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Motivation What about the topic “Intermediation on Financial Markets”

I Since the 2008-2009 crisis legislators’ and regulators’ viewpoint on financial markets changed,
I They target to monitor and limit the risk taken by the market participants,

I In one sentence: they want to ensure most participants plays a role of intermediaries , and nothing more.

I The notion of intermediation and the role of banks, investment banks, dealers, brokers, and now insurance
companies and funds have evolved and continue to evolve;

I important concepts to understand this are: microstructure and infrastructure; they are linked to
liquidity .

I These last 10 years, the field of Market Microstructure emerged. Related literature has grown...

I I am convinced financial mathematics can address quite efficiently core concepts, as partly an academic
and partly a professional, I dedicated the last 12 years to understand these changes from a practical and a
theoretical viewpoint.

I These sessions will be the occasion to share how, in my opinion, financial mathematics can answer to new
and important questions raised by recent changes.
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The Standard Pitch (We Will Go Further Than This)

Following the 2008 crisis, the financial system changed a lot:

I “Clients” (from inside or outside) have no more appetite for sophisticated products.

⇒ The system went from a bespoke market to a mass market.
Bespoke means to sell products that are very different: no economies of scale but high margins.

Mass market means a lot of similar products + optimized logistics.

I Regulators welcome this change because it can prevent an accumulation of risk in inventories (cf. optimized
logistics).

⇒ The G20 of Pittsburgh (Sept. 2009) put the emphasis on inventory control (it is the root of improved
clearing, segregated risk limits, etc).

⇒ Policy makers took profit of two existing regulations (Reg NMS in the US and MiFID in Europe) to push
toward electronification of exchanges (i.e. improved traceability and less information asymmetry).

I Technology went into the game. Think about the kind of recent “innovations” (uber, booking.com, M-pesa,
blockchain, etc): it is about disintermediation .

⇒ How do you desintermediate a system made of intermediates?
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Market Microstructure?

Historically, market microstructure stands for not reducing
I Sellers = Equity Shares and Bonds issuers
I Buyers = investors.

In practice, today, associated topics are
I Market impact, Fire sales and Flash Crashes
I Auction / Matching mechanisms (Limit Orderbooks, RFQ, conditional / fuzzy matching, etc)
I Optimal trading / Liquidation
I Market Making and High Frequency Trading
I Investment process while taking all this into account
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My Viewpoint on Market Microstructure

I have been Global Head of Quantitative Research at Crédit Agricole Cheuvreux and CIB during years (including
the crisis). I discuss a lot with regulators; previously inside the working group on Financial Innovation of the

ESMA, now inside the Scientific Committee of the AMF. I am now in a large Hedge Fund.

I From a Financial
Mathematics
perspective, it is
nothing more than
adding a variable to
our models: the
Liquidity .

I The interactions
between liquidity and
other (usual) variables
is far from trivial.

Disclaimer : I express my
own opinion and not the one
of any of these institutions.
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What Will We Do During 3 Lectures + 1 Seminar?

I will not go in the details of the models (except for few of them), because I target to give you enough information
to include liquidity in the models you know better than me.

Hence, I will

+ 18 Nov:
I Start by the definition of intermediation
I Focus on the two main Liquidity variables on financial market: inventories and flows

+ 25 Nov:
I Show you what Liquidity looks like when we can observe it

+ 2 Dec:
I Underline why market making (inventory keeping) and optimal trading (flow management) are core for the

new role of market participants.

+ 2 Dec [Seminar]:
I Explain what practitioners are doing.

It is an on-going work
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Advertisement For Optimal Trading Optimal Trading is About To Close The loop

My own viewpoint on optimal trading:

I We have sophisticated (but tractable) methods to optimize the strategy of one agent (investment bank,
trader, asset manager, etc) facing a “background noise” (stochastic control is now really mature),

I These methods are used by practitioners (already three books on this topic [Lehalle et al., 2013],
[Cartea et al., 2015], [Guéant, 2016]),

I Differential games, and more specifically mean field games now propose very promising frameworks to
replace most of the background noise by a mean field of explicitly modelled agents:

I to provide robust results for practitioners [Cardaliaguet and Lehalle, 2016],
I to obtain meaningful results for policy recommandations [Lachapelle et al., 2016].

Up to now most results on global modelling used a simplification of a reality. Now decisions are modelled and
systematic, why not inject them into a global model?
It should enable you to produce very accurate models and draw powerful conclusions.

I Beyond optimal trading, these lectures should help you in introducing liquidity in any model of yours: please
ask question!

CA Lehalle (Cours Bachelier, 2016) 7 / 85



Outline of the Sessions

1 The Financial System as a Network of Intermediaries

2 Stylized Facts on Liquidity

3 Optimal Trading

4 Conclusion

5 Closing The Loop
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Outline

1 The Financial System as a Network of Intermediaries
Risks Transformation as The Primary Role of The Financial System

2 Stylized Facts on Liquidity

3 Optimal Trading
Learning by Trading (in The Dark)
Trading Benchmarks
Optimal Trading Rate
Optimal Trading Against Permanent Impact: stylized facts
Optimal Control of Trading Robots

4 Conclusion

5 Closing The Loop
MFG of Controls
Kyle’s Model
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Risks Transformation as The Primary Role of The Financial System

To understand the interactions between actors of financial markets, a first step is to understand the
role of the financial system .

It takes its role at the root of capitalism:
I say you see a shoes shiner at Deli, India
I you pay $1 to have your shoes shined, and you ask to the guy
I “it seems you have around 30 customers each day, it let you with $30 every day, it is a good job.”
I he answers: “not at all, I earn $1 a day... I do not own the brush, its owner loans its to me $29 a day. Since a

brush costs $12 and I need my daily dollar to eat, I will never own one.”

→ let’s discuss about microcredit: loan him $12 during 2 days...

You have $30, you can ask to the guy some percents to cover the risk he will not have enough clients. If you are
risk averse, you can even ask for the brush as collateral... A bank can “structures” the loan for you, it will take
care of all the administrative aspects, it is a simple risk transformation (liquidity on you side, business of the
shoes shiner side).
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Sometimes Hedging is Far from Optimal

Even on liquid stocks and for vanilla options (close to maturity
in this case), hedging can go wrong.

The 19th of July 2012, a trading algorithms bought and sold
shares every 30 minutes without any views on its market
impact [Lehalle et al., 2012].

For one visible mistake like this on liquid underlyings of vanilla
products, how many bad sophisticated hedging processes on
less liquid (even OTC) markets...
Anonymous continuous hedging of a remaining position
outside of the bank does not mean all is going well.
Nevertheless we have solutions in recent literature:
[Guéant and Pu, 2013], [Li and Almgren, 2014].

