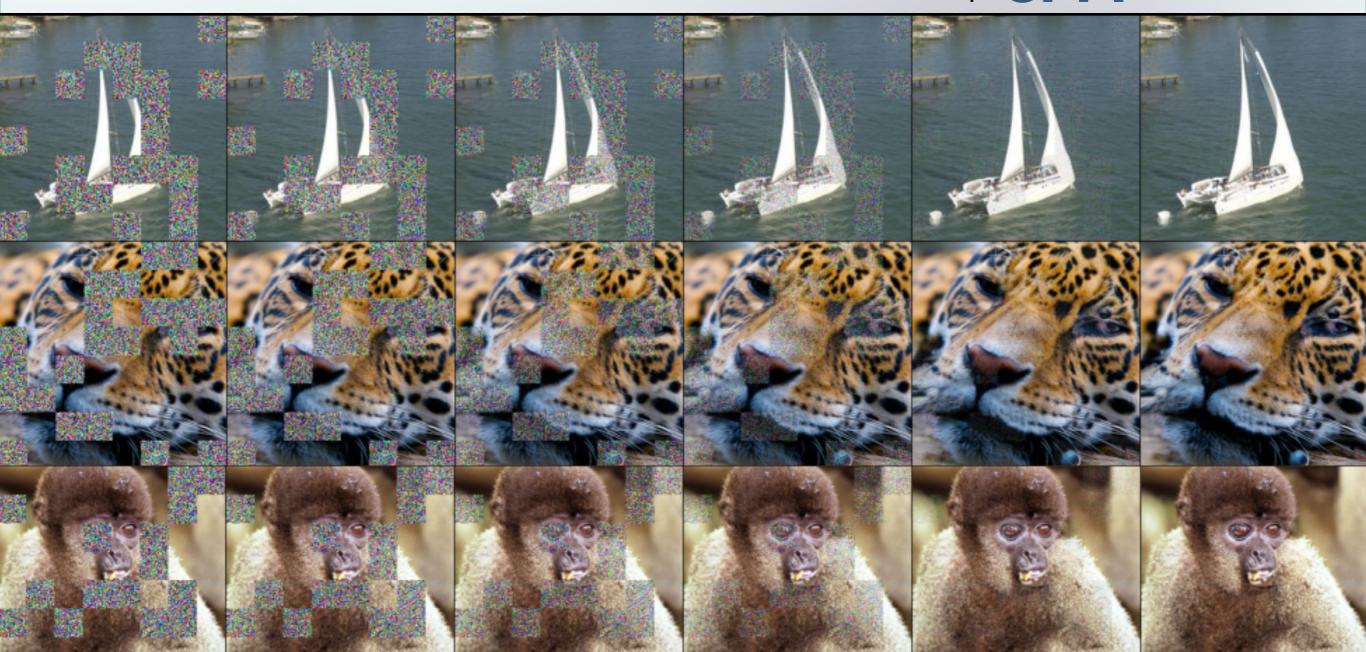
Paris Bachelier Seminar Institut Henri Poincaré, Paris Oct 3 2025



Beyond Diffusions with Stochastic Interpolants

Eric Vanden-Eijnden

Prompt: Epic artwork of a massive brutalist building floating above a favela in a tropical landscape, the large brutalist building has large wires and cables hanging from it, cinematic art

De novo design of protein structure and function with RFdiffusion

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E. Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile Mathieu, Sergey Ovchinnikov, Regina Barzilay, ... David Baker + Show authors

Nature 620, 1089–1100 (2023) | Cite this article

t = 200 t = 175 t = 150 t = 125

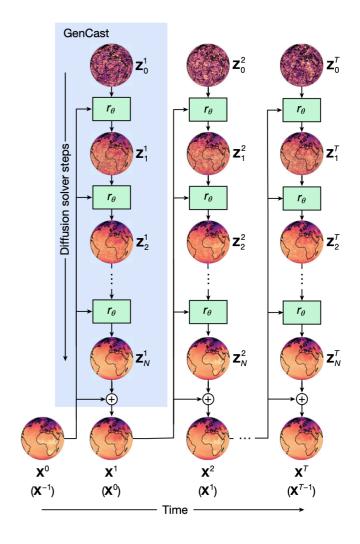
Probabilistic weather forecasting with machine learning

<u>Ilan Price</u> ☑, <u>Alvaro Sanchez-Gonzalez</u>, <u>Ferran Alet</u>, <u>Tom R. Andersson</u>, <u>Andrew El-Kadi</u>, <u>Dominic</u>

<u>Masters</u>, <u>Timo Ewalds</u>, <u>Jacklynn Stott</u>, <u>Shakir Mohamed</u>, <u>Peter Battaglia</u> ☑, <u>Remi Lam</u> ☑ & <u>Matthew</u>

<u>Willson</u> ☑

Nature 637, 84–90 (2025) | Cite this article



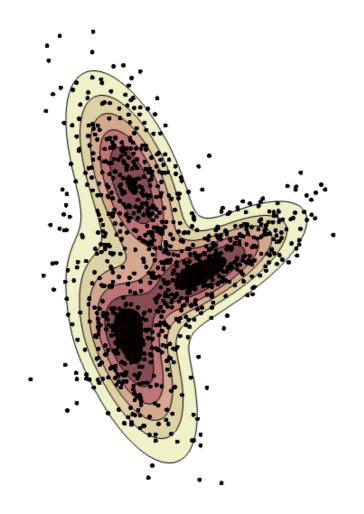
t = 100

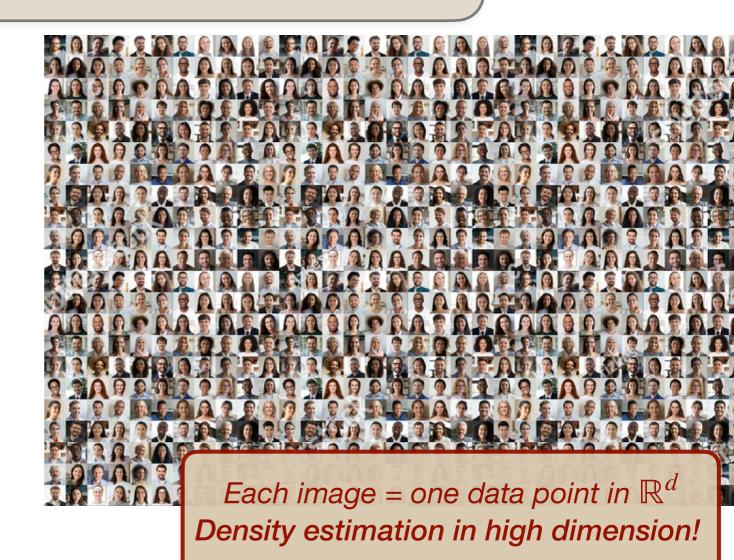
Probabilistic Approach to Unsupervised Learning

Working assumption to organize unlabeled data:

View the data points as samples from an unknown probability distribution.

Learn this distribution in a way that allows for generation of new samples





Density Estimation

Old problem, intractable with traditional methods in high dimension (binning, kernel density estimation,...)

PixelRNN

Recent progress using tools from ML (Boltzmann machines, Variational auto-encoder, GANs, ...) Diffusion

RealNVP GANs, VAEs 30/2

Glow

2018

BigGAN

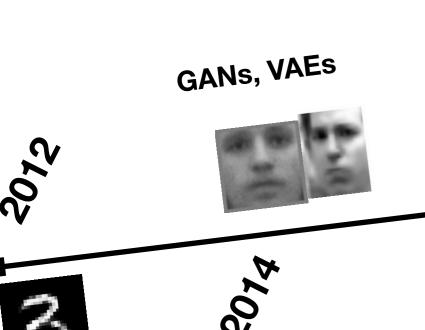
Boltzmann Machines

Density Estimation and Measure Transport

Old problem, intractable with traditional methods in high dimension (binning, kernel density estimation,...)

Recent progress using tools from ML (Boltzmann machines, Variational auto-encoder, GANs, ...)

Breakthrough via transportation of measure



Boltzmann

Machines

RealNVP

Glow

2018

Generation with Flows and Diffusions

Aim: Construct an S/ODE

Flow/diffusion matching

$$dX_t = b_t(X_t)dt + \sigma_t dW_t$$

such that:

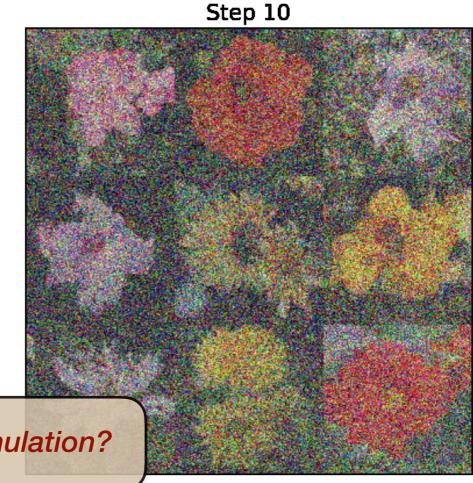
if $X_{t=0} \sim \mu_0$ = (simple) base distribution, then $X_{t=1} \sim \mu_1$ = target distribution.

