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Beyond Diffusions with Stochastic Interpolants



Prompt: Epic artwork of a massive brutalist building floating 
above a favela in a tropical landscape, the large brutalist building 
has large wires and cables hanging from it, cinematic art



Probabilistic Approach to Unsupervised Learning

View the data points as samples from an unknown probability distribution. 

Learn this distribution in a way that allows for generation of new samples                         

Working assumption to organize unlabeled data:

Each image = one data point in  
Density estimation in high dimension!

ℝd
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Old problem, intractable with traditional methods in high dimension  
(binning, kernel density estimation,…) 
 
Recent progress using tools from ML  
(Boltzmann machines, Variational auto-encoder, GANs, …)



Density Estimation and Measure Transport 
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Old problem, intractable with traditional methods in high dimension  
(binning, kernel density estimation,…) 
 
Recent progress using tools from ML  
(Boltzmann machines, Variational auto-encoder, GANs, …) 

Breakthrough via transportation of measure



Generation with Flows and Diffusions 

Well-suited for generation and sampling: 

- draw a sample from the base ; 
- propagate it through the S/ODE; 
- get a sample from the target .

μ0

μ1

Aim: Construct an S/ODE 
                                                           

such that:              if   = (simple) base distribution, then  = target distribution.

dXt = bt(Xt)dt + σtdWt

Xt=0 ∼ μ0 Xt=1 ∼ μ1

Flow/diffusion matching

Dynamical transport of probability distributions

Benamou-Brenier, …

How can we find  using a tractable variational formulation? bt(x)



Score-Based Diffusion Models
Sohl-Dickstein et al. arXiv:1503.03585 (2015); 
Ho et al. arXiv:2006.11239 (2020); 
Song et al. arXiv:2011.13456 (2021)

Given samples from the data distribution : 

- Devolve them into Gaussian noise using e.g. an Ornstein-Ulhenbeck process; 
- Time-reverse the SDE to generate new samples from  from samples from ;  

μ1

μ1 N(0,Id)

From Song’s blog

Builds a path in distribution space between  and ; 
Reduces problem to the simulation-free regression of the score.

μ1 N(0,Id)

Hyvärinen JMLR 6 (2005);  
Vincent, Neural Comp. 23, 1661 (2011)



Stochastic Interpolants
Albergo & V.-E.  arXiv:2209.15571 (2022); 
Albergo, Boffi, & V.-E.  arXiv:2303.08797 (2023). 

See also: Liu et al. arXiv:2209.03003 (2022); 
Lipman et al. arXiv:2210.02747 (2022): 

The stochastic interpolant  is the process:   

 

                                                      
 
with:                                       ,    ,    ,     
 

                                 ,      .

It

It = αtx0 + βtx1 + γtz, t ∈ [0,1]

x0 ∼ μ0 x1 ∼ μ1 z ∼ N(0,Id) z ⊥ (x0, x1)

α0 = β1 = 1, α1 = β0 = γ0 = γ1 = 0 α, β, γ ∈ C1(0,1)

 easy to sample at all  using dataIt t ∈ [0,1]

By definition:   , I0 = x0 ∼ μ0 I1 = x1 ∼ μ1

μ0 μ1
e.g.     with   It = (1 − t)x0 + tx1 (x0, x1) ∼ μ0 ⊗ μ1

Key idea: Build a process that connects a base distribution to the target
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Stochastic Interpolants

March 15, 2023

xt = (1 − t)x0 + tx1

xt = (1 − t)x0 + tx1 + 2t(1 − t)z

xt = cos2(π t)(1[0, 1
2 )(t)x0 + 1( 1

2 ,1](t)x1) + 2t(1 − t)z

xt = (1 − t)x0 + tz

Without latent variable

With latent variable

Gaussian encoding-decoding

One-sided

Note that: 

-  is not necessarily a diffusion;  
- base distribution does not need to be Gaussian;  
-  can be correlated. 

It

(x0, x1)

Albergo & V.-E.  arXiv:2209.15571 (2022); 
Albergo, Boffi, & V.-E.  arXiv:2303.08797 (2023). 

See also: Liu et al. arXiv:2209.03003 (2022); 
Lipman et al. arXiv:2210.02747 (2022): 
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Stochastic Interpolants

March 15, 2023

xt = (1 − t)x0 + tx1

xt = (1 − t)x0 + tx1 + 2t(1 − t)z

xt = cos2(π t)(1[0, 1
2 )(t)x0 + 1( 1

2 ,1](t)x1) + 2t(1 − t)z

xt = (1 − t)x0 + tz

Without latent variable

With latent variable

Gaussian encoding-decoding

One-sided

Different , , and   
give different processes.

αt βt γt
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Stochastic Interpolants and Transport

Thm:  the law of  is the same as the law of the solution to 
                         

                                                    
 

with the velocity  given by the conditional expectation   
  

                                     

It = αtx0 + βtx1 + γtz
·Xt = bt(Xt), X0 ∼ μ0

bt(x)

bt(x) = 𝔼 [ ·It It = x] = argmin
b̂t

𝔼 [ | b̂t(It) − ·It |
2 ]

Probability flow ODE

·It at It = x

bt(x) = 𝔼[ ·It | It = x]



Stochastic Interpolants and Transport

Thm:  the law of  is the same as the law of the solution to 
                         

                                                    
 

with the velocity  given by the conditional expectation   
  

                                     

It = αtx0 + βtx1 + γtz
·Xt = bt(Xt), X0 ∼ μ0

bt(x)

bt(x) = 𝔼 [ ·It It = x] = argmin
b̂t

𝔼 [ | b̂t(It) − ·It |
2 ]