But nothing more generic, for instance the whole process of
hedging books in presence of wrong way risk is not studied
(as far as I know). One step in this direction is
[Schied and Zhang, 2013].
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A Modern Organization For an Intermediary

My advices to an investment bank:

I Net all your books , maintain two opposite positions is costly and risky,

I If you can’t it may be because you do not communicate enough internally (sometimes because of Chinese
walls...), hence be ready to hedge on the market ,

I But before try to match your small metaorders : send them to an internal place and cross them as much
as possible;

I You will have synchronization issues (at the level of these metaorders, no reason to be synchronized), ask to
your traders to implement facilitation-like market making schemes inside the bank.

I The remaining quantity has to be sent to markets as smoothly as possible, but it does not mean you will
have no impact. Who is your counterpart in the market should be an obsession: if you trade a one way
risk, you will pay for this in the future...

CA Lehalle (Cours Bachelier, 2016) 10 / 85



Outline

1 The Financial System as a Network of Intermediaries
Risks Transformation as The Primary Role of The Financial System

2 Stylized Facts on Liquidity

3 Optimal Trading
Learning by Trading (in The Dark)
Trading Benchmarks
Optimal Trading Rate
Optimal Trading Against Permanent Impact: stylized facts
Optimal Control of Trading Robots

4 Conclusion

5 Closing The Loop
MFG of Controls
Kyle’s Model

CA Lehalle (Cours Bachelier, 2016) 11 / 85



The Four Liquidity Variables

Intraday Seasonalities Essentials
I Volumes are U-shaped, log-volumes are close to

Gaussian,
I Volatility are U-shaped too (less intense at the end

than at the start of the day),
I Volatility is “more path dependent” than volumes,
I BA-spread is large at the start of the day, but

finishes small because of market maker running to
get rid of their inventory passively,

I “Volume on the Book” (i.e. QA + QB)/2)
seasonality is the invert of the one of BA-spread.
The more the spread is constraied by the tick, the
more the seasonality is strong on the
volume-ob-the-book.

I News implies peaks of volume / volatility,
I Activity on other markets has an influence.
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Optimal Trading

Optimal trading is about optimizing a trading process.

I Once a decision to buy or sell has been taken (i.e. a metaorder has been issued),

I Market impact and trading costs can be minimized .
I The process of inserting and cancelling orders in orderbooks has to be automated.

Asset managers delegate to their dealing desk the process of buying or selling. They give to the trading desk
specifications (speed, exposure, etc) to be fulfilled. For instance, some metaorders have to be executed fast,
others more slowly.
The dealing desks are reporting to portfolio managers information about liquidity of traded instruments (to take
liquidity into account during the allocation process). And give them “technical” advices, like effects of mergers,
closed days, potentially cheaper instruments.

Specific participants (like high frequency traders of fast hedge funds) take decisions because of
liquidity signals . In their case the buy / sell decision is intricated with their trading process.

Last but not least Market Makers use optimal trading to provide liquidity to other market participants.
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Trading on an Exchange

I Batch (Fixing) auctions or Continuous auctions,
I price driven or order driven logic,
I bilateral or multilateral trading.

A Limit Order Book (LOB) hosts multilateral, order driven, continuous double auctions.
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The emergence of a new market structure

The trading now takes place on a distributed network of heterogenous trading platforms.
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What About Multiple Venues?

Fragmentation is the natural counterpart of competition : if you want the exchanges (i.e. trading venues) to
compete.

Have you ever seen a mailbox in France? This is competition (and fragmentation)
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A typical fragmented stock

The Fragmentation of Microsoft the last 20 days (Source: Fidessa’s fragulator)
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A typical fragmented stock

The Fragmentation of Microsoft the last 20 days (Source: Fidessa’s fragulator) more...
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Optimal Trading 101: Smart Order Routing (Limit Orders)

Smart Routing of Limit Orders

I A limit order (i.e. buy –resp. sell– order at a price lower than the best ask –resp. best bid–). It has to be split
too.

I There is structurally uncertainty on limit orders splitting, waiting on a bad queue generates

opportunity costs .

I Say on venue n you seen a queue of size Qn and you expect the consuming flow to follow a Poisson
process with intensity Λn.

Goal Queue Jumping: Choose (q1, ·, qN ) so that the full quantity Q∗ =
∑

n qn is on average executed as fast as
possible.

I It means to focus on tn such that
∫ tn

0 dNn
t = qn + Qn, which expectation reads tnΛn = qn + Qn, where∑

n qn = Q∗.
I We do not need a Lagrangian here, it is enough to note minimizing the minimum of all tn implies t∗ = tn for

any n. Hence t∗ = Q∗/
∑

n Λn +
∑

n Qn/
∑

n Λn. With the convenient notations ρn := Λn/(
∑
` Λ`/N) and

Q̄ :=
∑

n Qn/N, we obtain

q∗n = ρn
Q∗

N
+ (ρnQ̄ − Qn) .
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What is Dark Routing?

When more than one trading destination are available (ECNs in the US, Multilateral Trading Facilities -MTF- in
Europe):

I each of them provides a specific flow φ
(i)
t ,

I keeping ∆T constant over the trading destinations, each liquidity pool will be able to deliver a quantity Di

Dark Pools are specific trading destinations because:
I they do not provide pre trade transparency about their limit order books
I you ask for V and you have min(V ,Di ) back
I they allow “pegged” orders: you can specify δS rather than a limit price (“pinging” implies ∆T = 0):

Di =

∫ τ+∆T

t=τ
φ

(i)
t (δS) dt
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Stochastic algorithms

I The stationary solutions of the ODE: ẋ = h(x) contains the extremal values of F (x) =
∫ x

0 h(x) dx
I A discretized version of the ODE is (γ is a step):

(1) xn+1 = xn + γn+1 h(xn)

I A stochastic version of this being (ξn are i.i.d. realizations of a random variable, h(X) = E(H(X , ξ1))):

(2) Xn+1 = Xn + γn+1 H(Xn, ξn+1)

I the stochastic algorithms theory is a set of results describing the relationship between these 3 formula and
the nature of γ, H, h and ξ [Hirsch and Smith, 2005], [Kushner and Yin, 2003], [Doukhan, 1994]
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Stochastic algorithms theory can be used when you only have a sequential access to a functional you need to
minimize:

I to minimize a criteria E(F (X , ξ1)) of a state variable X
I if it is possible to compute:

H(Xn, ξn+1) :=
∂F
∂X

(Xn, ξn+1)

I the results of the stochastic algorithms theory (like the Robbins-Monro theorem [Pagès et al., 1990]) can be
used to study the properties of the long term solutions of the recurrence equation:

Xn+1 = Xn + γn+1 H(Xn, ξn+1)
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Learning to Capture Flow Optimally in The Dark

I at high frequency, historical statistics are not so useful
I the limit price S and the quantity V are random variables,
I the executed quantity on dark pools has to be maximized (it is market impact free) and sometimes fees are

different; this effect is modelled by a discount factor θi ∈ (0, 1) (normalized with respect to a “reference” Lit
pool)

I the quantity V is split into N parts (one for each DP): ri × V is sent to the i th DP (
∑N

i=1 ri = 1)

See Optimal split of orders across liquidity pools: a stochastic algorithm approach [Pagès et al., 2011] for more
details.
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Cost of the executed order

The remaining quantity is to be executed on a reference Lit market, at price S.

