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Introduction

@ Stochastic Differential Equations (SDEs) are widely used to model
processes, in finance and other fields.

@ Develop an accurate numerical scheme for SDES (in strong
convergence sense) to carry out large time step simulation.

@ Employ a neural network to obtain this numerical scheme and
solve the SDEs, efficiently.
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Stochastic differential equations

@ Random variable Y(t), on probability space (€2, >, P) with filtration
F(t)tcr0,7), sSample space 2, o-algebra 3 and prob. measure .

@ Consider the generic scalar 1t6 SDE,
dY(t) = a(t, Y(t),0)dt + b(t, Y(t),0)dW(t), 0<t<T,

with drift a(t, Y(t), 0), diffusion b(t, Y(t),0), parameters 6, Wiener
process W(t), and initial value Yy := Y(t = 0).
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The strong convergence

Solution in integral form

t+At t+At
Y(t+ At)=Y(t) + / a(s, Y(s),0)ds + / b(s, Y(s),0)dW(s)
Jt Jt

Let the exact solution of an SDE at time {; be given by Y(#), its
discrete approximation Y({;) with time step Af converges in the strong

sense, with order 35 € R, if

E|Y(t) — Y(t)| < K(At).
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Numerical discretization

Classical numerical schemes

Euler-Maruyama (strong order s = 0.5):

%—&-1 — S\/I + a(tl* S\/I-O)At'—*— b(tl* S\/1-0) Vv At)/\(/+1

Milstein (strong order S5 = 1.0):

\/l—‘r‘l - % + a(th Y O)At+b(tl7 i )V XI+1
1
+ bt ¥, 0)b(t;, %, 0)AH(KE — 1)

where V¢ := Y(t;.1) is a realization from ¥(t. ), and X;,+ is drawn
from X ~ N(0, 1), b/(-) the first derivative of b(-).
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Higher-order numerical approximation

Common ways to improve numerical accuracy.
@ Include higher-order terms': ODE Runge-Kutta schemes plus
high-order random terms of I1té calculus. For example, there are 8
terms for 55 = 1.5, and 12 terms for 85 = 2.0.

d

Y(t+ At 2 Y(1) + aAt + bVALX + %b’bAt(XZ 1)+ ..

12 terms

@ Reduce time step At, e.g., use a finer time grid.

1 Eckhard Platen (1999). An introduction to numerical methods for stochastic differential equations. Acta Numerica.

C.W. Oosterlee, Utrecht University 1 Basics of Stochastic Differential Equations 7/34



Data-driven numerical schemes

@ The Euler-Maruyama scheme,
Yior = Yi+a(t, Vi, 0)At+ b(t;, Vi, 0)VAL X1,
o o
{(yo =Y+ a(t, Y, 0)At,
ar = b(t, Vi, 0)V/At,

@ The Milstein scheme,
& = S\/I + a(ti: S\/,,B)At+ %b/(th \A/iv B)b(tlv S\/iae)a
ar = b(t, Vi, 0)VAt,
ap = 1b/'(t, V1, 0)b(t;, Vi, 6).

A numerical scheme is a mapping function.
m—1
\N/(t,'_H )‘ y(t;) g Z Oszj,With Qj = H/ (t,', \N/(l‘,'), At, 9> .
j=0
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The Seven-League Scheme

@ “We march through time with the Seven-League scheme
(the 7L scheme)”

@ The 7L scheme consists of two key components,
e Stochastic Collocation Monte Carlo sampler (SCMC)!,
efficient sampling from an ’expensive’ distribution;
o Neural network, as a powerful function approximator.

1 L. A. Grzelak et al. (2019). The stochastic collocation Monte Carlo sampler. Quant. Finance.
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Stochastic Collocation Monte Carlo sampler

@ Two scalar random variables, Y and X, are connected by,
d , , d
Fy(Y) = U = Fx(X),

where U ~ U([0,1]), Fy(¥) := P(Y <¥), Fx(X) := P(X < X).
@ When Fy(y) and Fx(Xx) are strictly monotonic, we have

y = Fy (Fx(%)) := 9(%),

both distributional and also element-wise.
@ Choosing optimal collocation points, (X;,;), to approximate,

y=9(X) = gm(x) =" §ti(%)
j=1

where J; = F, ' (Fx(%)) (e.9. X Gauss-Hermite quadrature
points), /;(-) interpolation basis functions.
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SCMC algorithm

@ Exponential convergence to the target distribution.

