\frac{1}{Q_1^+} \frac{2\sqrt{2}}{1-Q_1^+} \frac{2\sqrt{2}}{3\sqrt{\pi}} \left(\frac{\sigma_- - \sigma_+}{\sigma_+ + \sigma_-} \right) \right) L_1(Y),
\end{pmatrix}
\]

where \(\overline{B} \) is a BM independent of \(Y \).

Occupation time \(\Leftrightarrow \) actual sample size
Main theorem

We can rewrite such convergence as follows:

\[
\sqrt{n} \left(\begin{pmatrix} \hat{\sigma}_+^2 - \sigma_+^2 \\ \hat{\sigma}_-^2 - \sigma_-^2 \end{pmatrix} \right) \overset{\text{d}}{\to} \begin{pmatrix} \frac{\sqrt{2}\sigma_+^2}{\sqrt{\Lambda}} \\ \frac{\sqrt{2}\sigma_-^2}{\sqrt{1-\Lambda}} \end{pmatrix} \begin{pmatrix} \mathcal{N}_1 - \frac{8}{3\sqrt{\pi}} \frac{1}{r+1} \frac{\xi\sqrt{1-\Lambda}}{\sqrt{(1-\Lambda)+\Lambda r^2}} \\ \mathcal{N}_2 - \frac{8}{3\sqrt{\pi}} \frac{1}{1/r+1} \frac{\xi\sqrt{\Lambda}}{\sqrt{\Lambda+(1-\Lambda)/r^2}} \end{pmatrix}
\]

where \(r = \sigma_+ / \sigma_- \), \(\xi, \mathcal{N}_1, \mathcal{N}_2, \Lambda \) are mutually independent, \(\xi \sim \exp(1) \), \(\mathcal{N}_1, \mathcal{N}_2 \sim \mathcal{N}(0,1) \) and \(\Lambda \) follows the modified arcsine law with density given by:

\[
p_\Lambda(\tau) = \frac{1}{\pi \tau^{1/2} (1-\tau)^{1/2}} \frac{r}{1 - (1-r^2)\tau}.
\]
An asymptotic bias is present in $\hat{\sigma}^n$. This bias has the same order ($\sim 1/\sqrt{n}$) as the ‘natural fluctuations” of the estimator. Since the local time is positive, $\hat{\sigma}_+^n$ has a probability greater than $1/2$ to be smaller than σ_+, and the same holds for $\hat{\sigma}_-^n$.
A modified estimator

We define now a different estimator for σ_+:

$$m_+^n = \sqrt{\frac{[Y^+, Y]^n_1}{Q^n_1(Y, +)}}, \quad m_-^n = \sqrt{\frac{[Y^-, Y]^n_1}{Q^n_1(Y, -)}}$$

The following convergence holds for $n \to \infty$:

$$\sqrt{n} \left((m_+^n)^2 - \sigma_+^2 \right) \xrightarrow{sl} \left(\frac{\sqrt{2}\sigma_+^2}{Q^n_1} \int_0^1 1(Y_s > 0) d\bar{B}_s, \frac{\sqrt{2}\sigma_-^2}{1-Q^n_1} \int_0^1 1(Y_s < 0) d\bar{B}_s \right)$$

where \bar{B} is a BM independent of Y.
We can rewrite such convergence as follows:

\[\sqrt{n} \left(\frac{(m^n_+)^2 - \sigma^2_+}{(m^n_-)^2 - \sigma^2_-} \right) \xrightarrow{\text{d}} \left(\begin{array}{c} \frac{\sqrt{2}\sigma^2_+}{\sqrt{\Lambda}} \mathcal{N}_1 \\ \frac{\sqrt{2}\sigma^2_-}{\sqrt{1-\Lambda}} \mathcal{N}_2 \end{array} \right) \]

\(\mathcal{N}_1, \mathcal{N}_2, \Lambda \) are mutually independent, \(\mathcal{N}_1, \mathcal{N}_2 \sim \mathcal{N}(0, 1) \) and \(\Lambda \) follows the modified arcsine law.
Comparison between the estimators

\[\sqrt{n}((\hat{\sigma}_+^n)^2 - \sigma_+^2) \text{ (dashed)} \text{ and } \sqrt{n}((m_+^n)^2 - \sigma_+^2) \text{ (solid)} \]
Comparison between the estimators and the theoretical limit distribution

\[\sqrt{n}((\hat{\sigma}_+^n)^2 - \sigma_+^2) \] (dashed), \[\sqrt{n}((m_+^n)^2 - \sigma_+^2) \] (solid) and the theoretical limit (red)
Application to volatility modeling