The cost C of the whole executed order is given by

C = S
N∑

i=1

θi min (ri V ,Di ) + S

(
V −

N∑
i=1

min (ri V ,Di )

)

= S

(
V −

N∑
i=1

ρi min (ri V ,Di )

)

where
ρi = 1− θi ∈ (0, 1), i = 1, . . . ,N.
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Mean Execution Cost

Minimizing the mean execution cost, given the price S, amounts to:

Maximization problem to solve

(3) max

{ N∑
i=1

ρiE (S min (ri V ,Di )) , r ∈ PN

}

where PN :=
{

r = (ri )1≤i≤N ∈ RN
+ |
∑N

i=1 ri = 1
}

.

It is then convenient to include the price S into both random variables V and Di by considering Ṽ := V S and
D̃i := Di S instead of V and Di . Assume that the distribution function of D/V is continuous on R+. Let
ϕ(r) = ρE (min (rV ,D)) be the mean execution function of a single dark pool (Φ =

∑
i ϕi (ri )), and assume that

V > 0 P− a.s. and P(D > 0) > 0
Skip Details

CA Lehalle (Cours Bachelier, 2016) 23 / 85



The dynamical aspect

We consider the sequence Y n :=
(
V n,Dn

1 , . . . ,D
n
N

)
n≥1.

We will take two types of stationarity assumptions on the sequence

(IID) ≡


(i) the sequence (Y n)n≥1 is i.i.d. with distribution

ν = L(V ,D1, . . . ,DN ) on
(
RN+1

+ ,B(RN+1
+ )

)
.

(ii) V ∈ L2(P).

(ERG)ν ≡


(i) the sequence (Y n)n≥1 is averaging i.e.

P-a.s.
1
n

n∑
k=1

δ(Y k )

(RN+1
+ )

=⇒ ν = L(V ,D1, . . . ,DN ),

(ii) supn E(V n)4 < +∞.
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The Lagrangian Approach

We aim at solving the following maximization problem

(4) max
r∈PN

Φ(r)

The Lagrangian associated to the sole affine constraint is

(5) L(r , λ) = Φ(r)− λ
( N∑

i=1

ri − 1

)

So,

∀i ∈ IN ,
∂L
∂ri

= ϕ′i (ri )− λ.

This suggests that any r∗ ∈ arg maxPN Φ iff ϕ′i (r∗i ) is constant when i runs over IN or equivalently if

(6) ∀i ∈ IN , ϕ′i (r∗i ) =
1
N

N∑
j=1

ϕ′j (r∗j ).
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Existence of maximum

To ensure that the candidate provided by the Lagragian approach is the true one, we need an additional
assumption on ϕ to take into account the behaviour of Φ on the boundary of ∂PN .

Proposition 1
Assume that (V ,Di ) satisfies upper assumptions for every i ∈ IN . Assume that the functions ϕi satisfy the
following assumption

(7) (C) ≡ min
i∈IN

ϕ′i (0) > max
i∈IN

ϕ′i

(
1

N − 1

)
.

Then arg maxHN Φ = arg maxPN Φ ⊂ int(PN ) where

arg max
PN

Φ =
{

r ∈ PN |ϕ′i (ri ) = ϕ′1(r1), i = 1, . . . ,N
}
.
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Computational Trick

Note that

max
N∑

i=1

ρiE(min(ri V ,Di )),
∑

i

ri = 1

⇐ ∀i : E(ρi V1ri V<Di ) = λ

⇔ ∀i : E(ρi V1ri V<Di ) =
1
N

∑
j

E(ρj V1rj V<Dj )

i.e. “if each f (i) = λ then each of them equals their average”.
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Design of the stochastic algorithm

Using the representation of the derivatives ϕ′i yields that, if Assumption (C) is satisfied, then

Characterization of the solution

r∗ ∈ arg max
PN

Φ⇔ ∀i ∈ {1, . . . ,N} ,E

V

ρi 1{r∗i V<Di} −
1
N

N∑
j=1

ρj 1{
r∗j V<Dj

}
 = 0.

Consequently, this leads to the following recursive zero search procedure

(8) rn+1
i = rn

i + γn+1Hi (rn,Y n+1), r0 ∈ PN , i ∈ IN ,

where for i ∈ IN , every r ∈ PN , every V > 0 and every D1, . . . ,DN ≥ 0,

Hi (r , (V ,D1, . . . ,VN )) = V

ρi 1{ri V<Di} −
1
N

N∑
j=1

ρj 1{rj V<Dj}
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Back to the Notation of Stochastic Algorithms

When we design a procedure using H(r , ξ1), we potentially converge to the extrema of F (r) :=
∫

h(r), where
h(r) := Eξ1 H(r , ξ1).
Here ξt := (V (t),D1(t), . . . ,DN (t)), hence we can use the follwing stochastic procedure:

ri (t + 1) = ri (t) + γ(t) · Hi (r(t), (V (t),D1(t), . . . ,VN (t)))

= ri (t) + γ(t) · V (t) ·

ρi 1{ri (t)V (t)<Di (t)} −
1
N

N∑
j=1

ρj 1{rj (t)V (t)<Dj (t)}


⇒ (r1(∞), · · · , rN (∞)) will be our solution, i.e. the optimal split between Dark Pools .

The underlying idea of the algorithm
is to reward the dark pools which outperform the mean of the N dark pools by increasing the allocated volume
sent at the next step (and conversely).
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Constraint Problem

In this algorithm, we took into account the constraint

N∑
i=1

ri = 1,

but not
ri > 0, ∀1 ≤ i ≤ N.

So the algorithm may exit from the simplex PN stable. To overcome this problem, we have two possibilities

1. Use a Lyapunov function and a strong mean-reverting assumption out of PN : this solution is simpler from a
mathematical point of view.

2. Force the coefficients ri to stay in PN by a truncation-projection procedure: this solution is more efficient for
applications.

CA Lehalle (Cours Bachelier, 2016) 30 / 85



Theorem(s)

Theorem 1: Convergence

Assume that (V ,D) satisfy upper assumptions, that V ∈ L2(P) and that Assumption (C) holds. Let
γ := (γn)n≥1 be a step sequence satisfying the usual decreasing step assumption∑

n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞.

Let (V n,Dn
1 , . . . ,D

n
N

)n≥1 be an i.d.d. sequence defined on a probability space (Ω,A,P). Then, there
exists an argmaxPN

Φ-valued random variable r∗ such that

rn −→ r∗ a.s.
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Stochastic Algorithm for Optimal Trading (Conclusion)

We have seen
I how to improve a deterministic simple rule / optimization to a stochastic one.
I If you write properly the criterion to minimize / maximize, and if you can observe its derivative

I then it is valuable to build a rigorous stochastic algorithm

I to make the balance between exploration and exploitation.

In the case of Dark trading two other proposals:
I [Ganchev et al., 2010] uses cencored statistics to establish a robust confidence interval [Dmin

i ,Dmax
i ] around

each Di , and then perform a determinstic optimization on (Dmin
1 , . . . ,Dmin

N );
I [Agarwal et al., 2010] uses minimum regret and maintain a huge table of available quantities (and not

proportions).