Probability flow ODE

Proof:     if  is the distribution of  and  is a test function, we have 
 

                                                   

 
and so:  

μt It ϕ

∫ℝd

ϕ(x)μt(dx) = 𝔼[ϕ(It)]

    

d
dt

𝔼[ϕ(It)] = 𝔼[ ·It ⋅ ∇ϕ(It)]

∫ℝd

ϕ(x)∂tμt(dx) = ∫ℝd

𝔼[ ·It | It = x]

=bt(x)

⋅ ∇ϕ(x)μt(dx)

= =



Stochastic Interpolants and Transport

Gives a generative model:      
    Xt=0 ∼ μ0 ⇔ Xt=1 ∼ μ1

space

tim
e

ρ0

ρ1

t = 0

t = 1

Xt=0

Xt

Xt=1
μ1

μ0

Not OT but finite path length in : 
 

       

W2

𝔼[ |Xt=1(x0) − x0 |2 ] ≤ ∫ 1
0

𝔼[ | ·It |
2 ]dt < ∞

Thm:  the law of  is the same as the law of the solution to 
                         

                                                    
 

with the velocity  given by the conditional expectation   
  

                                     

It = αtx0 + βtx1 + γtz
·Xt = bt(Xt), X0 ∼ μ0

bt(x)

bt(x) = 𝔼 [ ·It It = x] = argmin
b̂t

𝔼 [ | b̂t(It) − ·It |
2 ]

Probability flow ODE



Stochastic Interpolants and Transport

Estimation of  = simulation-free regression problemb

- Objective  and its gradient can be evaluated empirically using the samples ; 
- Velocity  can be approximated e.g. by deep neural network (DNN); 
- Minimization can be performed by SGD. 

  

Lb(b̂) It
bt(x)

Probability flow ODE

b = argmin
b̂ ∫

1

0
𝔼 [ | b̂t(It) − ·It |

2 ] dt

Thm:  the law of  is the same as the law of the solution to 
                         

                                                    
 

with the velocity  given by the conditional expectation   
  

                                     

It = αtx0 + βtx1 + γtz
·Xt = bt(Xt), X0 ∼ μ0

bt(x)

bt(x) = 𝔼 [ ·It It = x] = argmin
b̂t

𝔼 [ | b̂t(It) − ·It |
2 ]

Probability flow ODE



Score and diffusions

Thm:  The score  of the PDF of  is given for all  by  
 

                                                                                         

In addition, it is the unique minimizer of 
 

                                                          

  
                     

st(x) = ∇log[dμt /dx] It t ∈ (0,1)

st(x) = − γ−1
t 𝔼[z | It = x]

Ls( ̂s) = ∫
1

0
𝔼 [ | ̂st(It) |2 + 2γ−1

t z ⋅ ̂st(It)] dt

Stein’s identity

Proof: Using  , we see that this is the same equation as   ∇ ⋅ (stμt) = Δμt ∂tμt + ∇ ⋅ (btμt) = 0

Corr:  For any ,   solves: 

                                   

and the solutions to the SDE    

                                  

                                               
are such that                        
                                                     

ϵt ≥ 0 μt(x)

∂tμt + ∇ ⋅ ([bt(x) + ϵtst(x)]μt) = ϵtΔμ, μt=0 = μ0,

dXF
t = bt(XF

t )dt + ϵtst(XF
t )dt + 2ϵtdWt

XF
t=0 ∼ μ0 ⇒ XF

t=1 ∼ μ1

Diffusion coefficient   
adjustable post training

ϵt



Score and diffusions

Corr:  For any ,   the solutions to the SDE    

                                  

                                               
are such that                        
                                                     

ϵt ≥ 0

dXF
t = bt(XF

t )dt + ϵtst(XF
t )dt + 2ϵtdWt

XF
t=0 ∼ μ0 ⇒ XF

t=1 ∼ μ1

Diffusion coefficient   
adjustable post training

ϵt

Lem:  If                     
 
 

then                                                               

It = αtx0 + βtx1, x0 ∼ N(0,Id), x1 ∼ μ1, x0 ⊥ x1,

αtst(x) =
βtbt(x) − ·βtx
αt

·βt − ·αtβt
Only need to learn  bt(x)

Proof:     Use 

                                  

together with            
 

bt(x) = 𝔼[ ·It | It = x] = ·αt𝔼[x0 | It = x] + ·βt𝔼[x1 | It = x]
st(x) = − α−1

t 𝔼[x0 | It = x]

x = 𝔼[It | It = x] = αt𝔼[x0 | It = x] + βt𝔼[x1 | It = x]
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xt = cos( 1
2 �t)x0 + sin( 1

2 �t)x1

xt = 1 � �2(t) cos( 1
2 �t)x0 + 1 � �2(t) sin( 1

2 �t)x1 + �(t)z, �(t) = 2t(1 � t)

xt = cos2(�t)(1[0, 1
2 )(t)x0 + 1( 1

2 ,1](t)x1) + sin2(�t)z

t =0.00 t =0.25 t =0.50 t =0.75 t =1.00
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Figure 5: The e↵ect of �(t) on ⇢(t). A visualization of how the choice of �(t) changes the density
⇢(t) of xt = ↵(t)x0 + �(t)x1 + �(t)z when ⇢0 and ⇢1 are Gaussian mixture densities with two modes
and three modes, respectively. The first row depicts �(t) = 0, which reduces to the stochastic
interpolant developed in [1]. This case forms a valid transport between ⇢0 and ⇢1, but produces
spurious intermediate modes in ⇢(t). The second row depicts the choice of �(t) =

p
2t(1 � t). In this

case, the spurious modes are partially damped by the addition of the latent variable, leading to a
simpler ⇢(t). The final row shows the Gaussian encoding-decoding, which smoothly encodes ⇢0 into
a standard normal distribution on the time interval [0, 1/2), which is then decoded into ⇢1 on the
interval (1/2, 1]. In this case, no intermediate modes form in ⇢(t): the two modes in ⇢0 collide to
form N(0, 1) at t = 1

2 , which then spreads into the three modes of ⇢1. A visualization of individual
sample trajectories from deterministic and stochastic generative models based on ODEs and SDEs
whose solutions have density ⇢(t) can be seen in Figure 8.