Dynamical transport of probability distributions

Benamou-Brenier, ...

Well-suited for **generation** and **sampling**:

- draw a sample from the base μ_0 ;
- propagate it through the S/ODE;
- get a sample from the target μ_1 .

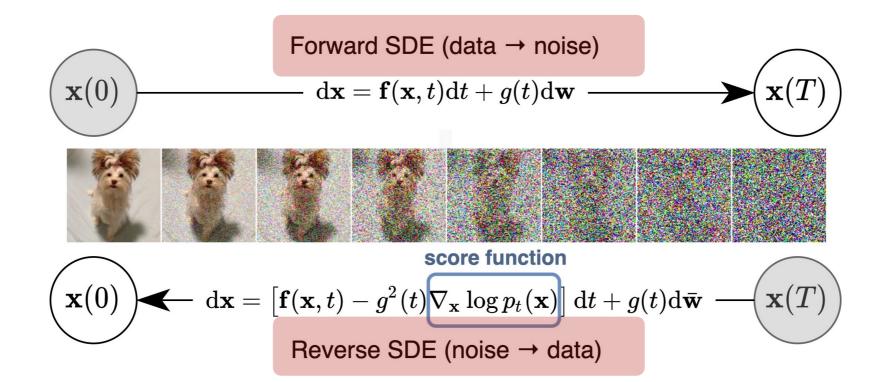


How can we find $b_t(x)$ using a tractable variational formulation?

Score-Based Diffusion Models

Given samples from the data distribution μ_1 :

- Devolve them into Gaussian noise using e.g. an Ornstein-Ulhenbeck process;
- *Time-reverse the SDE* to generate new samples from μ_1 from samples from N(0,Id);



From Song's blog

Builds a **path in distribution space** between μ_1 and N(0,Id); Reduces problem to the **simulation-free regression of the score**.

Albergo & V.-E. arXiv:2209.15571 (2022); Albergo, Boffi, & V.-E. arXiv:2303.08797 (2023).

See also: Liu et al. arXiv:2209.03003 (2022); Lipman et al. arXiv:2210.02747 (2022):

Key idea: Build a process that connects a base distribution to the target

The **stochastic** interpolant I_t is the process:

$$I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z, \qquad t \in [0,1]$$

with:

$$x_0 \sim \mu_0$$
, $x_1 \sim \mu_1$, $z \sim N(0,Id)$, $z \perp (x_0, x_1)$

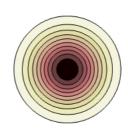
$$\alpha_0 = \beta_1 = 1$$
, $\alpha_1 = \beta_0 = \gamma_0 = \gamma_1 = 0$, $\alpha, \beta, \gamma \in C^1(0,1)$.

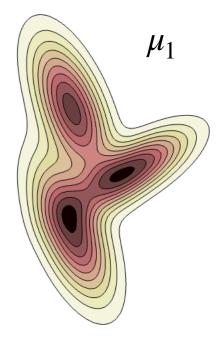
e.g.
$$I_t = (1 - t)x_0 + tx_1$$
 with $(x_0, x_1) \sim \mu_0 \otimes \mu_1$

By definition: $I_0 = x_0 \sim \mu_0$, $I_1 = x_1 \sim \mu_1$

 I_t easy to sample at all $t \in [0,1]$ using data

 μ_0





Albergo & V.-E. arXiv:2209.15571 (2022); Albergo, Boffi, & V.-E. arXiv:2303.08797 (2023).

See also: Liu et al. arXiv:2209.03003 (2022); Lipman et al. arXiv:2210.02747 (2022):

Key idea: Build a process that connects a base distribution to the target

The **stochastic** interpolant I_t is the process:

$$I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z, \qquad t \in [0,1]$$

with:

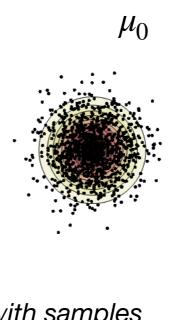
$$x_0 \sim \mu_0$$
, $x_1 \sim \mu_1$, $z \sim N(0,Id)$, $z \perp (x_0, x_1)$

$$\alpha_0 = \beta_1 = 1$$
, $\alpha_1 = \beta_0 = \gamma_0 = \gamma_1 = 0$, $\alpha, \beta, \gamma \in C^1(0,1)$.

e.g.
$$I_t = (1 - t)x_0 + tx_1$$
 with $(x_0, x_1) \sim \mu_0 \otimes \mu_1$

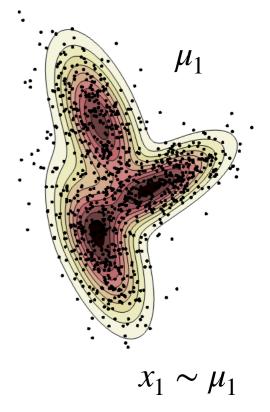
By definition: $I_0 = x_0 \sim \mu_0$, $I_1 = x_1 \sim \mu_1$

 I_t easy to sample at all $t \in [0,1]$ using data



with samples

$$x_0 \sim \mu_0$$



Albergo & V.-E. arXiv:2209.15571 (2022); Albergo, Boffi, & V.-E. arXiv:2303.08797 (2023).

See also: Liu et al. arXiv:2209.03003 (2022); Lipman et al. arXiv:2210.02747 (2022):

Key idea: Build a process that connects a base distribution to the target

The **stochastic** interpolant I_t is the process:

$$I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z, \qquad t \in [0,1]$$

with:

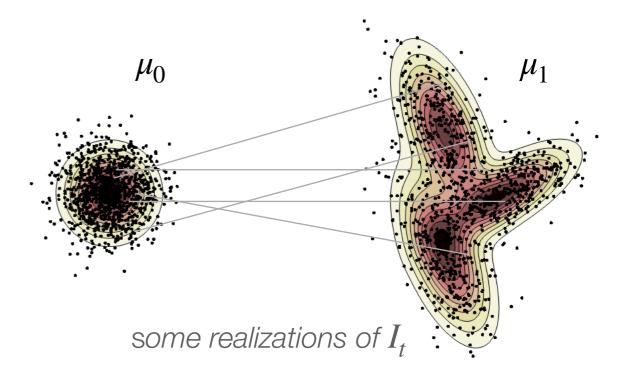
$$x_0 \sim \mu_0$$
, $x_1 \sim \mu_1$, $z \sim N(0,Id)$, $z \perp (x_0, x_1)$

$$\alpha_0 = \beta_1 = 1$$
, $\alpha_1 = \beta_0 = \gamma_0 = \gamma_1 = 0$, $\alpha, \beta, \gamma \in C^1(0,1)$.

e.g.
$$I_t = (1 - t)x_0 + tx_1$$
 with $(x_0, x_1) \sim \mu_0 \otimes \mu_1$

By definition: $I_0 = x_0 \sim \mu_0$, $I_1 = x_1 \sim \mu_1$

 I_t easy to sample at all $t \in [0,1]$ using data



Albergo & V.-E. arXiv:2209.15571 (2022); Albergo, Boffi, & V.-E. arXiv:2303.08797 (2023).

See also: Liu et al. arXiv:2209.03003 (2022); Lipman et al. arXiv:2210.02747 (2022):

Key idea: Build a process that connects a base distribution to the target

The **stochastic** interpolant I_t is the process:

$$I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z, \qquad t \in [0,1]$$

with:

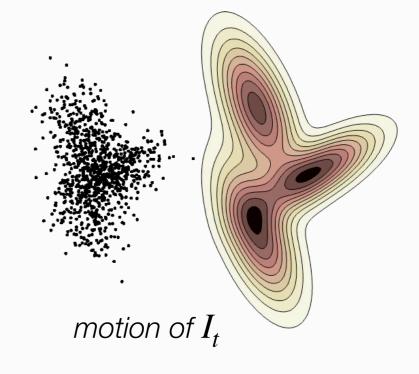
$$x_0 \sim \mu_0$$
, $x_1 \sim \mu_1$, $z \sim N(0,Id)$, $z \perp (x_0, x_1)$

$$\alpha_0 = \beta_1 = 1$$
, $\alpha_1 = \beta_0 = \gamma_0 = \gamma_1 = 0$, $\alpha, \beta, \gamma \in C^1(0,1)$.

e.g.
$$I_t = (1 - t)x_0 + tx_1$$
 with $(x_0, x_1) \sim \mu_0 \otimes \mu_1$

By definition: $I_0=x_0\sim \mu_0$, $I_1=x_1\sim \mu_1$

 I_t easy to sample at all $t \in [0,1]$ using data



Albergo & V.-E. arXiv:2209.15571 (2022); Albergo, Boffi, & V.-E. arXiv:2303.08797 (2023).