Moreover you can have a similar approach to choose the price to post in a limit orderbook (cf. learning by trading
[Laruelle et al., 2013]).
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Trading Algorithms: Typical Features

Benchmark Type of stock Type of trade Main feature

PoV Medium to large
market depth

(1) Long duration position (1) Follows current market flow, (2) Very reactive, can
be very aggressive, (3) More price opportunity driven
if the range between the max percent and min percent
is large

VWAP / TWAP Any market depth (1) Hedging order, (2) Long duration position, (3) Un-
wind tracking error (delta hedging of a fast evolving in-
ventory)

(1) Follows the “usual” market flow, (2) Good if market
moves with unexpected volumes in the same direction
as the order (up for a buy order), (3) Can be passive

Implementation
Shortfall (IS)

Medium liquidity
depth

(1) Alpha extraction, (2) Hedge of a non-linear position
(typically Gamma hedging), (3) Inventory-driven trade

(1) Will finish very fast if the price is good and enough
liquidity is available, (2) Will “cut losses” if the price
goes too far away

Liquidity Seeker Poor a frag-
mented market
depth

(1) Alpha extraction, (2) Opportunistic position mount-
ing, (3) Already split / scheduled order

(1) Relative price oriented (from one liquidity pool to
another, or from one security to another), (2) Capture
liquidity everywhere, (3) Stealth (minimum information
leakage using fragmentation)
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Trading Algorithms: Typical Uses

Benchmark Region of prefer-
ence

Order characteristics Market context Type of hedged risk

PoV Asia Large order size (more than 10%
of ADV: Average daily consolidated
volume)

Possible negative news Do not miss the rapid propagation
of an unexpected news event (espe-
cially if I have the information)

VWAP / TWAP Asia and Europe Medium size (from 5 to 15% of ADV) Any “unusual” volume is negligible Do not miss the slow propagation of
information in the market

Implementation
Shortfall (IS)

Europe and US Small size (0 to 6% of ADV) Possible price opportunities Do not miss an unexpected price
move in the stock

Liquidity Seeker US (Europe) Any size The stock is expected to “oscillate”
around its “fair value”

Do not miss a liquidity burst or a rel-
ative price move on the stock

More on all this in the three “reference books” for practitioners:
I Market Microstructure in Practice [Lehalle et al., 2013]
I The Financial Mathematics of Market Liquidity [Guéant, 2016]
I Algorithmic and High-Frequency Trading [Cartea et al., 2015]
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Optimal Trading Rate

The first papers [Almgren and Chriss, 2000], [Bertsimas and Lo, 1998], focussed on the optimal trading rate, or
trading speed (i.e. how many shares to buy or sell every 5 minutes) for long metaorders.

I it does not deal with microscopic orderbook dynamics,
I it is a convenient way to take into account any information or constraint at this time scale.

It is very useful for asset managers, brokers, or hedgers. I.e. especially when the decision step is separated from
the execution step.
Nevertheless it can be used for opportunistic trading too, when risk management at an intraday scale is
important.
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The Almgren-Chriss framework (simplified) .

I have to buy V∗ share between time 0 and T ; I assume a regular temporal grid with a time step of δt (n goes
from 1 to N = [T/δt]). My volume is splitted in N slices vn such that

∑
n vn = V∗ ([Almgren and Chriss, 2000])

The price follows a Brownian motion:

(9) Sn+1 = Sn + α δt + σn+1
√
δt ξn+1

The additive, temporary only, market impact function is ηn(vn). Then the total cost is:

(10) W =
N∑

n=1

vn · (Sn + ηn(vn))

Of course, far more sophisticated models have been studied: [Almgren and Lorenz, 2007], [Almgren, 2009],
[Bouchard et al., 2011]

CA Lehalle (Cours Bachelier, 2016) 36 / 85



Classical Solution .

When the market impact is linear with respect to the participation rate vn/Vn and proportional to the volatility
(change of variable xn =

∑N
k=n vn).

W = V∗S0︸ ︷︷ ︸
immediate cost
in a "free" world

+
N∑

n=1

xnσnξn︸ ︷︷ ︸
market risk

+
N∑

n=1

ησn
v2

n

Vn︸ ︷︷ ︸
market impact

For a broker algo, we want to minimize a mean-variance criteria:

(11) Jλ = E(W |V1, . . . ,VN , σ1, . . . , σN ) + λV(W |V1, . . . ,VN , σ1, . . . , σN )

We obtain a recurrence equation in xn:

xn+1 =

(
1 +

σn−1

σn

Vn

Vn−1
+
λ

η
σnVn

)
xn −

σn−1

σn

Vn

Vn−1
xn−1
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A New Set of Equations to Account For Uncertainty on (V , σ) .

When the Vn and σn are i.i.d. random variables, and when Vn and ξn are correlated:

E(W ) = v∗S0 +
N∑

n=1

η E
(
σn

Vn

)
(xn − xn+1)2

V(W ) =
N∑

n=1

x2
nσ

2
n +

N∑
n=1

η xn(xn − xn+1)E(σn)E
(
ξn

Vn

)

+
N∑

n=1

η2 V
(
σn

Vn

)
(xn − xn+1)4

It is easy to add a lot of other effects like: noise on “expected” market impact, auto-correlations, volume-volatility
coupled-dynamic. No more closed-form formula.

CA Lehalle (Cours Bachelier, 2016) 38 / 85



This is The Swiss Knife of Trading Curves

It introduced the idea of optimal trading curves → crucial for
risk control.
A lot of effects can be easily added to the AC framework:

I seasonalities and predictions of V and σ can be plugged,
I arbitrage opportunities can be added, [Lehalle, 2013]

I E(W |V , σ) + λV(W |V , σ) can be replaced by E(W ) + λV(W ),
to take uncertainty into account, [Lehalle, 2008],

I backtest parametric trading curves directly, etc.

Open questions (within this framework)
I the control is the trading rate,
I the choice of the criterion can be discussed (PoV, VWAP, TWAP, TC, etc.),

I the variance term has a strong influence,
I what can you choose ? (λ).
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More Within the AC Framework

Why introduce a variance term in the cost function?
I with λ = 0 and an explicit (exponential) form of orderbook relaxation, Alfonsi and Schied elaborated in this

direction ([Alfonsi et al., 2009, Gatheral et al., 2012]). A U-shaped trading curve generally stems from such
choice (due to market impact relaxation and blindness after the last transaction).

⇒ Market impact decays implies a U-shaped trading rate.

I The choice of a variance term (instead of any p-variation) can be discussed, too
[Labadie and Lehalle, 2014]. Especially if you think intraday price dynamics are more mean reverting than
daily ones.
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Practical Use of Automated Trading: Adding Constraints
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The Almgren-Chriss criterion is the Implementation Shortfall (i.e.
W (v)), but other “trading styles” are possible, like VWAP (follow the
usually traded volume [Cartea and Jaimungal, 2014]), PoV (follow
the real-time market volume), and Target Close.