Linear and trigonometric interpolants. One way to ensure that (4.4) holds while maintaining
the influence of ⇢0 and ⇢1 everywhere on [0, 1] except at the endpoints is to choose

↵(t) = t, �(t) = 1 � t, �(t) =
p

2t(1 � t). (4.5)

[Michael: We should discuss whether or not to include these variance preserving constraints. In
practice, any interpolant whose time derivative has an ugly denominator performs worse than those
that don’t e.g. (1-t) and t or cos and sin.] This choice leads to the stochastic interpolant specified
in (4.1). It is also the choice that was advocated in [33], without the inclusion of the latent variable
(� = 0). Another possibility that gives more leeway is to pick any � : [0, 1] ! [0, 1] and set

↵(t) =
p

1 � �2(t) cos( 1
2⇡t), �(t) =

p
1 � �2(t) sin( 1

2⇡t). (4.6)

With � = 0, this was the choice preferred in [1]. As shown in Theorem 2.6, the presence of the
latent variable �(t)z for � 6= 0 smooths both the density ⇢(t) and the velocity b defined in (2.9)
spatially, which provides a computational advantage at sample generation time because it simplifies
the required numerical integration of (2.28), (2.29), and (2.30). Intuitively, this is because the density

25

✏
=

0.
0

trigonometric: �(t) = 0 trigonometric: �(t) =
p

2t(1 � t) encoding-decoding: �(t) = sin2(�t)

✏
=

0.
5

0.00 0.25 0.50 0.75 1.00
time

✏
=

5.
0

0.00 0.25 0.50 0.75 1.00
time

0.00 0.25 0.50 0.75 1.00
time

Figure 8: The e↵ect of ✏ on sample trajectories. A visualization of how the choice of ✏ a↵ects
the sample trajectories obtained by solving the ODE (2.28) or the forward SDE (2.29). The set-up
is the same as in Figure 5: ⇢0 and ⇢1 are taken to be the same Gaussian mixture densities as in
Figure 5, and the analytical expressions for b and s are used. In the three panels in each column the
value of � is the same, and each panel shows trajectories with di↵erent ✏. Three specific trajectories
from the same three initial conditions drawn from ⇢0 are also highlighted in white in every panel.
As ✏ increases but � stays the same, the density ⇢(t) is unchanged, but the individual trajectories
become increasingly stochastic. While all choices are equivalent with exact b and s, Theorem 2.21
shows that nonzero values of ✏ provide control on the likelihood in terms of the error in b and s when
they are approximate.

associated backward SDE for (4.26), which can then be used as a generative model. Since the solution
of (4.26) from the initial condition Zt=0 = x0 reads

Zt = x0e
�t +

p
2

Z t

0
e
�t+s

dWs, (4.27)

the law of Zt conditional on Zt=0 = x0 is given at any time t 2 [0, 1) by

Zt ⇠ N(x0e
�t

, (1 � e
�2t)). (4.28)

As a result, the time-dependent density of the OU process in (4.26) coincides with the density of the
infinite-horizon one-sided stochastic interpolant

yt = x0e
�t +

p
1 � e�2t z, x0 ⇠ ⇢0, z ⇠ N(0, Id), t 2 [0, 1). (4.29)

Infinite-horizon. The above stochastic interpolant does not satisfy a key property that we impose
in this paper – namely, the density of yt only converges to N(0, Id) as t ! 1. In SBDM, this is
handled by capping the evolution of Zt to a finite time interval [0, T ] with T < 1 and using the
backward SDE associated with (4.26) restricted to [0, T ]. However, this introduces an additional
source of error that is not present with the finite-time one-sided interpolation procedure introduced
in the previous section, because the final conditions used for the backwards SDE in SBDM are drawn
from N(0, Id) even though the density of the process (4.26) is not exactly Gaussian at time T .

30

Stochastic interpolant  
fixes the connecting distribution μt

ODE and SDE sample  
the same  in different waysμt

ODE gives one-to-one map; 
SDE samples  more broadly  
from any 

μ1
x0 ∼ μ0

Diffusion coefficient   
controls the way to sample 

ϵt
μt



other flow and di↵usion based models. We see FIDs that vary
between [Michael: 5.17] and [Michael: 5.58] without any clear
hierarchy between ODE sampling and SDE sampling. The FID
score is particularly sensitive to slight noise perturbations in
output images that may be indiscernible to humans, as noted
in [47]; as such, it is useful to demonstrate that the FIDs are
comparable to other methods, but we stress that the purpose
of this section is not to optimize these types of metrics.