SCMC algorithm

@ Calculate CDF Fx(x;) on (x1,...,xm), €.9., from
Gauss-Hermite quadrature, giving m pairs (x;, Fx(x;));

@ Invert the target CDF y; = F, ' (Fx(x})), j = 1,...,m, and
form m pairs of collocation points (x;, y;);

© Define the interpolation function, y = g(x), based on these
m pairs (X;, y;);

@ Obtain sample ¥ by applying the mapping ¥ = g(X), where
sample X is drawn from X.

C.W. Oosterlee, Utrecht University 2 The Seven-League Scheme 11/34



Conditional distribution by SCMC

Given the current state Y(t), the conditional variable Y(t + At) can be
written as,

Y(t+ A8 Y () £ g(X) ~ gm(X).

Generating a sample path is drawing samples from the probability
distribution conditional on a previous realization,

Y/i+1 | S\/I = gm()A(,jH )-

In the case of Lagrange interpolation, we arrive at the coefficient form,

3

Yip1|Yi= gm(Xijﬂ) = (A"“JX/!H’

i
|
o
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Learn stochastic collocation points

@ We use an artificial neural network (ANN) to determine the
conditional collocation points, y;(#.1), based on the previous
realization, A A

yi(ti1)Yi = Hi(Yi, 1, At 6).

OvOvO
AN

@ When the conditional stochastic collocation points are known, the
mapping gm(-) is constructed via interpolation.
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Artificial Neural Network (ANN)

Artificial neural network is used as a function approximator.
@ Fully connected neural network is a composite function,

H(x1©) = (... H2(hD(X; 81); 65);...6,,),

with X input variables, © weights and biases, L4 hidden layers.
@ Minimizing the loss function to approximate the target function,

argmlnL —argmanD (Xi1©), %),
)

where D(-,-) measures the distance between predicted 7 (:;|0)
and true y; values.
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The offline stage

The ANN learns conditional stochastic collocation points,

y,-(7+d7)|s“/(7):H,-(?/(T),T,mﬁ), j=1,2,....m,

@ Generate many data samples for different time steps dr and
model parameters 6.

© Use a numerical scheme (e.g. Euler) with tiny A7 to find the
conditional distribution Y (7 + d7)|Y(7).

© Calculate stochastic collocation points y;(7 + d7)| ¥ (7) with
SCMC.

© Train ANN (supervised learning) to obtain I:I/ ~ H,.
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The online stage

Use the trained ANNSs to generate the sample paths.
@ Partition [0, T[,0 <ty <t < ... <ty < T,with At =t ¢ — .

@ Given a sample Y; at time t;, compute m collocation points at time
fi+1 using the trained ANN,

.y(tl+1)|§/ I:Ij(g/iatiatﬁk'l - t/9)]: 1:27"'7m'

© Compute the mapping function g,(-) using SCMC.
© Sample from X to obtain a sample Vi, 1|V = gm(Xi.1).
© Return to Step 2 by £, 1 — t, iterate until terminal time T.
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Generating sample paths with 7L

“— Conditional PDF

251 Path No.2

Y(t)

Path No.1

(a) Sample paths by 7L (b) The 2D projection

Figure: Here conditional SC points, represented by M, are conditional on a
previous realization, denoted by *.
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Error analysis

The error from SCMC:

T wEm) (€
E[lg(x) — gm(X)|]] < V]em| = \l 'mz'mf \11(22m()§!1) '

The error from ANNSs:

Bllgn() - Gm0ll = [ |3 00 etx)ax
Jr3

< [ max{lefl..... Al x(x)ax
R
= max{|ef,.... [em]}.

E[lg(x) = gm()[] + E [|gm(x) — gm(X)]]

Eflgx) - gm(x)] <
< Vem| +max{[fl..... [A]}.