I The latter targets the closing fixing, trying to avoid a too large
impact.

I It limits the volume in the fixing auction at q%,
I And does the remaining in an Almgren-Chriss way on

W (v)− ST

In practice users put some participation constraints to their trading flow (i.e. v < ρV ). For the Target Close it
raises an interesting problem, especially if you use an estimate of the future volume or if you want to start you
European trading for sure after the opening of US markets. With Mauricio L, we proposed a model and solved it
for fractional Brownian motions [Labadie and Lehalle, 2014].
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The Cartea and Jaimungal Version

The usual (simplistic) example of (continuous time) optimal trading

1. Write the Markovian dynamics or the price P, the quantity to trade Q and the cash account X for a sell of Q0
shares before t = T (control is the trading speed r )

dQ = −ν dt , dX = r (P − κ · ν)dt , dP = µ dt + σ dW .

2. Write the cost function to minimize

V (t , p, q, x , ν) = E

(
XT + QT (PT − A · QT ) + φ

∫ T

τ=t
Q2
τ dτ

∣∣∣∣∣Ft

)
.

3. it gives the HJB and its terminal condition V (Tf , . . .) = x + q(p − Aq); (here µ = 0)

0 = ∂t V +
σ2

2
∂2

PV + φ q2 + minν {−ν∂QV dt + ν(p − κ · ν)∂X V} .
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The Quadratic Solution is Nice

4. After the change of variable V (t , p, q, x) = x + q p + v(t , q), you have

0 = ∂t v + φ q + min
ν

{
−ν∂Qv − κν2

}
.

5. The optimal control is ν∗ = −∂Qv/(2κ), and the PDE 0 = ∂t v + φ q + κ(∂Qv)2/(4κ).

6. When the value function is quadratic: v(t , q) = h0(t) + q h1(t)− q2 h2(t)/2, you can separate the PDE in
three: 

0 = h′0 + h2
1

0 = h′1 − 2h1h2
0 = −2κh′2 + h2

2

Cartea and Jaimungal (with misc. co-authors) developed this framework for plenty versions: with a (slightly)
different objective function (VWAP, PoV), with permanent market impact µ→ µ+ ν, with µt any (adapted)
process, etc.
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Optimal Trading Against Permanent Impact: stylized facts

On our database of 300,000 large orders

Market Impact takes place in different phases
I the transient impact, concave in time,
I reaches its maximum, the temporary impact, at the end of the

metaorder,
I then it decays,
I up to a stationary level; the price moved by a permanent shift.

In [Bacry et al., 2015] we studied all the phases, using intraday and daily analysis (for the first time). We
underlined the importance of some “normalization variables”: the uncertainty on the price formation process , the
capability of the orderbook to resist to volume pressure , and the duration of the metaorder.
Following [Waelbroeck and Gomes, 2013] and simultaneously with [Brokmann et al., 2014], we proposed an
explanation of permanent impact .
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Is it Really Possible to Minimize Permanent Impact?

We used an Hawkes-based toy model to show how the concavity of the market impact and the decay can form.
Nevertheless an external parameter C is needed to control the permanent market impact. In such a framework
the intensity of the Hawkes process can be seen as an implicit inventory of the market makers.

I Part of the price move while an asset manager is buying is due to its trading activity,

I But evidences on the permanent components could be explained by an informational effect:
you buy because you anticipated the price will move. Buy or not: it will move in any case!

This effect seems to have been identified by Waelbroeck and Gomes on “cash trades”, by the CFM team on daily
“deconvoluted trades”, and by us on the idiosyncratic component of price moves.

I The best way to take such permanent market impact into account could simply be to add a deterministic
trend to price dynamics (i.e. “usually, when I decide to buy, the price will go up that way”)... Beside, it could
justify the use of a variance term in the cost function.

This kind of analysis is linked with a potential understanding of the whole market dynamics and the way prices
form.
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Optimal Trading Rate (Conclusion)

We have seen
I Almgren and Chriss framework is simple and flexible . It can be seen as a way to include any statistical

property of medium-term (5 to 30 min) dynamics in your trading style,

I It does not deal with orderbook dynamics . See [Guéant, 2016] for a lot of variations.

I It gives a deterministic trading rate .

• But it does not say how to choose the risk aversion . This parameter control the urgency of trading.

I With small changes to the criterion, Cartea and Jaimungal provide a way to obtain a
stochastic trading rate . See [Cartea et al., 2015] for variations.

Because the change affects the (not so well defined) risk aversion, it is not that a big deal.

⊕ Risk aversion is a way to deal with the informational component of permanent market impact . See
[Lehalle et al., 2013] for a global overview.

⇒ 3 books for optimal trading...
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Optimal Control of Trading Robots

In practice if you want to rely on previous frameworks (i.e. optimal trading rates), you need a way to realize it
thanks to (optimal?) interactions with orderbook dynamics.

1. Use your favorite method to implement a solver and obtain (in real time) your optimal trading rate ,

2. Have statistics ready on a server with the needed parameters (market impact model, risk aversion, calendar
with scheduled events, etc).

⇒ At any point in time, you know the trading rate νt δt you plan to obtain in the next δt seconds.

3. Give it to another logic, focussed on the short term and taking profit of orderbook dynamics. I will call this
logic a Trading Robot , and a priori I will assume it should adopt an exploration-exploitation scheme.

Typically I will use a stochastic algorithm to design my Trading Robot and thanks to backtests and production
results I will have a clear idea of its “usual returns”. I.e. when I ask to Robot A to buy νt δt shares in δt on this
kind of instrument, it obtain Q shares with a price improvement of ∆P (two random variables).
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Optimal Trading Against Orderbook Dynamics

This idea of a decision process in two scales is close to reality:

1. the investor takes a decision according to its views on the
price / risk, but he does not buy or sell himself;

2. he delegates to a executing broker or to a trading algorithm
the trading process.

At the scale of the large order itself there is a similar split in two
scales:

I a scheduler or a human trader takes care of a trading curve
(close to the outcome of an Almgren-Chriss optimization),

I it uses trading robots for high frequency interactions with
the orderbook.
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Optimizing a Two-Scales Controller

The control
ν = (τνi , δ

ν
i , E

ν
i )i ,

The dynamics
Xν(t) = x0 +

∫
s≤t (b dt + σ dW )

+
∑

i β(τνi , δ
ν
i , E

ν
i )1τνi ≤t ,

The gain∑
τνi <T

f (X(τνi + δνi ), Eνi ) + g(Xν(T )).

In [Bouchard et al., 2011] , we developed a model describing this two
scales process:

I The Scheduler launches trading robots, known in probabilistic
terms (the joint laws of their duration and their efficiency) at any time.

I It is an impulse control problem embedded in a continuous-time
framework: the controls are the stopping times at which robots are
launched and the quantities given to the robots. The scheduler has
to wait the max between a given duration and the end of the robot
work before launching the next one.