Exemplary images generated from the model using the ODE and the SDE are provided below,
starting from the same samples from ⇢0.
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Figure 16: Figure showing sampling flowers from the same initial condition x0, using the ODE with
✏ = 0 and learned b and the SDE for various increasing ✏ with learned b and s. For ✏ = 0, sampling is
done using the dopri5 solver and therefore the number of steps is adaptive. Otherwise, 2000, 2500,
and 4000 steps were taken using the Heun solver for ✏ = 1.0, 2.0, and 4.0 respectively.

Mirror interpolant Recall that for the mirror interpolant of the form xt = x1 + �(t)z, which
interpolates from a data density back to itself, we have the equivalency that the score s defines the
drift b up to factors of �, expressed in (??). In this case, it is su�cient to train only a model for the
score ŝ.
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Generated Image

5 Nearest neighbors in training set

Figure 17: Caption

Figure 18: Example of using the learned score model b̂ = ŝ for the mirror interpolant xt = x1 + �(t)z
on the 128 ⇥ 128 Oxford flowers dataset, where �(t) =

p
t(1 � t). The parametric form for ŝ is the

U-Net from [20], with hyperparameter details given in Appendix C. The choice of ✏ in the generative
SDE given in (2.29) influences the extent to which the generated image di↵ers from the original.
Here, ✏ = 10.0.
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More noise in SDE = more diversity in outputs from same x0 ∼ μ0

Does better than memorizing the data set!



with Ma, Albergo, Boffi, Goldstein & Xie (2023)

ImageNet 512x512

ImageNet 256x256

https://scalable-interpolant.github.io/

Scalable Interpolant Transformers

Technology used by  

Stability
 AI, B

lackForest Labs, 

Meta Movie Gen, etc..



Conditional Generation

In addition,  is the unique minimizer of 
 

                        

bt(x, ξ)

Lb(b̂) = ∫
1

0
𝔼 [ | b̂t(It, ξ) |2 − 2( ·αtx0 + ·βtx1 + ·γtz) ⋅ b̂t(It, ξ)] dt

Similar story as before, with  adjustable post-training ϵt

Thm:  Given , let     

                                             
 

and define     and   
                        

Then, for any  the solutions to        
                          

                         

are such that  
                                  conditional measure of  given 

(x0, x1, ξ) ∼ μ(dx0, dx1, dξ)

It = αtx0 + βtx1 + γtz, z ∼ N(0,Id), z ⊥ (x0, x1, ξ),

bt(x, ξ) = 𝔼[ ·αtx0 + ·βtx1 + ·γtz | It = x, ξ] st(x, ξ) = − γ−1
t 𝔼[z | It = x, ξ]

ϵt ≥ 0

dXt = bt(Xt, ξ)dt + ϵtst(Xt, ξ)dt + 2ϵtdWt, Xt=0 ∼ μ0(dx0 |ξ)

Xt=1 ∼ μ(dx1 |ξ) = x1 ξ

 = conditioning variablesξ



Superresolution
target = high-res image 
base = low-res image + noise 

velocity conditioned on low-res image Albergo et al. arXiv:2310.03725 (2023)

input output ‘truth’ 



Un-masking
target = full image 
base = maskeds image 

velocity conditioned on mask position  Albergo et al. arXiv:2310.03725 (2023)



Probabilistic video generation by roll-out

Video forecasting (frame-by-frame, with rollout)

Chen, Goldstein, Albergo, Boffi, Albergo & V.-E.  arXiv:2403.13724 (2024)

Set up of: Davtyan, Proc. IEEE/CVF (2023).

original generated



Link with Score-Based Diffusion Models

OU process:      
 
           

                                        

     

dXτ = − Xτdτ + dWτ Xτ=0 ∼ μ1= data distribution

Xτ = x1e−τ + ∫
τ

0
e−τ+τ′￼dWτ′￼

d= x1e−τ + 1 − e−2τ z

From Song’s paper



Stochastic interpolants disentangle two operations: 

1. building a time-dependent  connecting the base and target distributions, and;  
2. sampling this  using an ODE or an SDE with adjusted diffusion coefficient.

μt
μt

Score-Based Diffusion Models vs Interpolants

        Xτ = x1e−τ + ∫
τ

0
e−τ+τ′￼dWτ′￼

d= x1e−τ + 1 − e−2τ z

Take:                                               t = e−τ ⇒ X−log t
d= It = z 1 − t2 + x1t

Stochastic interpolant with αt = 1 − t2, βt = t

Time rescaling  



Leveraging the flexibility of the formalism



Multitask Learning with Operator Interpolants

Two observations: 

- The coefficients  in  do not need to be scalar functions of time  
- There is no reason to choose them beforehand (i.e. before training).

αt, βt It = αtx0 + βtx1

The operator interpolant  is the process:   
 

                                              ,     ,     
 

where   (e.g. )    and     
 

                                                   are linear operators in that space.

I(α, β)
I(α, β) = αx0 + βx1 x0 ∼ μ0 x1 ∼ μ1

x0, x1 ∈ ℋ ℝd

α, β

The multitask drifts  are the vector fields:   

 

                        

η0,1(α, β, x)

η0(α, β, x) = 𝔼[x0 | I(α, β) = x], η1(α, β, x) = 𝔼[x1 | I(α, β) = x]

Négrel, Coeurdoux, Albergo & V.-E.  arXiv:2508.04605 (2025)



Multitask Learning with Operator Interpolant

The operator interpolant  is the process:   
 

                                              ,     ,     
 

where   (e.g. )    and     
 

                                                   are linear operators in that space.