C.W. Oosterlee, Utrecht University 2 The Seven-League Scheme



Strong convergence error of 7L

7L strong convergence

Assuming the approximation errors from ANN and SCMC are
negligible, the strong convergence of the 7L scheme is defined, as

E| V() — Y(t)| < e(Ar) < K(AD,

where A7 is used for offline ANN training, and time step At for online
ANN prediction, with A7 < At.

For example, the Euler scheme would need a much finer time step, by
a factor k = At/Ar to achieve a similar accuracy in the strong sense.
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7L-CDC

The 7L Compression-Decompression (CDC) variant can further
reduce the computational cost.

Y(t)

0
10 5
Y 0

(a) Paths for marginal SC points (b) Sample paths by 7L-CDC

Figure: Schematic diagram of the 7L-CDC scheme at time ;. Left: Marginal
SC points. Right: Sample paths generated by 7L-CDC.
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7L-CDC computation time

The time ratio between the 7L-CDC and 7L schemes is

I taM _tA M’

with t4 the computational time of the ANN, ¢, for the interpolation.
Given the fact that the number of sample paths is typically much larger
than the number of SC points M > Ms,

o]
VR ™
When the employed interpolation is computationally cheaper than the

ANN, ~ < 1, so that the 7L-CDC scheme needs fewer computations
than the 7L scheme.
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4. Numerical experiments

With a(t, Y(t)) = pY(t) and b(t, Y(t)) = o Y(t), we have Geometric
Brownian Motion (GBM),

dY(t) = uY(t)dt + o Y()dW(1), 0<t<T,

where drift ;» and volatility o are constant, with initial value Y. The
model parameters are 6 := {1, o}, and the analytic solution is,

Y(t) L Ypeln 30 (t-t)+ovi=oX. )
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ANN settings and off-line training

We created the data set, using Euler, A7 = 0.01. There are around 80,000
data samples.

ANN Parameters | Value range Method
drift, 1 (0.0, 0.10] LHS
input volatility, o | [0.05, 0.60] LHS
value, Yj [0.10, 15.0] LHS
time, Tmax (0.0, 1.60] | Equidistant

Hy(-) output | point, (0.0,25.65) SCMC
Fo() output | point, j» | (0.0,25.98) SCMC
Hs(-) output | point, 5 | (0.0,27.84) SCMC
Hy(-) output | point, 5 | (0.0,54.67) SCMC
Hs(+) output point, s (0.0,154.35) SCMC

ANN hyper-parameters value
Hidden layers 4
Neurons (per layer) 50
Activation Softplus
Initialization Glorot_uniform
Optimizer Adam
Batch size 1024
Initial Learning rate 1e-3
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Performance of the ANNs

The data set is divided into three parts, 80% for training, 10% for
validation, 10% for testing. After 1500 training epochs, the ANN
converged.

@ Performance on the test dataset. MAE = 7, >~/ |y; — JI.

SC points 2 o Vs Va s
R? 0.999891 | 0.999947 | 0.999980 | 0.999892 | 0.999963
MAE 0.026 0.027 0.021 0.071 0.066

@ Predicted vs true collocation points, for example,

Test performance: R2=0.999947 Test : R2=0.999892

Predicted Predicted s
(EA (o) Ja
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Comparing path-wise error

@ Monte Carlo path-wise error:

Monte Carlo paths

0.2007 — wmilstein strong conv.

—— 7L-CDC-PCHIP strong conv.
0.175] —8= 7L-CDC-Lagrange strong conv.
~=+ 7L-CDC-Chebyshev strong conv.

-=-: 7L-CDC-Lagrange
=== 7L-CDC-PCHIP
-+ Milstein
Exact-GBM

0.150

4 0.125
§3 Eo,mo
()
0.075
2
0.050
1 0.025
0.000
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 05 1.0 15 Z.Zt 25 3.0 35 40
t
(c) Sample paths, At = 0.5 (d) Strong convergence

Here 0 = 0.3, r=0.1, Sy = 1.0, T = 4.0. We use the barycentric version of
Lagrange interpolation.
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The CPU time (seconds) to reach the same accuracy (CPU: E3-1240,
3.40GHz): simulating 10,000 sample paths until terminal time T = 4.0, based
on 5 x 5 SC points.