The outcome of this work has been a better understanding of the discretization bias. It is probably not really
possible to go further with the trading rate as control.
Of course you can try to control directly (and solely) the interactions with orderbooks. We did it in several papers
[Guéant et al., 2012, Guéant et al., 2013, Guéant and Lehalle, 2015] . I am not sure it is the best in terms of
risk control (from an operational perspective at least).
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Conclusion on Optimal Trading

We have seen optimal trading has two natural scales:
I At small scales (less than 1 minute on liquid instruments, but could be 1h on not liquid ones) you have to

take into account the temporary variations of liquidity.
An exploration-exploitation scheme has to be used. That for you need to

1. Write your criterion,
2. Derive its “mean field” gradient descent / ascent,
3. Convert it in its stochastic counterpart (and be sure it converges).

We did it for a Dark SOR.
I At longest scales (few hours), the strategic interactions between liquidity, urgency, and risk can be

optimized too.
The basic toolkit is the Almgren and Chriss one (it is a mean-variance scheme); it give birth to deterministic
strategies. If you want to do something more subtle, the Cartea and Jaimungal toolkit is nice too, but a little
more complex since it give birth to stochastic optimal strategies.

In practice you need to combine the two scales. The more explicitly, the better. Please do not write only one of
the two framework properly, without paying attention to the other.

At least theoretically, you can try to optimize the all scales simultaneously. It is interesting to understand how they
play with each others. But in terms of robustness I would recommand to split a trading algorithm in two parts:
one strategic layer (slow and robust) and one tactical layer (fast and adaptive).
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Takeaway Message 1: The Financial System

I The whole financial system is a partially connected network of intermediaries,
I They buy and sell risks, netting internally as exposure as possible,
I and using hedging (risk replication) techniques for the remaining, in the hope to cross another

intermediary’s risk on anonymous markets.

I The main activity of the financial system is hence to make the market, in an attempt to make margin while
conveying a flow of transactions from some ultimate risk takers (like retail, corporate, asset managers,
insurances) to others.

I Regulators have to calibrate the amount of risk an intermediary can bear: large enough to enable her to
wait of next buyers or sellers (to balance her book), small enough to not allow directional risk.

I More continuous the trading, easier to balance the book and achieve very low levels of risk for the whole
system.
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Takeaway Message 2: Optimal Trading

I Optimal trading covers: execution of metaorders, opportunistic liquidity trading and market making.
I It makes the balance between market impact (trade slow) and the inventory risk (trade fast).
I At the smallest scale, I recommend the use of forward methods, like statistical learning. I have shown

how stochastic algorithms could offer more accurate updates of variables of interest than reinforcement
learning.

I At the largest scales, stochastic control is needed since the backward component is crucial (do not miss
the target).

I You can try to optimize the two layers at once, as a practitioner I would not recommend this for robustness
reasons (large exposure to small perturbations of HF data). Here the design of interactions between the
slow layer (implementing backward strategies) and the fast one (focussed on tactical forward methods) in an
interesting algorithmic challenge.
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Takeaway Message 3: Stakes for financial maths

I introduce liquidity in existing models

I it means: instantaneous, transient, decay and permanent market impact
I or offer and demand (multiple agents)

I introduce fragmentation

I it means a choice between multiple "liquidity shapes"

I introduce learning

I dynamics of liquidity is sophisticated (cf the Queue Reactive model)
I it predicts short term price movement

Competition for liquidity is clearly an important topic.
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Different Levels of Loops to Close

Two areas are not explored enough

I for practitioners : statistical learning; how to adapt online to regime switches (remember what we said
about liquidity game vs. price game)? How to be robust to transitory phases? “Closing the loop” with
learning is mixing exploration and exploitation.

I for regulators : game theory; what is the result of putting rational agents together? The more quants will
read the 3 books, the more it will be needed to understand such interactions, and how changing “meta
parameters” (ie rules) will modify the outcome of this game?

For game theory on financial market:
I few agents usually leads to principal - agent problems,
I a lot of agents usually leads to mean field games.

Moreover, game theory is a way to obtain robust control .
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Mean Field Games

I the number of players needs to be "large enough"
I all players contribute to a "mean field" (i.e. a global variable: available shares, volatility, resource, etc)
I a function of this mean field (at least its mean, may be its standard deviation, etc) appear in this utility

function of the players

→ the name on the player cannot be used, but they can have a parameter (like a time horizon or risk aversion)
of their own

The methodology is similar to the one to solve static Nash games:
I express the solution (for one agent) and find the solution as if the mean field was known
I you obtain a backward pde
I combine what you know about the mean field to find its forward pde

Liquidity is typically a mean field: the state of the inventory of participants influence their costs and can lead to
fire sales [rené]. What practitioners call "velocity" of the liquidity (the flows) is a mean field too, it probably forms
the prices along with market impact.
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MFG of Controls and An Application To Trade Crowding Joint work with Pierre

Cardaliaguet

A continuum of agents trade optimally “à la Cartea-Jaimungal”. Main variables:
I public price P, exposed to permanent market impact. µ =

∫
q ν

a df (a) is the sum of the control of all agents
I the remaining qty of each agent Qa (νa is the control)
I the wealth of each agent (public price is penalized by instantaneous impact)

Keep in mind νa is negative for a seller

(12) dSt = αµt dt + σ dWt .

(13) dQa
t = νa

t dt ,

since for a seller, Qa
0 > 0 (the associated control νa will be mostly negative) and the wealth suffers from linear

trading costs (or temporary, or immediate market impact):

(14) dX a
t = −νa

t (St + κ · νa
t ) dt .

The cost function of investor a selling from t = 0 and T is similar to the ones used in [Cartea et al., 2015]: the
terminal inventory is penalized and a quadratic running cost is subtracted:

(15) V a
t := sup

ν
E

(
X a

T + Qa
T (ST − Aa · Qa

T )− φa
∫ T

s=t
(Qa

s )2 ds
∣∣∣Ft

)
.
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HJB For One Player

The Hamilton-Jacobi-Bellman associated to (15) is

0 = ∂t V a−φa q2 +
1
2
σ2∂2

SV a +αµ∂SV a +sup
ν

{
ν∂QV a − ν(s + κ ν)∂X V a} , V a(T , x , s, q;µ) = x +q(s−Aaq).

Following the Cartea and Jaimungal’s approach, we will use the following ersatz:

(16) V a = x + qs + va(t , q;µ).

Thus the HJB on v is

−αµ q = ∂t va − φa q2 + sup
ν

{
ν∂Qva − κ ν2

}
, va(T , q;µ) = −Aaq2.

and the associated optimal feedback is

(17) νa(t , q) =
∂Qva(t , q)

2κ
.
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Obtaining The MFG Master Equation

The mean field of this framework is the distribution m(t , dq, da) of the inventories Qa
0 and of their preferences

(φa,Aa).
It is then straightforward to write the net trading flow µ at any time t

(18) µt =

∫
(q,a)

νa
t (q) m(t , dq, da) =

∫
q,a

∂Qva(t , q)

2κ
m(t , dq, da).

va is an implicit function of µ, meaning we will have a fixed point problem to solve in µ. By the dynamics (13) of
Qa

t , we have

∂t m + ∂q

(
m
∂Qva

2κ

)
= 0 with initial condition m0 = m0(dq, da).