I(α, β)
I(α, β) = αx0 + βx1 x0 ∼ μ0 x1 ∼ μ1

x0, x1 ∈ ℋ ℝd

α, β

The multitask drifts  and  are the vector fields:   

 

                        

η0(α, β, x) η1(α, β, x)
η0(α, β, x) = 𝔼[x0 | I(α, β) = x], η1(α, β, x) = 𝔼[x1 | I(α, β) = x]

Estimation of  = simulation-free regression problemη0, η1

η0 = argmin
̂η0

𝔼(α,β)∼ν𝔼(x0,x1)∼μ [ | ̂η0(α, β, I(α, β)) − x0 |2 ]

e.g.   diagonal,    , and  β = 1 − α I(α) = α ⊙ x0 + (1 − α) ⊙ x1 ν = U([0,1]d)

Négrel, Coeurdoux, Albergo & V.-E.  arXiv:2508.04605 (2025)



Multitask Learning with Operator Interpolant

Thm:  Given any path  the  law of  is the same as the law of the solution to 
                         

                                       

(αt, βt)t∈[0,1] I(αt, βt)
·Xt = ·αtη0(αt, βt, Xt) + ·βtη1(αt, βt, Xt), X0

d= I(α0, β0)

 ;   I(α) = α ⊙ x0 + (1 − α) ⊙ x1 ν = U([0,1]d)

Négrel, Coeurdoux, Albergo & V.-E.  arXiv:2508.04605 (2025)

Other choices of operators α, β

If we can sample  we can generate sample along any ray emanating from it.I(α0, β0)



Multitask Learning with Operator Interpolant

Thm:  Given any path  the  law of  is the same as the law of the solution to 
                         

                                       

(αt, βt)t∈[0,1] I(αt, βt)
·Xt = ·αtη0(αt, βt, Xt) + ·βtη1(αt, βt, Xt), X0

d= I(α0, β0)

If we can sample  we can generate sample along any ray emanating from it.I(α0, β0)

If  we can use the SDE  
 
            

x0 ∼ N(0,Id) & x0 ⊥ x1

dXt = ( ·αt − ϵtα−1
t )η0(αt, βt, Xt)dt + ·βtη1(αt, βt, Xt)dt + 2ϵt dWt, X0

d= I(α0, β0)

Approach can be seen as a way of amortizing learning over a variety of tasks:  
it enables generation strategies to be defined, optimized, or modified dynamically  
at inference time without retraining.

Négrel, Coeurdoux, Albergo & V.-E.  arXiv:2508.04605 (2025)



Multitask Learning with Operator Interpolant

Robotics application 

Inpainting, editing,  
denoising, etc. 

Négrel, Coeurdoux, Albergo & V.-E.  arXiv:2508.04605 (2025)



Posterior Sampling and Fine-Tuning

Objective:  Sample the posterior distribution  
 

                                                  

where: 

-  is the prior distribution (sampleable)   
-  is the likelihood (aka reward) function (given) 
-  is the evidence / partition function (unknown)  

μr
1(dx) = Z−1er(x)μ1(dx)

μ1(dx)
r(x) = 1

2 ⟨x, Ax⟩ + ⟨b, x⟩
Z = ∫ er(x)μ1(dx) < ∞

Thm: Let     and  ,  where  ,  ,  
 

and                                                                                                                                                                  

            

Then  

                                       

if                   

I(α, β) = αx0 + βx1 Ir(α, β) = αx0 + βxr
1 x0 ∼ μ0 x1 ∼ μ1 xr

1 ∼ μr
1

η0(α, β, x) = 𝔼[x0 | I(α, β) = x], η1(α, β, x) = 𝔼[x1 | I(α, β) = x]
ηr

0(α, β, x) = 𝔼[x0 | Ir(α, β) = x], ηr
1(α, β, x) = 𝔼[xr

1 | Ir(α, β) = x]

ηr
0(α, β, x) = α−1ββ−1

r αrη0(αr, βr, xr) + α−1(x − ββ−1
r xr)

ηr
1(α, β, x) = η1(αr, βr, xr)

βT
r α−T

r α−1
r βr = βTα−Tα−1β − A, xr = αrαT

r β−T
r (βTα−Tα−1x + b) .

posterior
prior

Négrel, Coeurdoux, Albergo & V.-E.  arXiv:2508.04605 (2025)



Posterior Sampling and Fine-Tuning

Lattice  model:ϕ4 μ(dφ) = Z−1e−E(φ)dφ

E(φ) = 1
2 χ∑

a∼b

|φ(a) − φ(b) |2 + 1
2 κ∑

a

|φ(a) |2 + 1
4 γ∑

a

|φ(a) |4 , Er(φ) = E(φ) − h∑
a

φ(a) .

Négrel, Coeurdoux, Albergo & V.-E.  arXiv:2508.04605 (2025)



Likelihood control

Why use the SDE rather than the ODE? 
 
The drift  and the score  are only known approximately! 
 
The ODE only offers control of the Wasserstein distance from the target,  
whereas the SDE allows for control of the Kullback-Leibler divergence from the target.

bt(x) st(x)

Thm:  Let  be the solution to the FPE 
 

                                                                       
  
Then: 
                                     

̂μt(x)

∂t ̂μt + ∇ ⋅ ((b̂t + ϵ ̂st) ̂μt) = ϵΔ ̂μt, ̂μt=0 = μ0,

KL(μ1∥ ̂μ1) ≤
1
2ϵ (Lb(b̂) − min

b̂
Lb(b̂)) +

ϵ
2 (Ls( ̂s) − min

̂s
Ls( ̂s))

Proof = consequence of Girsanov theorem

In the context of SBDM: 
Chen et al. arXiv:2209.11215 (2022);  
Lee et al. arXiv:2206.06227 (2022).
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Figure 13: Gaussian mixtures: densities. A visualization of the marginal densities in the first
two variables of the model density ⇢̂1 computed for all four variations of learning b or v and s or
⌘, computed via kernel density estimation. Note: visualizations show two-dimensional slices of a

128-dimensional density.