See also: Liu et al. arXiv:2209.03003 (2022); Lipman et al. arXiv:2210.02747 (2022):

Key idea: Build a process that connects a base distribution to the target

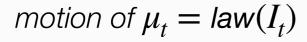
The **stochastic** interpolant I_t is the process:

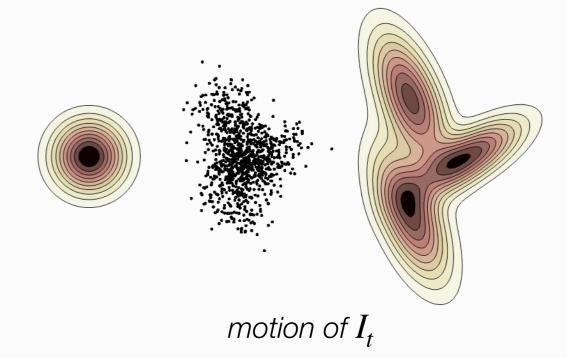
$$I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z, \qquad t \in [0,1]$$

with:

$$x_0 \sim \mu_0$$
, $x_1 \sim \mu_1$, $z \sim N(0,Id)$, $z \perp (x_0, x_1)$

$$\alpha_0 = \beta_1 = 1$$
, $\alpha_1 = \beta_0 = \gamma_0 = \gamma_1 = 0$, $\alpha, \beta, \gamma \in C^1(0,1)$.





Albergo & V.-E. arXiv:2209.15571 (2022); Albergo, Boffi, & V.-E. arXiv:2303.08797 (2023).

See also: Liu et al. arXiv:2209.03003 (2022); Lipman et al. arXiv:2210.02747 (2022):

The **stochastic** interpolant I_t is the process:

$$I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z, \qquad t \in [0,1]$$

with:

$$x_0 \sim \mu_0$$
, $x_1 \sim \mu_1$, $z \sim N(0,Id)$, $z \perp (x_0, x_1)$

$$\alpha_0 = \beta_1 = 1$$
, $\alpha_1 = \beta_1 = \gamma_0 = \gamma_1 = 0$, $\alpha, \beta, \gamma \in C^1(0,1)$.

Note that:

- I_t is not necessarily a diffusion;
- base distribution does not need to be Gaussian;
- (x_0, x_1) can be correlated.

Albergo & V.-E. arXiv:2209.15571 (2022); Albergo, Boffi, & V.-E. arXiv:2303.08797 (2023).

See also: Liu et al. arXiv:2209.03003 (2022); Lipman et al. arXiv:2210.02747 (2022):

The **stochastic** interpolant I_t is the process:

$$I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z, \qquad t \in [0,1]$$

with:

$$x_0 \sim \mu_0$$
, $x_1 \sim \mu_1$, $z \sim N(0,Id)$, $z \perp (x_0, x_1)$

$$\alpha_0 = \beta_1 = 1$$
, $\alpha_1 = \beta_1 = \gamma_0 = \gamma_1 = 0$, $\alpha, \beta, \gamma \in C^1(0,1)$.

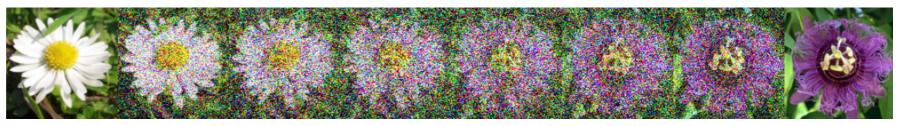
Without latent variable

$$x_t = (1 - t)x_0 + tx_1$$

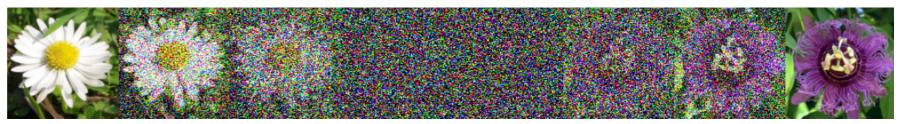
Different α_t , β_t , and γ_t give different processes.

With latent variable

$$x_t = (1 - t)x_0 + tx_1 + \sqrt{2t(1 - t)}z$$



$$x_t = \cos^2(\pi t)(1_{[0,\frac{1}{2})}(t)x_0 + 1_{(\frac{1}{2},1]}(t)x_1) + \sqrt{2t(1-t)}z$$



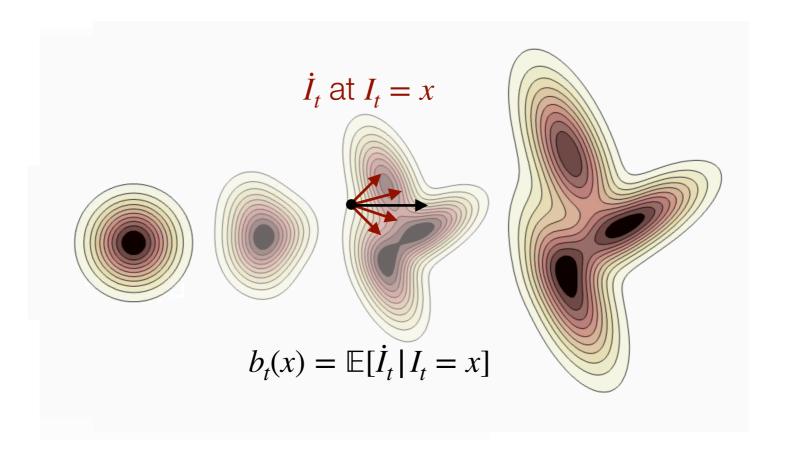
Thm: the law of $I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z$ is the same as the law of the solution to

$$\dot{X}_t = b_t(X_t), \qquad X_0 \sim \mu_0$$

Probability flow ODE

with the velocity $b_t(x)$ given by the conditional expectation

$$b_t(x) = \mathbb{E}\left[\dot{I}_t \middle| I_t = x\right] = \underset{\hat{b}_t}{argmin} \,\mathbb{E}\left[\left|\hat{b}_t(I_t) - \dot{I}_t\right|^2\right]$$



Thm: the law of $I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z$ is the same as the law of the solution to

$$\dot{X}_t = b_t(X_t), \qquad X_0 \sim \mu_0$$

Probability flow ODE

with the velocity $b_t(x)$ given by the conditional expectation

$$b_t(x) = \mathbb{E}\left[\dot{I}_t \middle| I_t = x\right] = \underset{\hat{b}_t}{argmin} \,\mathbb{E}\left[\left|\hat{b}_t(I_t) - \dot{I}_t\right|^2\right]$$

Proof: if μ_t is the distribution of I_t and ϕ is a test function, we have

$$\int_{\mathbb{R}^d} \phi(x) \mu_t(dx) = \mathbb{E}[\phi(I_t)]$$

and so:

$$\frac{d}{dt} \mathbb{E}[\phi(I_t)] = \mathbb{E}[\dot{I}_t \cdot \nabla \phi(I_t)]$$

$$\int_{\mathbb{R}^d} \phi(x) \partial_t \mu_t(dx) = \int_{\mathbb{R}^d} \underbrace{\mathbb{E}[\dot{I}_t | I_t = x]}_{=b_t(x)} \cdot \nabla \phi(x) \mu_t(dx)$$

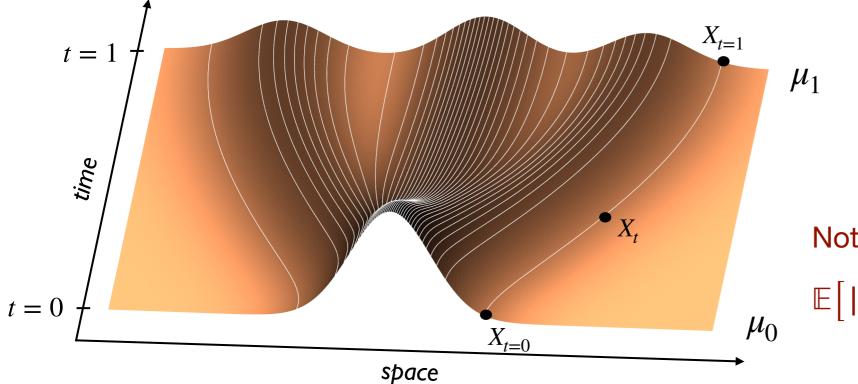
Thm: the law of $I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z$ is the same as the law of the solution to

$$\dot{X}_t = b_t(X_t), \qquad X_0 \sim \mu_0$$

Probability flow ODE

with the velocity $b_t(x)$ given by the conditional expectation

$$b_t(x) = \mathbb{E}\left[\dot{I}_t \middle| I_t = x\right] = \underset{\hat{b}_t}{argmin} \,\mathbb{E}\left[\left|\hat{b}_t(I_t) - \dot{I}_t\right|^2\right]$$