In the Black & Scholes Model, the detrended log-price follows

\[dX_t = \sigma dW_t \]

with \(\sigma \) positive constant, \(W \) Brownian Motion. One possible generalization of this model is to let \(\sigma \) depend on the price variable \(X \) (local volatility model). The oscillating Brownian motion can be seen as an example of such models, with

\[\sigma(x) = \begin{cases} \sigma_+ & \text{for } x \geq 0 \\ \sigma_- & \text{for } x < 0 \end{cases} \]

Simplest way to account of

- Leverage effect (volatility negatively correlated with the value of the stock)
- Volatility clustering
Literature on regime switching models

- Large literature on threshold models: threshold autoregressive models (TAR) and especially self exciting TAR (SETAR), H. Tong, . . .

- *Self exciting threshold interest rates models*, M. Decamps, M. Goovaerts, and W. Schoutens. Relation between the SET-Vasicek model and the OBM?

- *Filling the gaps*, A. Lipton and A. Sepp. Tiled volatility models are considered in connection with option pricing and implied volatility

Given an empirical time series $X = (X_t)_t$, we do not only estimate the parameters of the OBM, but also the threshold, using a MLE method. For a fixed threshold r, we consider the time series $X - r$ and estimate on it $\hat{\sigma}_+, \hat{\sigma}_-$, using our estimator. We then compute the log-likelihood

$$
\Lambda(r) = \sum_i \log p(X_i, X_{i+1}, \sigma_+, \sigma_-, r),
$$

and chose as threshold the level \hat{r} maximizing Λ.
Log-likelihood $\Lambda(r)$ for Procter & Gamble
Price and threshold for Procter & Gamble

An estimator based on quadratic variation

Application to volatility modeling

Paolo Pigato

Oscillating Brownian Motion, local time

Statistical estimation of the Oscillating Brownian Motion and application to volatility modeling
Statistical estimation of the Oscillating Brownian Motion and application to volatility modeling

Paolo Pigato

Oscillating Brownian Motion, local time

An estimator based on quadratic variation

Application to volatility modeling

Log-likelihood $\Lambda(r)$ for CA Technologies Inc

![Graph](image-url)
Price and threshold for CA Technologies Inc

Statistical estimation of the Oscillating Brownian Motion and application to volatility modeling

Paolo Pigato

Oscillating Brownian Motion, local time

An estimator based on quadratic variation

Application to volatility modeling
Statistical estimation of the Oscillating Brownian Motion and application to volatility modeling

Paolo Pigato

Oscillating Brownian Motion, local time

An estimator based on quadratic variation

Application to volatility modeling

Comparison with Mota Esquivel

<table>
<thead>
<tr>
<th>Stock</th>
<th>OBM</th>
<th>RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P & G</td>
<td>r</td>
<td>σ_-</td>
</tr>
<tr>
<td></td>
<td>62.24</td>
<td>0.014</td>
</tr>
<tr>
<td>McDonalds</td>
<td>52.4</td>
<td>0.013</td>
</tr>
<tr>
<td>CA Inc</td>
<td>25.07</td>
<td>0.025</td>
</tr>
<tr>
<td>Microsoft</td>
<td>21.8</td>
<td>0.034</td>
</tr>
<tr>
<td>Citigroup</td>
<td>40.7</td>
<td>0.075</td>
</tr>
</tbody>
</table>

Table: Estimated parameters

Comparison with Mota Esquivel
Statistical estimation of the Oscillating Brownian Motion and application to volatility modeling

Paolo Pigato

Oscillating Brownian Motion, local time
An estimator based on quadratic variation
Application to volatility modeling

Log-likelihood $\Lambda(r)$ for S&P 500
Statistical estimation of the Oscillating Brownian Motion and application to volatility modeling

Paolo Pigato

Oscillating Brownian Motion, local time

An estimator based on quadratic variation

Application to volatility modeling

Price and threshold for S&P 500

The algorithm detects the 2009 crisis!
Thanks!

- paolo.pigato@inria.fr
- Post-doc at INRIA Nancy, equipe TOSCA.