(19)


−αq

∫
(q,a)

∂Qva(t , q)

2κ
m(t , dq, da) = ∂t va − φa q2 +

(∂Qva)2

4κ

∂t m + ∂q

(
m ∂Qva

2κ

)
= 0

Terminal conditions: m(0, dq, da) = m0(dq, da), va(T , q;µ) = −Aaq2.
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The System in The Case of Identical Preferences and Quad. v φa ≡ φ, Aa ' A

Set E(t) = E [Qt ] =

∫
q

qm(t , dq). Note that

(20) E ′(t) =

∫
q

q∂t m(t , dq), E ′(t) = −
∫

q
q∂q

(
m(t , q)

∂Qv(t , q)

2κ

)
dq =

∫
q

∂Qv(t , q)

2κ
m(t , dq).

When v(t , q) can be expressed as a quadratic function of q: v(t , q) = h0(t) + q h1(t)− q2 h2(t)
2 ,

(21) µ(t) =

∫
q

∂Qv(t , q)

2κ
dm(q) =

h1(t)
2κ
−

h2(t)
2κ

E(t).

and

E ′(t) =

∫
q

m(t , q)

(
h1(t)
2κ
−

h2(t)
2κ

q
)

dq =
h1(t)
2κ
−

h2(t)
2κ

E(t).

So we can supplement it with

(22) 2κE ′(t) = h1(t)− E(t) · h2(t).
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Master Equation For Identical Pref. and Quad. v

We now collect all the equations. Recalling (21), we find:

(23a)

(23b)

(23c)

(23d)


4κφ = −2κh′2(t) + (h2(t))2,

αh2(t)E(t) = 2κh′1(t) + h1(t) (α− h2(t)) ,

− (h1(t))2 = 4κh′0(t),

2κE ′(t) = h1(t)− h2(t)E(t).

with the boundary conditions

h0(T ) = h1(T ) = 0, h2(T ) = 2A, E(0) = E0,

where E0 =
∫

q qm0(q)dq is the net initial inventory of market participants (i.e. the expectation of the initial
density m).
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Solving The Mean Field

To summarize, the equation satisfied by E is:

(24)
{

0 = 2κE ′′(t) + αE ′(t)− 2φE(t) for t ∈ (0,T ),
E(0) = E0, κE ′(T ) + AE(T ) = 0.

Closed form for the net inventory dynamics E(t)

For any α ∈ R, the problem (24) has a unique solution E , given by

E(t) = E0a (exp{r+t} − exp{r−t}) + E0 exp{r−t}

where a is given by

a =
(α/4 + κθ − A) exp{−θT}

−α2 sh{θT}+ 2κθch{θT}+ 2Ash{θT}
,

the denominator being positive and the constants r±α and θ being given by

r± := −
α

4κ
± θ, θ :=

1
κ

√
κφ+

α2

16
.
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The Standard Case

0 1 2 3 4 5
0

2

4

6

8

10
E(t), E0 = 10.00, α = 0.400
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T = 5.00, A = 2.50, κ = 0.20, φ = 0.10

h2(t)

−h1(t)

Dynamics of E (left) and −h1 and h2 (right) for a standard set of parameters: α = 0.4, κ = 0.2, φ = 0.1,
A = 2.5, T = 5, E0 = 10.
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Small α
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h2(t) small α

−h1(t) small α

Comparison of the dynamics of E (left) and −h1 and h2 (right) between the “reference” parameters of Figure ??
and smaller α (i.e. α = 0.1 instead of 0.4) such that |h1(0)| is smaller.
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h2 Almost Constant
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Comparison of the dynamics of E (left) and −h1 and h2 (right) between the “reference” parameters of Figure ??
and when

√
κφ ' A: in such a case h2 is almost constant but E and h1 are almost unchanged.
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A Case With Not Monotonous E
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A specific case for which E is not monotonous: α = 0.01, κ = 1.5, φ = 0.03, A = 2.5, T = 5 and E0 = 10.
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Not Monotonous E
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Conclusion on MFG of Controls For Liquidation

It is a proof of maturity of the use if stochastic control in financial math:

I Four years ago, it was difficult to think about a game theoretical version of the Almgren and Chriss optimal
liquidation problem (schied and jaimungal).

I Our understanding of the problem itself improved (see Guéant and Cartead and Jaimungal books)
I and some extensions of MFG have been needed (see the paper).

I but we now know how to handle it (and in a specific case it is fully solved)

Solving game theoretical versions of what we know is important (instead of sophisticating it in a mean field
���game), because

I it is a way to obtain robust control
I it helps regulator to understand the system to adjust some meta parameters (κ is this example)

MFG is not the only way to answer to such questions.
Moreover learning should not be forgot (done in our paper): what does change when information is not complete?
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Outline

1 The Financial System as a Network of Intermediaries
Risks Transformation as The Primary Role of The Financial System
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Making the Market in Front of Adverse Selection: Kyle’s 85 Model

The framework
I An informed trader, knowing the future price
I Noise traders, knowing nothing
I A market makers, having only access to distributions (thanks to

“backtests” / observations); she changes her price linearly according to
the price pressure she observes: fP(q) = P̃ + λ · q.

I The informed trader adjusts his participation to maximize its profit (given P̃
and λ),

I The market makers know the distribution of the informed price and set P̃
and λ so that her price is as close as possible to its expectation.
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Making the Market in Front of Adverse Selection: Kyle’s 85 Model
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Making the Market in Front of Adverse Selection: Kyle’s 85 Model

Following Continuous Auctions and Insider Trading – [Kyle, 1985]:
I Remember the market makers fear adverse selection.
I We have informed traders, they know the price will be pω after their trade, pω ∼ N (P∗, σ2

p).

I Other traders, (i.e. noise traders for Kyle) trade for other reasons, their net direction is nω ∼ N (0, σ2
n).

I The informed traders have to choose a participation Q(p) (they know p) to maximize their profit,
I Knowing the market makers (MM) will react to the net perceived flow linearly: the public price will be

fP(Q(pω) + nω) = P̃ + λ · (Q(pω) + nω).

I Moreover in their filtration, the MM should produce a price being the best estimator of pω given
Q(pω) + nω .
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The Economics of Market Impact: Kyle’s 85 Solution

I Informed traders maximize their expected price: arg max
Q

E((pω − fp(Q + nω))Q|pω).

⇒ They decide to trade Q(pω) = (pω − P̃)/(2λ).

I The MMs have to choose P̃ and λ so that P̃ + λ · (Q(pω) + nω) = E (pω |Q(pω) + nω).
I The solution is the linear regression of p on Q(p) + nω :

 P∗ = P̃ + λE(Q(pω) + nω)

λ =
Cov(p,Q(p) + nω)

V(Q(p) + nω)

⇒


P̃ = P∗

λ =
σ2

p/(2λ)

σ2
p/(2λ)2 + σ2

n

⇒ It can be solved with λ = σp/(2σn).