Gives a generative model:

$$X_{t=0} \sim \mu_0 \quad \Leftrightarrow \quad X_{t=1} \sim \mu_1$$

Not OT but finite path length in W_2 :

$$\mathbb{E}[|X_{t=1}(x_0) - x_0|^2] \le \int_0^1 \mathbb{E}[|\dot{I}_t|^2] dt < \infty$$

Thm: the law of $I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z$ is the same as the law of the solution to

$$\dot{X}_t = b_t(X_t), \qquad X_0 \sim \mu_0$$

Probability flow ODE

with the velocity $b_t(x)$ given by the conditional expectation

$$b_t(x) = \mathbb{E}\left[\dot{I}_t \middle| I_t = x\right] = \underset{\hat{b}_t}{argmin} \,\mathbb{E}\left[\left|\hat{b}_t(I_t) - \dot{I}_t\right|^2\right]$$

$$b = \underset{\hat{b}}{\operatorname{argmin}} \int_{0}^{1} \mathbb{E} \left[|\hat{b}_{t}(I_{t}) - \dot{I}_{t}|^{2} \right] dt$$

Estimation of b = simulation-free regression problem

- Objective $L_b(\hat{b})$ and its gradient can be evaluated empirically using the samples I_t ;
- Velocity $b_t(x)$ can be approximated e.g. by deep neural network (DNN);
- Minimization can be performed by SGD.

Score and diffusions

Thm: The score $s_t(x) = \nabla \log[d\mu_t/dx]$ of the PDF of I_t is given for all $t \in (0,1)$ by

$$s_t(x) = -\gamma_t^{-1} \mathbb{E}[z \mid I_t = x]$$

Stein's identity

In addition, it is the unique minimizer of

$$L_s(\hat{s}) = \int_0^1 \mathbb{E}\left[|\hat{s}_t(I_t)|^2 + 2\gamma_t^{-1}z \cdot \hat{s}_t(I_t) \right] dt$$

Corr: For any $\epsilon_t \ge 0$, $\mu_t(x)$ solves:

$$\partial_t \mu_t + \nabla \cdot ([b_t(x) + \epsilon_t s_t(x)]\mu_t) = \epsilon_t \Delta \mu, \qquad \mu_{t=0} = \mu_0,$$

and the solutions to the SDE

$$dX_t^F = b_t(X_t^F)dt + \epsilon_t s_t(X_t^F)dt + \sqrt{2\epsilon_t}dW_t$$

are such that

$$X_{t=0}^F \sim \mu_0 \quad \Rightarrow \quad X_{t=1}^F \sim \mu_1$$

Diffusion coefficient ϵ_t adjustable post training

Proof: Using $\nabla \cdot (s_t \mu_t) = \Delta \mu_t$, we see that this is the same equation as $\partial_t \mu_t + \nabla \cdot (b_t \mu_t) = 0$

Score and diffusions

Corr: For any $\epsilon_t \ge 0$, the solutions to the SDE

$$dX_t^F = b_t(X_t^F)dt + \epsilon_t s_t(X_t^F)dt + \sqrt{2\epsilon_t}dW_t$$

are such that

$$X_{t=0}^F \sim \mu_0 \quad \Rightarrow \quad X_{t=1}^F \sim \mu_1$$

Diffusion coefficient ϵ_t adjustable post training

Lem: If

$$I_t = \alpha_t x_0 + \beta_t x_1,$$

$$I_t = \alpha_t x_0 + \beta_t x_1, \qquad x_0 \sim N(0, \text{Id}), \quad x_1 \sim \mu_1, \quad x_0 \perp x_1,$$

then

$$\alpha_t s_t(x) = \frac{\beta_t b_t(x) - \dot{\beta}_t x}{\alpha_t \dot{\beta}_t - \dot{\alpha}_t \beta_t}$$

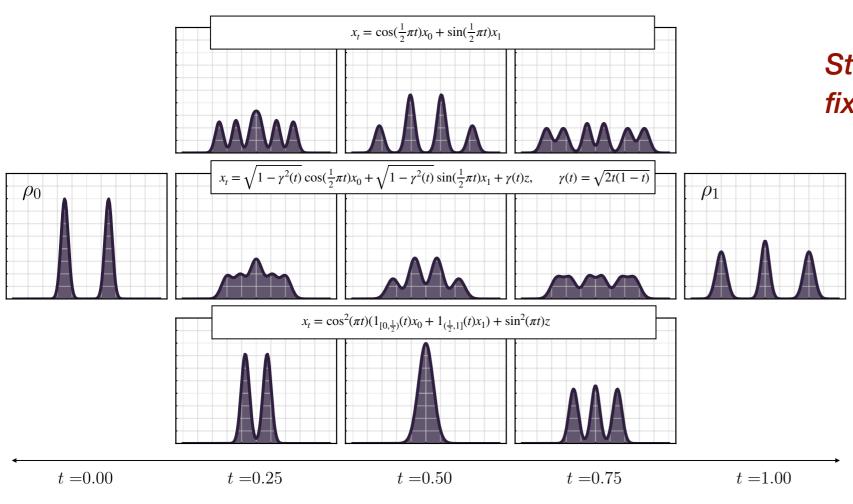
Only need to learn $b_t(x)$

Proof: Use

$$b_t(x) = \mathbb{E}[\dot{I}_t | I_t = x] = \dot{\alpha}_t \mathbb{E}[x_0 | I_t = x] + \dot{\beta}_t \mathbb{E}[x_1 | I_t = x]$$

$$s_t(x) = -\alpha_t^{-1} \mathbb{E}[x_0 | I_t = x]$$

 $x = \mathbb{E}[I_t | I_t = x] = \alpha_t \mathbb{E}[x_0 | I_t = x] + \beta_t \mathbb{E}[x_1 | I_t = x]$ together with

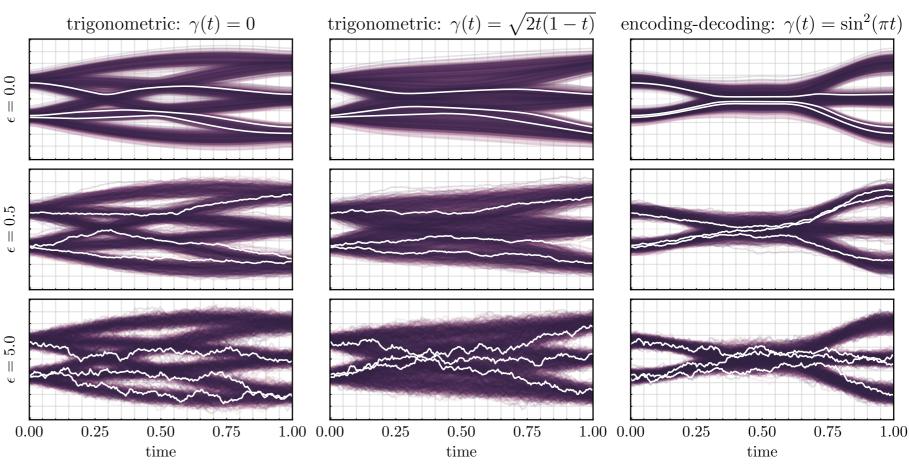


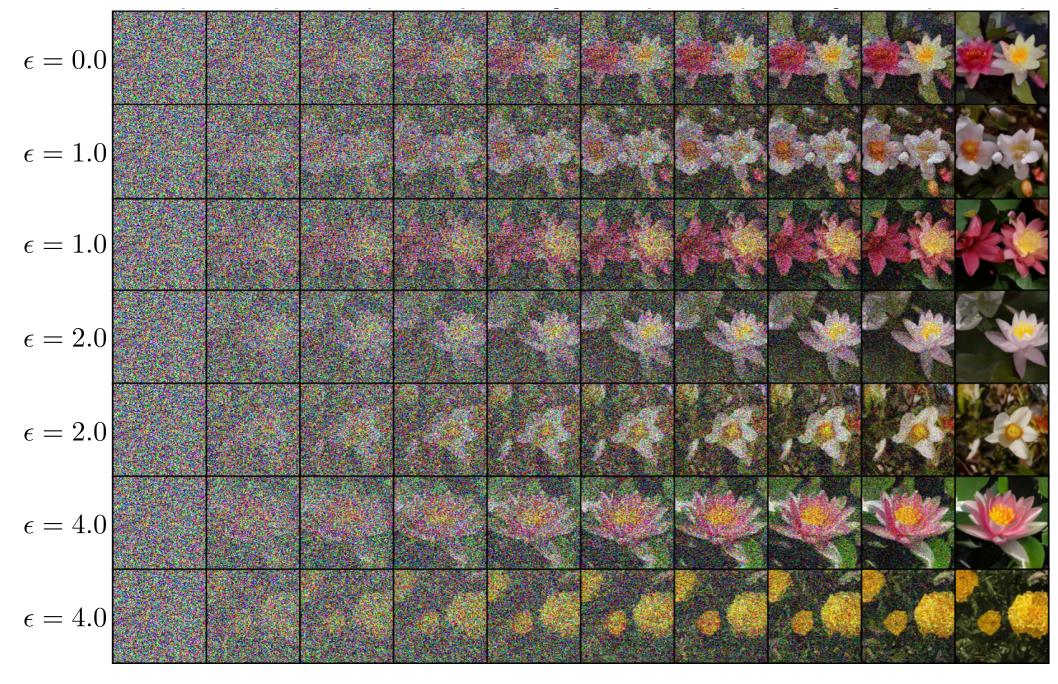
Stochastic interpolant fixes the connecting distribution μ_t