{xi}Ne
i=1 with each xi ⇠ ⇢1 for evaluation. To compute the KL-divergence, we form a Monte-Carlo

estimate with control variate KL(⇢1 k ⇢̂1) ⇡ 1
Ne

PNe

i=1 (log ⇢1(xi) � log ⇢̂1(xi) � (⇢̂1(xi)/⇢1(xi) � 1)).
We found use of the control variate ⇢̂1/⇢1 � 1 helpful to reduce variance in the Monte-Carlo estimate;
moreover, by concavity of the logarithm, use of the control variate ensures that the Monte-Carlo
estimate cannot become negative.

Results Figures 12 and 13 display two-dimensional projections (computed via KDE) of the model
density error ⇢̂1 � ⇢1 and the model density ⇢̂1 itself, respectively, for di↵erent instantiations of
Algorithm 1 and di↵erent choices of ✏ in Algorithm 2. Taken together with Figure 11, these results
demonstrate qualitatively that small values of ✏ tend to over-estimate the density within the modes
and under-estimate the density in the tails. Conversely, when ✏ is taken too large, the model tends to
under-estimate the modes and over-estimate the tails. Somewhere in between (and for di↵ering levels
of ✏), every model obtains its optimal performance. Figure 14 makes these observations quantitative,
and displays the KL-divergence from the target marginal to the model marginal KL(⇢1 k ⇢̂

✏
1) as a

function of ✏, with each data point on the curve matching the models depicted in Figures 12 and 13.
We find that for each case of Algorithm 1 there is an optimal value of ✏ 6= 0, in line with the qualitative
picture put forth by Figures 12 and 13. Moreover, we find that learning b generically performs better
than learning v, and that learning ⌘ generically performs better than learning s (except when ✏ is
taken large enough that performance starts to degrade). This latter point is particularly surprising,
because learning ⌘ requires introducing a bias by taking t0 6= 0 and tf 6= 1 to avoid a singularity in
the construction of s = �⌘/�. Nevertheless, we find that the added stability in the estimation of the
loss function for ⌘ (5.4) when compared to the loss for s (2.15) outweighs the e↵ect of this bias for
the case of Gaussian mixtures.
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Var | log ⇢1 � log ⇢(1)|
�(t) =

p
t(1 � t)

�(t) = t(1 � t)

�(t) = �̂(t)

�(t) = sin2(�t)

Figure 10: The e↵ects of �(t) and ✏ on sample quality: quantitative comparison. [nb: Can
we re-make this figure? I feel that it would be better to (a) plot these all as four curves with ✏ on the
x axis, rather than with bar graphs (similar to the GMMs), (b) use a better colorscheme, and (c) use
a more standard distance metric like KL.] [Michael: The signal on these plots was lost when not
taking the absolute value. IIRC, we discussed this before and came to the conclusion that because of
the scale of the values around 0, the standard metric was a bit more untenable.] For each � and each
✏ specified in Figure 9, we compute the mean and variance of the absolute value of the di↵erence of
log ⇢1 (exact) and log ⇢̂(1) (model). The model specified with �(t) =

p
t(1 � t) is the best performing

probability flow (✏ = 0). At large, SDE sampling with the same learned drift b̂ and score ŝ performs
better, complementing the observations in the previous figure.

compare to the exact density and to the original stochastic interpolant from [1] (obtained by setting
� = 0). Results are given in Figure 9 for each � and each ✏. Sampling with ✏ > 0 empirically performs
better, though the gap is smallest when using the � specified in (4.24). Moreover, even when ✏ = 0,
using the probability flow with � given by (4.24) performs better than the original interpolant from
[1]. Numerical comparisons of the mean and variance of the absolute value of the di↵erence of log ⇢1

(exact) from log ⇢̂(1) (model) for the various configurations are given in Figure 10, which corroborate
the above observations.

6.2 Deterministic vs stochastic models: 128D Gaussian mixtures
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0.000
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0.010

Figure 11: Gaussian mix-

tures: target projection.

Low-dimensional marginal of the
target density ⇢1 for the Gaussian
mixture experiment, visualized via
KDE.

We now study the performance of the stochastic interpolant
method in the case where the target is a synthetic high-
dimensional Gaussian mixture. Gaussian mixtures (GMs) are a
convenient class of target distributions to study because they can
be made arbitrarily complex by increasing the number of modes,
their separation, and the overall dimensionality. Moreover, by
considering low-dimensional projections, we can compute quan-
titative error metrics such as KL-divergences as a function of the
noise level ✏ to quantify the tradeo↵s of ODE and SDE-based
samplers.

Experiment details We consider the problem of mapping
⇢0 = N(0, Id) to a Gaussian mixture with five modes in dimen-
sion d = 128. The means µi 2 Rd where i = 1, . . . 5 of each
of the modes are drawn i.i.d. µi ⇠ N(0, �

2
Id) with � = 7.5.
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Figure 14: Gaussian mixtures: quantitative comparison. KL(⇢1 k ⇢̂
✏
1) as a function of ✏ for

the four instantiations of Algorithm 1 corresponding to learning b or v and s or ⌘. In each case, the
optimal generative model is obtain for a nonzero value of ✏. Learning ⌘ allows for a more accurate
model, but is more sensitive to the noise scale than learning s.