) At=1.0 At=2.0
Method /Time (Sec.) Create C Decom. C Total | Create C Decom. C Total
7L-CDC Barycentric 0.054 4.93 4.98 0.027 2.48 2.51
7L-CDC Chebyshev 0.054 9.78 9.83 0.027 4.93 4.96
7L-CDC PCHIP 0.054 11.39 11.44 0.027 5.73 5.76
7L scheme - - 12.80 - - 6.39
Milstein - - 27.01 - - 27.70

= This is much faster on GPUs (recent results)!

We have essentially the same accuracy results with the OU process.
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Applications in finance

We can carry out large time step Monte Carlo simulations for
@ Pricing path-dependent options

@ Computing the sensitivities of path-dependent options.
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Bermudan option, big time steps

@ The option holder has the right to exercise the contract at
pre-specified monitoring dates up to maturity time T.

Vi (to)— Va(to)
Ve (to)

) I:ongstaff—Schwartz method; Yy = 1.0, r = 0.1, strike price
K =1.1, T = 4.0, number of monitoring dates N, M = 100, 000.

@ Relative error: €., =

Vethod Value | At 1.0, Ny=4 At =0.5, Np=8
Analytic MC | 0.15213858 (0.00%) | 0.16161876 (0.00%)

0=0.30 | Milstein MC | 0.13872771 (8.81%) | 0.15429369 (4.53%)

7L-CDC 0.15234901 (0.14%) | 0.16196264 (0.21%)
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Pricing Asian options

@ Pay-off of a fixed strike Asian option:

Va(T) = max (A(T) — K,0),

with A(T) = Nlb Zﬁg Y (tx) discrete average over N, dates
€ [0, T].

@ The option value V4(t) = e "TE? {V(A( T))‘]—“(O)}

@ Yo=10,K= Yy, r=01, T =Atx Ny, M =100, 000.

Vethad Value | At 1.0, Ny=dt At = 0.5, Np=8
Analytic MC | 0.28515109 (0.00%) | 0.25723594 (0.00%)

5=0.40 |  Milstein MC | 0.26394277 (7.44%) | 0.24717425 (3.91%)

7L-CDC 0.28482371 (0.11%) | 0.25647592 (0.30%)
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Computing Greeks

The Asian option’s vega is defined as

ov —rT
i EQ
Jo €

pr aY(t) do

Np Ve o) é ;
ZaV(T, Y (t); )dy(ff);(o)] .

For M sample paths and N time points,

M Ny m— r
zz( kS s ) 0
k >

g
oo

—f

j=0

The derivative of the ANNs H;(-) w.r.t o« can be computed,
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Asian option’s vega

,\ -®- 7L Scheme
10 / \ == ExactGaM

ono ¢ / \
i

A
r’?\

(e) Path-wise sensitivity of Y(t)

0.7
— Exact-vega
-m- Exact-GBM

0.6 -e- 7L Scheme

0.5

-

0.4

0.3

0.2

100 125 150 175 200 225 250 275 30.0
Number of paths (x103)

(f) Asian option’s vega,At = 1.0

The parameters are Yy = 1.0, r = 0.05, K=Y, 0oc=0.3,T=4.0.
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5. Summary and Outlook

Conclusion:
@ The 7L-scheme provides a data-driven numerical solver for SDEs.

@ Numerical error, in the sense of strong convergence, does not
grow significantly when the step increases.

@ Various applications in computational finance.

Outlook:
@ Parallel computing on GPUs (is already almost finalized!)
@ Solving multi-dimensional SDEs.
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Training ANNs

The layer function:
w9 > + p¥®
Z i i

Stochastic Gradient Descent (SGD) optimizes the parameters,

W W*I]()g
L

bebe)%—/:OJjww

where 7 is a learning rate.

Input layer Hidden layer Output layer
Inputs Neuron Output
7N emm oo -
‘\xl /)\ / weights  bias activation
™ \\W 1 b
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