Diffusion coefficient ϵ_t controls the way to sample μ_t

ODE and SDE sample the **same** μ_t in different ways

ODE gives one-to-one map; SDE samples μ_1 more broadly from any $x_0 \sim \mu_0$





More noise in SDE = more diversity in outputs from same $x_0 \sim \mu_0$

Generated Image

Does better than memorizing the data set!

5 Nearest neighbors in training set

Scalable Interpolant Transformers

with Ma, Albergo, Boffi, Goldstein & Xie (2023)

https://scalable-interpolant.github.io/

ImageNet 512x512

Model	Params(M)	Training Steps	FID ↓
DiT-S	33	400K	68.4
SiT-S	33	400K	57.6
DiT-B	130	400K	43.5
SiT-B	130	400K	33.5
DiT-L	458	400K	23.3
SiT-L	458	400K	18.8
DiT-XL	675	400K	19.5
SiT-XL	675	400K	17.2
DiT-XL	675	7M	9.6
SiT-XL	675	7M	8.6
DiT-XL (cfg=1.5)	675	7M	2.27
SiT-XL (cfg=1.5)	675	7M	2.06

ImageNet 256x256

Conditional Generation

Thm: Given $(x_0, x_1, \xi) \sim \mu(dx_0, dx_1, d\xi)$, let

 ξ = conditioning variables

$$I_t = \alpha_t x_0 + \beta_t x_1 + \gamma_t z, \qquad z \sim N(0, \text{Id}), \quad z \perp (x_0, x_1, \xi),$$

and define
$$b_t(x,\xi) = \mathbb{E}\left[\dot{\alpha}_t x_0 + \dot{\beta}_t x_1 + \dot{\gamma}_t z \mid I_t = x, \xi\right]$$
 and $s_t(x,\xi) = -\gamma_t^{-1} \mathbb{E}\left[z \mid I_t = x, \xi\right]$

Then, for any $\epsilon_t \geq 0$ the solutions to

$$dX_t = b_t(X_t, \xi)dt + \epsilon_t s_t(X_t, \xi)dt + \sqrt{2\epsilon_t}dW_t, \qquad X_{t=0} \sim \mu_0(dx_0 \mid \xi)$$

are such that

$$X_{t=1} \sim \mu(dx_1 | \xi) = conditional measure of x_1 given \xi$$

In addition, $b_t(x, \xi)$ is the unique minimizer of

$$L_b(\hat{b}) = \int_0^1 \mathbb{E}\left[|\hat{b}_t(I_t, \xi)|^2 - 2(\dot{\alpha}_t x_0 + \dot{\beta}_t x_1 + \dot{\gamma}_t z) \cdot \hat{b}_t(I_t, \xi)\right] dt$$

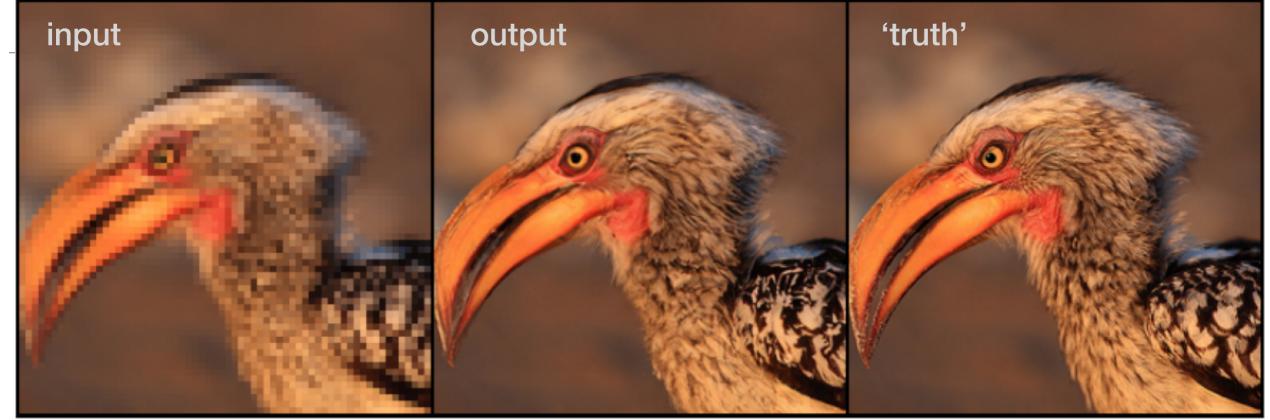
Similar story as before, with ϵ_t adjustable post-training

Superresolution

target = high-res image base = low-res image + noise

velocity conditioned on low-res image

Albergo et al. arXiv:2310.03725 (2023)

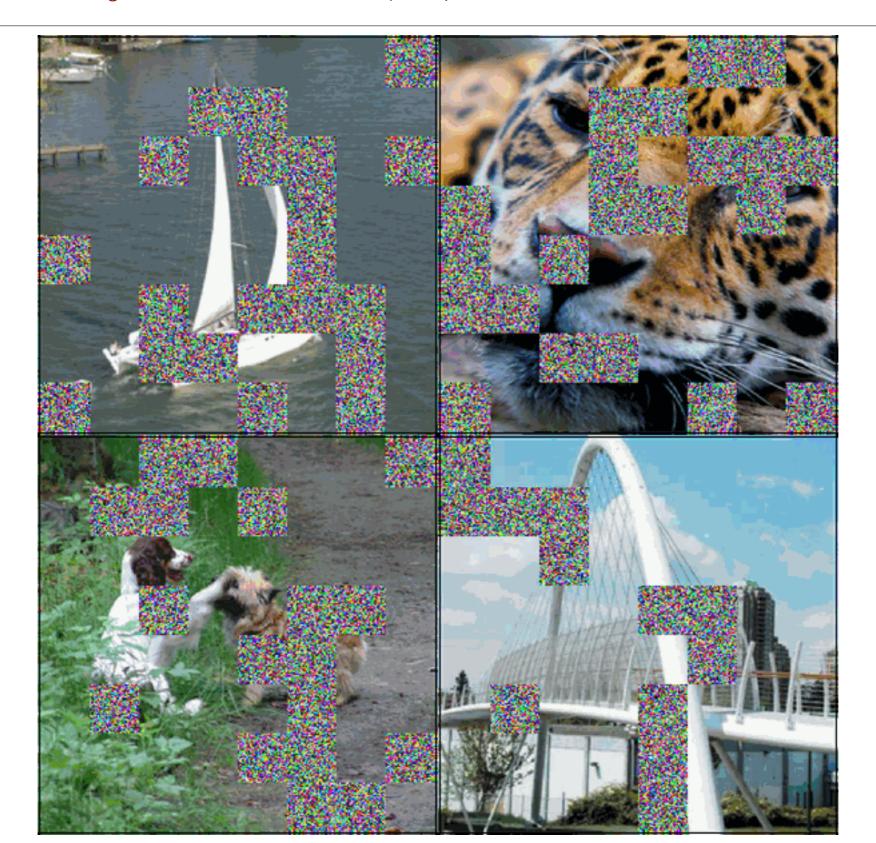


Un-masking

Albergo et al. arXiv:2310.03725 (2023)