6.3 Demonstrative Image Generation and Variations

In the following, we demonstrate that the proposed method scales straightforwardly to high-
dimensional problems like image generation, while providing a flavor of what versatility a tunable
level of noise and interpolant design may o↵er. To this end, we provide the standard benchmark
of Frechet Inception Distance (FID) on ImageNet 32 ⇥ 32, and illustrate learning on the 128 ⇥ 128
Oxford flowers dataset [Michael: Cite]. On the latter, we demonstrate two di↵erent variations of the
interpolant for image generation: the one-sided interpolant, using ⇢0 = N(0, Id), as well as the mirror
interpolant, both ⇢0 and ⇢1 represent the data distribution.

Note that the purpose of this section is to demonstrate that the theory is well motivated, providing
a framework that is scalable and flexible. In that regard, image generation is a convenient exercise,
but is not the main focus of this work.

Generation from Gaussian ⇢0 We train linear and one-sided interpolants xt = (1� t)z + tx1 and
xt = cos ⇡

2 z + sin ⇡
2 tx1 on ImageNet-32 and the linear interpolant on the 128 ⇥ 128 Oxford flowers

dataset, where we take z ⇠ N(0, Id) and x1 from the data distribution. Based on the results for the
GMs, we learn a drfit b(t, x) and a denoiser ⌘(t, x) for benchmarking the ODE and SDE generative
models on the FID. To show that a score model is also directly learnable in high dimensions, we learn
a score s(t, x) when using the flowers dataset. In all cases, we parameterize the networks representing
⌘̂, ŝ and the drift b̂ using the U-Net architecture of [20]. Minimization of the objective functions given
in Section 3.1, is performed using the Adam optimizer. Details of the architecture for both cases, as
well as training hyperparameters such as number of training steps, learning rate, etc., are provided in
Appendix C.1. As discussed in the above section, one could also choose to learn models v̂ but for illus-
tration’s sake, we choose only one pairing, and leave exhaustive sweeps on image data to future work.

Figure 15: FID comparison, with
benchmarks taken from [31].

FID

DDPM [20] 6.99
ScoreFlow [45] 5.68
Flow matching OT [31] 5.02

Interpolant

" = 0.0 (linear) 5.17
" = 0.0 (trig) 5.19
" = 0.2 5.58
" = 0.4 5.47

Like in the case of learning Gaussian mixtures, we use the
fourth-order dopri5 solver when sampling with the ODE and
the Heun method for the SDE, as detailed in Algorithm 2. Note
that when learning a noise model ⌘, it is beneficial to complete
the image generation with a final denoising step, given at the
end of the aforementioned algorithm. We report the FID and
compare it to standardized benchmarks provided in [31] for
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KL(ρ1∥ ̂ρ1) ≤
1
2ϵ (Lb(b̂) − min

b̂
Lb(b̂)) +

ϵ
2 (Ls( ̂s) − min

̂s
Ls( ̂s))

Gaussian mixture density in d=128

Empirical verification:
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Figure 13: Gaussian mixtures: densities. A visualization of the marginal densities in the first
two variables of the model density ⇢̂1 computed for all four variations of learning b or v and s or
⌘, computed via kernel density estimation. Note: visualizations show two-dimensional slices of a

128-dimensional density.

{xi}Ne
i=1 with each xi ⇠ ⇢1 for evaluation. To compute the KL-divergence, we form a Monte-Carlo

estimate with control variate KL(⇢1 k ⇢̂1) ⇡ 1
Ne

PNe

i=1 (log ⇢1(xi) � log ⇢̂1(xi) � (⇢̂1(xi)/⇢1(xi) � 1)).
We found use of the control variate ⇢̂1/⇢1 � 1 helpful to reduce variance in the Monte-Carlo estimate;
moreover, by concavity of the logarithm, use of the control variate ensures that the Monte-Carlo
estimate cannot become negative.

Results Figures 12 and 13 display two-dimensional projections (computed via KDE) of the model
density error ⇢̂1 � ⇢1 and the model density ⇢̂1 itself, respectively, for di↵erent instantiations of
Algorithm 1 and di↵erent choices of ✏ in Algorithm 2. Taken together with Figure 11, these results
demonstrate qualitatively that small values of ✏ tend to over-estimate the density within the modes
and under-estimate the density in the tails. Conversely, when ✏ is taken too large, the model tends to
under-estimate the modes and over-estimate the tails. Somewhere in between (and for di↵ering levels
of ✏), every model obtains its optimal performance. Figure 14 makes these observations quantitative,
and displays the KL-divergence from the target marginal to the model marginal KL(⇢1 k ⇢̂

✏
1) as a

function of ✏, with each data point on the curve matching the models depicted in Figures 12 and 13.
We find that for each case of Algorithm 1 there is an optimal value of ✏ 6= 0, in line with the qualitative
picture put forth by Figures 12 and 13. Moreover, we find that learning b generically performs better
than learning v, and that learning ⌘ generically performs better than learning s (except when ✏ is
taken large enough that performance starts to degrade). This latter point is particularly surprising,
because learning ⌘ requires introducing a bias by taking t0 6= 0 and tf 6= 1 to avoid a singularity in
the construction of s = �⌘/�. Nevertheless, we find that the added stability in the estimation of the
loss function for ⌘ (5.4) when compared to the loss for s (2.15) outweighs the e↵ect of this bias for
the case of Gaussian mixtures.
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Diffusion coefficient can be adjusted post-training! 