I The more potential informational price move (i.e. large σp), the largest impact.
I The more non informative flow, the more difficult for the MM to identify information, hence the less she

impacts the price.
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It is a Little More Complex in Practice

On our database of 300,000 large orders

I This is renormalized market impact as a function of the participation rate, i.e.
v/V , taken from [Bacry et al., 2015].

I It is not linear, it is concave .
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An Extended Version of Kyle’s Model

Due to [Çetin and Danilova, 2015].

Notations and definitions.
I At t = 0 , the insider trader knows the final “fundamental” value of the instrument. This value is drawn from a

random variable V (the law of V is known by everyone). He tries to trade “optimally” knowing the market
maker with react to the trading flow. His cumulated trading flow at t is Xt .

I Liquidity traders generate a (signed) cumulative demand of σt Bt at t .
I The Market Maker (in reality N market makers competing “à la Bertrand”) observes the net demand

Yt := Xt +σBt . She sets the price at St := H(t ,Yt ). She has a CARA utility function U(x) = − exp−ρx .

Note the terminal wealth of the insider is

(25) W X
1 =

∫ 1

0
Xt dH(t ,Yt ) + X1(V − H(1,Y1)) =

∫ 1

0
(V − H)dX .

On her side, the market maker wealth at t is

(26) Gt := −
1
N

∫ 1

0
YsdH(s,Ys) + 1t=1

Y1

N
(H(1,Y1)− V ).
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The Market Maker’s Viewpoint

Say the infinitesimal increase of the market maker pricing rule H can be written using a controlled diffusion:
dS = Zt dBY + µt dt , then the infinitesimal change in U is (using (26)):
dU(Gt ) = U(Gt )

ρ
N Yt

(
σt dBY + (µt + ρ

2N Yt Z 2
t )dt

)
. The dynamic programming principle states its deterministic

part should be zero, hence

(27) µt = −
ρ

2N
YZ 2.

And finally

(28) dS = Zt dBY −
ρ

2N
Yt Z 2

t dt .

Dynamics of the Pricing Rule
Because of the term YdS in the wealth of the market maker and because of her CARA(ρ) utility, the pricing rule
necessarily follows equation(28): dS = Zt dBY − ρ

2N Yt Z 2
t dt .
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MM Necessary Condition: Backward Heat Guessing

On his side the insider will act on his trading flow dX := α(t ,Y ,S,Z )dt , the net demand will hence be a diffusion
with a controlled drift:

(29) dY = σt dB + αdt .

Using α, the insider will hence maximize his utility; again the dynamic programming principle on
Ψ(t , y) := supα E

[ ∫ 1
t (V − H)αds

∣∣Yt = y
]

gives a useful information: the following HJB (subscripts stand for

partial derivatives): Ψt + σ2

2 Ψyy + supα{α(Ψy + (V −H))} = 0. In other terms: Ψy = V −H; Ψt + σ2

2 Ψyy = 0.
This implies H must satisfy the heat equation too:

(30) Ht +
σ2

2
Hyy = 0.
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The Insider’s Viewpoint: Price Dynamics Follows MM’s Will

On the one hand, writing Ito’s formula on S = H(t ,Y ) reads dS = Hy dY + (Ht +
σ2

2
Hyy︸ ︷︷ ︸

=0

)dt = Hyσt dB + Hyαdt .

And on the other hand we have (28) because of the market maker optimal strategy. Equalling the deterministic
parts reads

(31) Hy =
Z
σ
.

and the random parts reads Hyα = −ρYZ 2/(2N). Hence (z/σ)α∗(t , y , s, z) = −ρ/(2N) yz2, i.e.

(32) α∗ = −
ρσ

2N
yz.
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The Insider’s Viewpoint: Summary

Insider’s Optimal Strategy
Because of Ito on the pricing rule seen as a function of (t ,Y ) and because of the shape of the pricing rule fixed
by the market maker, we necessarily have equations (31) Hy = Z/σ and (32) α∗ = −ρσ · yz/(2N). It implies

equation (33) for the net demand dynamics: dY = σt dB − ρσ2

2N YHy dt .

Terminal Condition

Because of the shape of the insider’s wealth
∫ 1

0 (V − H)dX and because the expectation of dY is dX , we
necessarily have H(1,Y1) = V .

Remark: Obtaining the terminal condition is tricky.
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Confronting Viewpoints

Replacing α and z by their values in (29) allows to write

dY = σt dB + αdt

= σt dB −
ρσ

2N
YZ dt , using (32)

= σt dB −
ρσ2

2N
YHy dt , using (31).(33)

Putting the main equations (30)-(33) side to side, we now have

(34)


Ht +

σ2

2
Hyy = 0, under the terminal condition H(1,Y1) = V

dY = σt dB −
ρσ2

2N
YHy dt
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How to Solve The Closed Loop

The iterations to solve the closed loop are as follow (use Schauder’s fixed point theorem, i.e. a strict
compactness inclusion argument)

I Initialization.
I V is the final value distribution, it is revealed to the insider trader at t = 0.

Typically V ∼ N (0, σ2
V ).

I The market maker makes a guess for Y (1)
1 , the sum of noise traders’ flows and the insider’s one.

It can be a Gaussian too, or something more “protective” (in the sense a distribution with fat tails).
I She solves (a backward way) the heat equation

H(1)
t +

σ2

2
H(1)

yy = 0

with the terminal condition H(1)(1,Y (1)
1 ) = V . She obtain a “first guess” pricing rule to apply.

I Steps to Iterate.
I The insider trader now sees H(n)(t,Y (n)) in real-time, and reacts by setting his flow so that

dY (n+1) = σndβ −
ρσ2

2N
Y (n+1)

t H(n)
y dt.

I At the end of the day the market maker discovers Y (n+1) and know V in distribution, hence she sets a new pricing rule
solving again the heat equation, but with a different terminal condition, now

H(n+1)(1,Y (n+1)) = V .
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A Qualitative Understanding

I implemented the numerics, here is
the “market impact” (i.e. pricing rule)
function (and its evolution during the

tracking of the fixed point). It is
concave, accordingly with the data.

This master system of equations can be understood as
I The market maker(s) tunes her pricing rule H such that it follows the heat

equation and it exactly fits the law of the fundamental prices V at terminal
time t = 1;

I The insider mean reverts the net demand (his demand plus the noisy one)
flow (i.e. net demand) through time using a mean reversion strength
proportional to ∂y H(t , y)|(t,Yt ): when the slope of the pricing rule is
intense, it mean reverts more than when it is not.

The complexity of this system is the market maker needs to know in advance
the insider’s strategy to have an access to Y1 to satisfy her terminal condition.
That for a “fixed point” theorem will be needed, the good one is Schauder’s
one, and that for it will be needed Y has a smooth transition density. This
property will need to be stable via the application of the system (34).
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Thank You For Your Attention
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