target = full image base = maskeds image

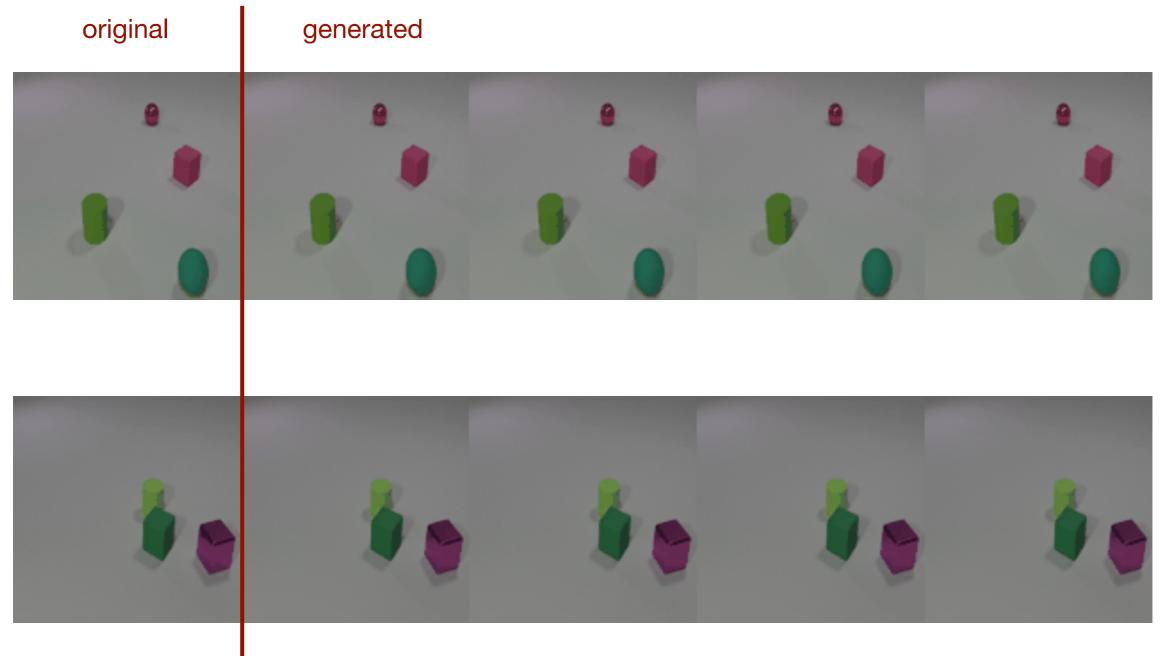
velocity conditioned on mask position



Probabilistic video generation by roll-out

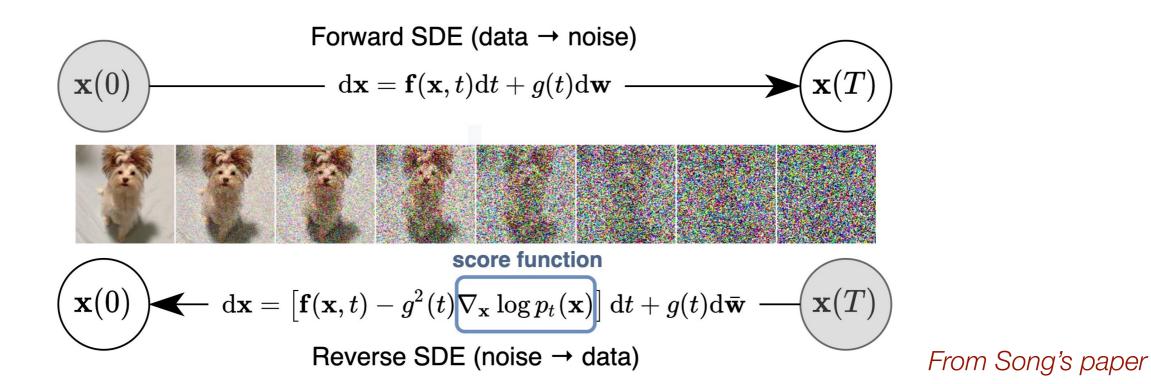
Chen, Goldstein, Albergo, Boffi, Albergo & V.-E. arXiv:2403.13724 (2024)

Video forecasting (frame-by-frame, with rollout)



Set up of: Davtyan, Proc. IEEE/CVF (2023).

Link with Score-Based Diffusion Models

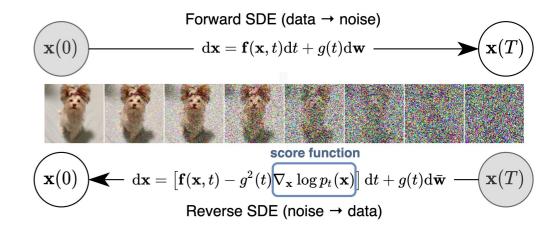


OU process:
$$dX_{\tau} = -\,X_{\tau}d\tau + dW_{\tau}$$
 $X_{\tau=0} \sim \mu_1$ = data distribution

$$X_{\tau} = x_1 e^{-\tau} + \int_0^{\tau} e^{-\tau + \tau'} dW_{\tau'} \stackrel{d}{=} x_1 e^{-\tau} + \sqrt{1 - e^{-2\tau}} z$$

Score-Based Diffusion Models vs Interpolants

$$X_{\tau} = x_1 e^{-\tau} + \int_0^{\tau} e^{-\tau + \tau'} dW_{\tau'} \stackrel{d}{=} x_1 e^{-\tau} + \sqrt{1 - e^{-2\tau}} z$$



Take:
$$t = e^{-\tau}$$
 \Rightarrow $X_{-\log t} \stackrel{d}{=} I_t = z\sqrt{1 - t^2} + x_1 t$

Time rescaling

Stochastic interpolant with $\alpha_t = \sqrt{1 - t^2}$, $\beta_t = t$

Stochastic interpolants disentangle two operations:

- 1. building a time-dependent μ_t connecting the base and target distributions, and;
- 2. sampling this μ_t using an ODE or an SDE with adjusted diffusion coefficient.

Leveraging the flexibility of the formalism

Négrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

Two observations:

- The coefficients α_t , β_t in $I_t = \alpha_t x_0 + \beta_t x_1$ do not need to be scalar functions of time
- There is no reason to choose them beforehand (i.e. before training).

The *operator interpolant* $I(\alpha, \beta)$ is the process:

$$I(\alpha, \beta) = \alpha x_0 + \beta x_1$$
, $x_0 \sim \mu_0$, $x_1 \sim \mu_1$

where $x_0, x_1 \in \mathcal{H}$ (e.g. \mathbb{R}^d) and

 α, β are **linear operators** in that space.

The multitask drifts $\eta_{0,1}(\alpha,\beta,x)$ are the vector fields:

$$\eta_0(\alpha, \beta, x) = \mathbb{E}[x_0 | I(\alpha, \beta) = x], \qquad \eta_1(\alpha, \beta, x) = \mathbb{E}[x_1 | I(\alpha, \beta) = x]$$

Négrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

The *operator interpolant* $I(\alpha, \beta)$ is the process:

$$I(\alpha, \beta) = \alpha x_0 + \beta x_1$$
, $x_0 \sim \mu_0$, $x_1 \sim \mu_1$

where $x_0, x_1 \in \mathcal{H}$ (e.g. \mathbb{R}^d) and

 α, β are **linear operators** in that space.

The multitask drifts $\eta_0(\alpha, \beta, x)$ and $\eta_1(\alpha, \beta, x)$ are the vector fields:

$$\eta_0(\alpha, \beta, x) = \mathbb{E}[x_0 | I(\alpha, \beta) = x], \qquad \eta_1(\alpha, \beta, x) = \mathbb{E}[x_1 | I(\alpha, \beta) = x]$$

Estimation of η_0 , η_1 = simulation-free regression problem

$$\eta_0 = \underset{\hat{\eta}_0}{\operatorname{argmin}} \, \mathbb{E}_{(\alpha,\beta) \sim \nu} \mathbb{E}_{(x_0,x_1) \sim \mu} \left[| \, \hat{\eta}_0(\alpha,\beta,I(\alpha,\beta)) - x_0 \, |^2 \, \right]$$

e.g.
$$\beta = 1 - \alpha$$
 diagonal, $I(\alpha) = \alpha \odot x_0 + (1 - \alpha) \odot x_1$, and $\nu = U([0,1]^d)$

Négrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

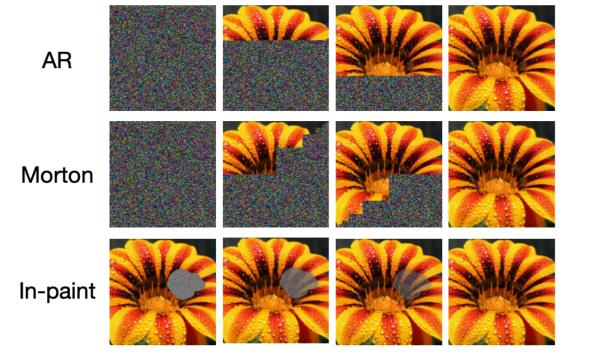
Thm: Given any path $(\alpha_t, \beta_t)_{t \in [0,1]}$ the law of $I(\alpha_t, \beta_t)$ is the same as the law of the solution to

$$\dot{X}_t = \dot{\alpha}_t \eta_0(\alpha_t, \beta_t, X_t) + \dot{\beta}_t \eta_1(\alpha_t, \beta_t, X_t), \qquad X_0 \stackrel{d}{=} I(\alpha_0, \beta_0)$$

If we can sample $I(\alpha_0, \beta_0)$ we can generate sample along any ray emanating from it.

$$I(\alpha) = \alpha \odot x_0 + (1 - \alpha) \odot x_1$$
; $\nu = U([0,1]^d)$

Other choices of operators α, β



Négrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

Thm: Given any path $(\alpha_t, \beta_t)_{t \in [0,1]}$ the law of $I(\alpha_t, \beta_t)$ is the same as the law of the solution to

$$\dot{X}_t = \dot{\alpha}_t \eta_0(\alpha_t, \beta_t, X_t) + \dot{\beta}_t \eta_1(\alpha_t, \beta_t, X_t), \qquad X_0 \stackrel{d}{=} I(\alpha_0, \beta_0)$$

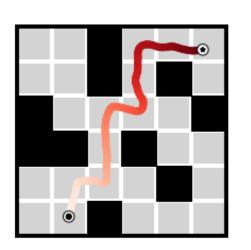
If we can sample $I(\alpha_0, \beta_0)$ we can generate sample along any ray emanating from it.