Adjusting the Diffusion Coefficient

Thm:  for all  and any  with :  
the law of  is the same as the law of the solution to 
                         

                                          

 

where the drift  and the score  are given explicitly by  
  

                                             

t ∈ [0,1] ϵt ϵ0 = σ0 > 0
It = βtx1 + σtWt

dXt = bt(Xt)dt+ 1
2 (ϵ2

t − σ2
t )st(Xt)dt + ϵtdWt, X0 = 0

bt(x) st(x)

bt(x) = 𝔼[ ·βtx1 + ·σtWt It = x] st(x) =
βtbt(x) − ·βtx

tσt(
·βtσt − βt

·σt)

Chen, Goldstein, Albergo, Boffi, Albergo & V.-E.  arXiv:2403.13724 (2024)

Base = point mass



Minimizing the impact of the estimation error

Thm:  Let                          

                         

                                          

 

Then the path KL divergence   is minimized when  with  
  

                                                     

dXt = bt(Xt)dt+ 1
2 (ϵ2

t − σ2
t )st(Xt)dt + ϵtdWt

dX̂t = b̂t(X̂t)dt+ 1
2 (ϵ2

t − σ2
t ) ̂st(X̂t)dt + ϵtdWt

DKL(PX̂∥PX) ϵt = ϵF
t

ϵF
t = 2tσt(β−1

t
·βtσt − ·σt) − σ2

t
1/2

Explicit expression for  independent of the drift and the target distribution! ϵt

= exact process

= estimated process



Thm:  Let                          

                         

                                          

 

Then the path KL divergence   is minimized when  with  
  

                                                     

dXt = bt(Xt)dt+ 1
2 (ϵ2

t − σ2
t )st(Xt)dt + ϵtdWt

dX̂t = b̂t(X̂t)dt+ 1
2 (ϵ2

t − σ2
t ) ̂st(X̂t)dt + ϵtdWt

DKL(PX̂∥PX) ϵt = ϵF
t

ϵF
t = 2tσt(β−1

t
·βtσt − ·σt) − σ2

t
1/2

Connection with Föllmer processes

= exact process

= estimated process

Thm:  The process    obtained with  is a 

 

                               Föllmer process = Schrödinger bridge between  and 

XF = (XF
t )t∈[0,1] ϵt = ϵF

t

δ0 μ1

Different interpretation/derivation of the Föllmer process,  
through minimization of the impact of estimation error.



Some Scientific Applications



Probabilistic forecasting and superresolution

2D Navier-Stokes equation  with random forcing on the torus

Set-up of Hairer & Mattingly (2006) for which NSE is provable ergodic with a unique IM.

Aim: Given  in full- or low-resolution, forecast the ensemble of  with  at full-resolution. ωt ωt+τ τ > 0

Chen, Goldstein, Albergo, Boffi, Albergo & V.-E.  arXiv:2403.13724 (2024)

dω + v ⋅ ∇ωdt = νΔωdt − αωdt + εdη

   = white-in-time forcing acting  
      on a few Fourier modes

dη

v = ∇⊥ψ = (−∂yψ, ∂xψ), − Δψ = ω



Forecasting and superresolution in 2D Navier-Stokes equation  
with random forcing on the torus

Probabilistic aspect is key! 

Roll-out possible.

Low res data at t High res forecast at t+τ

True vs forecasted conditional mean

Probabilistic forecasting/downscaling
Chen, Goldstein, Albergo, Boffi, Albergo & V.-E.  arXiv:2403.13724 (2024)

Similar te
chnology used  

by Google and NVDIA for  

weather fo
recasting.



Assisting Monte-Carlo Sampling

‣ Generic method in Statistical Mechanics, Bayesian Inference, Uncertainty Quantification, etc.  

‣ Aim at sampling a target distribution known up to a normalized constant.  

‣ Plagued by slow convergence - hard to propose good new samples.

molecular 
conformations

Bayesian inference

quantum field 
theory



Assisting Monte-Carlo Sampling

Problems with model but no data initially (as opposed to data but no model) 

Allow for infinite data generation with validation  — verifiable AI !   

‣ Generic method in Statistical Mechanics, Bayesian Inference, Uncertainty Quantification, etc.  

‣ Aim at sampling a target distribution known up to a normalized constant.  

‣ Plagued by slow convergence - hard to propose good new samples.

Idea: learn generative models to get better samples. 
Rezende et al., arXiv:1505.05770; …. 
Noé et al., Science 365 eaaw1147 (2019); 
Albergo, Kanwar, Shanahan, Phys. Rev. D 100, 034515 (2019); 
Gabrié, Rotskoff & V.-E. PNAS 119, e2109420119 (2021); 
Albergo & V.-E. arXiv:2410.02711 (2024)

Different set-up than standard ML:



The Unreasonable Effectiveness of Machine Learning

[Bellman, 61]

 

Curses of Dimensionality (CoD): 
 
The number of operations/parameters needed  
to optimize/integrate/approximate Lipschitz 
functions to precision  depends exponentially on 
the input dimension , .

δ
d O(δ−d)

When, how, and why can neural networks 
 approximate high dimensional functions?

How come we can learn to generate 
images or texts which a priori live in 
very high dimensional spaces?

Gridding does not scale: 
2 points in ; 
22 = 4 points in ; 
… 
21000 = 10300 points in 

d = 1
d = 2

d = 1000



Need for Theory 

DL is very costly in terms of compute and data. 
Brute-force approach is not sustainable.

AI quadruples its compute every yearPerformance increases logarithmically with data volume

[Sun et al ICCV 2017]

[Sevilla & Roldán, epoch.ai blog 2025]
