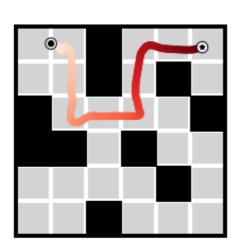
Approach can be seen as a way of amortizing learning over a variety of tasks: it enables generation strategies to be defined, optimized, or modified dynamically at inference time without retraining.

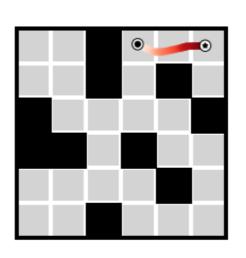
If $x_0 \sim N(0, Id) \& x_0 \perp x_1$ we can use the SDE

$$dX_t = (\dot{\alpha}_t - \epsilon_t \alpha_t^{-1}) \eta_0(\alpha_t, \beta_t, X_t) dt + \dot{\beta}_t \eta_1(\alpha_t, \beta_t, X_t) dt + \sqrt{2\epsilon_t} dW_t, \qquad X_0 \stackrel{d}{=} I(\alpha_0, \beta_0)$$

Négrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

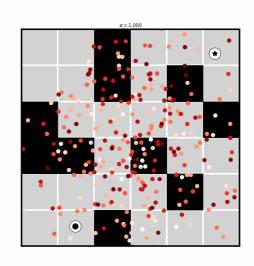


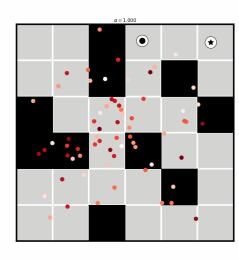




end

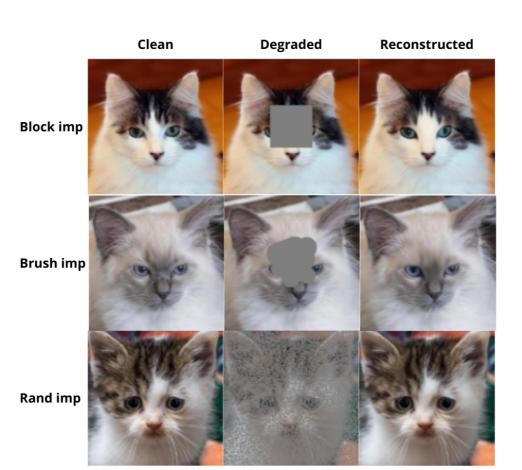
start





Robotics application

Inpainting, editing, denoising, etc.



AFHQ-Cat

CelebA

Posterior Sampling and Fine-Tuning

Négrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

Objective: Sample the posterior distribution

$$\mu_1^r(dx) = Z^{-1}e^{r(x)}\mu_1(dx)$$

where:

- $\mu_1(dx)$ is the prior distribution (sampleable)
- $r(x) = \frac{1}{2}\langle x, Ax \rangle + \langle b, x \rangle$ is the likelihood (aka reward) function (given)
- $Z = \int e^{r(x)} \mu_1(dx) < \infty$ is the evidence / partition function (unknown)

Thm: Let $I(\alpha,\beta)=\alpha x_0+\beta x_1$ and $I_r(\alpha,\beta)=\alpha x_0+\beta x_1^r$, where $x_0\sim\mu_0$, $x_1\sim\mu_1$, $x_1^r\sim\mu_1^r$

and

$$\eta_0(\alpha,\beta,x) = \mathbb{E}[x_0 \,|\, I(\alpha,\beta) = x], \qquad \eta_1(\alpha,\beta,x) = \mathbb{E}[x_1 \,|\, I(\alpha,\beta) = x] \qquad \text{prior}$$

$$\eta_0^r(\alpha,\beta,x) = \mathbb{E}[x_0 \,|\, I_r(\alpha,\beta) = x], \qquad \eta_1^r(\alpha,\beta,x) = \mathbb{E}[x_1^r \,|\, I_r(\alpha,\beta) = x] \qquad \text{posterior}$$

Then

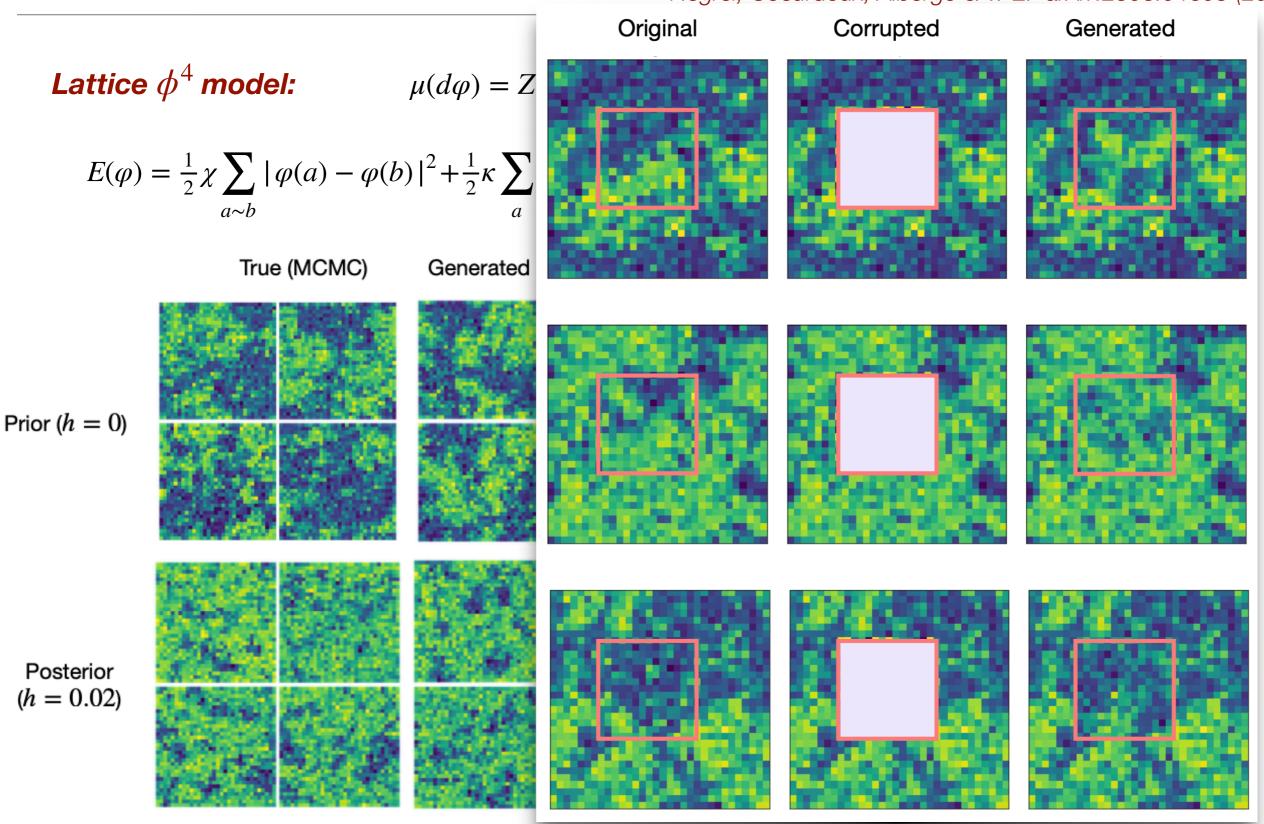
if

$$\eta_0^r(\alpha, \beta, x) = \alpha^{-1} \beta \beta_r^{-1} \alpha_r \eta_0(\alpha_r, \beta_r, x_r) + \alpha^{-1} (x - \beta \beta_r^{-1} x_r)
\eta_1^r(\alpha, \beta, x) = \eta_1(\alpha_r, \beta_r, x_r)$$

$$\beta_r^T \alpha_r^{-T} \alpha_r^{-1} \beta_r = \beta^T \alpha^{-T} \alpha^{-1} \beta - A, \qquad x_r = \alpha_r \alpha_r^T \beta_r^{-T} \left(\beta^T \alpha^{-T} \alpha^{-1} x + b \right).$$

Posterior Sampling and Fine-Tuning

Négrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)



Likelihood control

Why use the SDE rather than the ODE?

The drift $b_t(x)$ and the score $s_t(x)$ are only known approximately!

The ODE only offers control of the Wasserstein distance from the target, whereas the SDE allows for control of the Kullback-Leibler divergence from the target.

Thm: Let $\hat{\mu}_t(x)$ be the solution to the FPE

$$\partial_t \hat{\mu}_t + \nabla \cdot ((\hat{b}_t + \epsilon \hat{s}_t) \hat{\mu}_t) = \epsilon \Delta \hat{\mu}_t, \qquad \hat{\mu}_{t=0} = \mu_0,$$

Then:

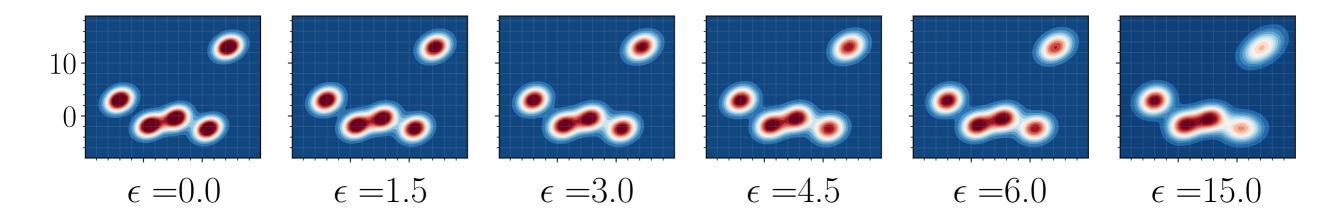
$$\mathrm{KL}(\mu_1 \| \hat{\mu}_1) \leq \frac{1}{2\epsilon} \left(L_b(\hat{b}) - \min_{\hat{b}} L_b(\hat{b}) \right) + \frac{\epsilon}{2} \left(L_s(\hat{s}) - \min_{\hat{s}} L_s(\hat{s}) \right)$$

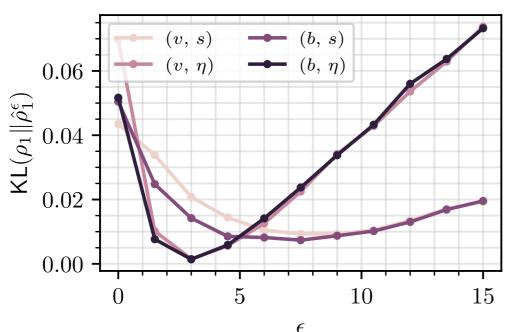
Proof = consequence of Girsanov theorem

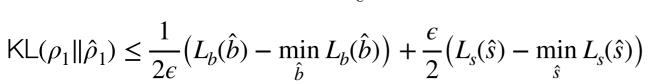
In the context of SBDM: Chen et al. arXiv:2209.11215 (2022); Lee et al. arXiv:2206.06227 (2022).

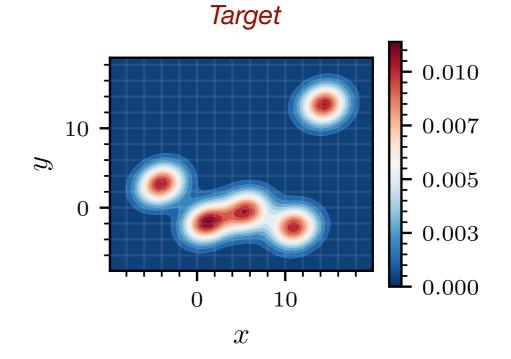
Empirical verification:

Gaussian mixture density in d=128









Diffusion coefficient can be adjusted post-training!

Adjusting the Diffusion Coefficient

Thm: for all $t \in [0,1]$ and any ϵ_t with $\epsilon_0 = \sigma_0 > 0$:

Base = point mass

the law of $I_t = \beta_t x_1 + \sigma_t W_t$ is the same as the law of the solution to

$$dX_t = b_t(X_t)dt + \frac{1}{2}(\epsilon_t^2 - \sigma_t^2)s_t(X_t)dt + \epsilon_t dW_t, \qquad X_0 = 0$$

where the drift $b_t(x)$ and the score $s_t(x)$ are given explicitly by

$$b_t(x) = \mathbb{E}\left[\dot{\beta}_t x_1 + \dot{\sigma}_t W_t \middle| I_t = x\right] \qquad s_t(x) = \frac{\beta_t b_t(x) - \beta_t x}{t\sigma_t(\dot{\beta}_t \sigma_t - \beta_t \dot{\sigma}_t)}$$

Chen, Goldstein, Albergo, Boffi, Albergo & V.-E. arXiv:2403.13724 (2024)

Minimizing the impact of the estimation error

Thm: Let

$$dX_t = b_t(X_t)dt + \frac{1}{2}(\epsilon_t^2 - \sigma_t^2)s_t(X_t)dt + \epsilon_t dW_t$$

= exact process

$$d\hat{X}_t = \hat{b}_t(\hat{X}_t)dt + \frac{1}{2}(\epsilon_t^2 - \sigma_t^2)\hat{s}_t(\hat{X}_t)dt + \epsilon_t dW_t$$

= estimated process

Then the **path KL divergence** $D_{\text{KL}}(P_{\hat{X}} || P_X)$ is **minimized** when $e_t = e_t^F$ with

$$\epsilon_t^F = \left| 2t\sigma_t(\beta_t^{-1}\dot{\beta}_t\sigma_t - \dot{\sigma}_t) - \sigma_t^2 \right|^{1/2}$$

Explicit expression for ϵ_t independent of the drift and the target distribution!

Connection with Föllmer processes

Thm: Let

$$dX_t = b_t(X_t)dt + \frac{1}{2}(\epsilon_t^2 - \sigma_t^2)s_t(X_t)dt + \epsilon_t dW_t$$

= exact process

$$d\hat{X}_t = \hat{b}_t(\hat{X}_t)dt + \frac{1}{2}(\epsilon_t^2 - \sigma_t^2)\hat{s}_t(\hat{X}_t)dt + \epsilon_t dW_t$$

= estimated process

Then the **path KL divergence** $D_{\text{KL}}(P_{\hat{X}} || P_X)$ is **minimized** when $e_t = e_t^F$ with

$$\epsilon_t^F = \left| 2t\sigma_t(\beta_t^{-1}\dot{\beta}_t\sigma_t - \dot{\sigma}_t) - \sigma_t^2 \right|^{1/2}$$

Thm: The process $X^F = (X_t^F)_{t \in [0,1]}$ obtained with $\epsilon_t = \epsilon_t^F$ is a

Föllmer process = Schrödinger bridge between δ_0 and μ_1

Different interpretation/derivation of the Föllmer process, through minimization of the impact of estimation error.

Some Scientific Applications

Probabilistic forecasting and superresolution

Chen, Goldstein, Albergo, Boffi, Albergo & V.-E. arXiv:2403.13724 (2024)

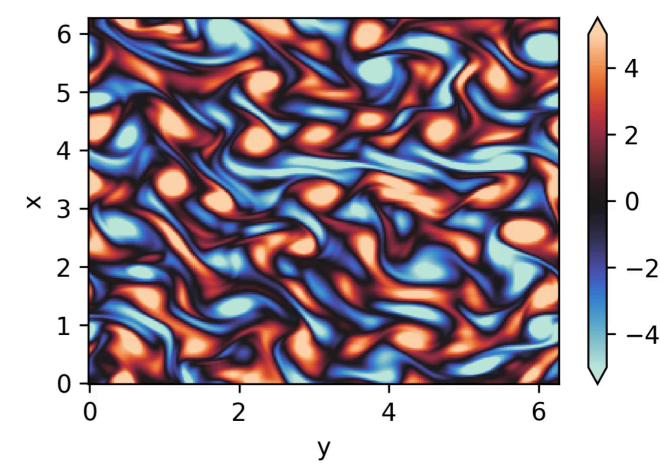
2D Navier-Stokes equation with random forcing on the torus

$$d\omega + v \cdot \nabla \omega dt = \nu \Delta \omega dt - \alpha \omega dt + \varepsilon d\eta$$

$$v = \nabla^{\perp} \psi = (-\partial_y \psi, \partial_x \psi), \qquad -\Delta \psi = \omega$$

$$d\eta = \text{white-in-time forcing acting}$$

on a few Fourier modes



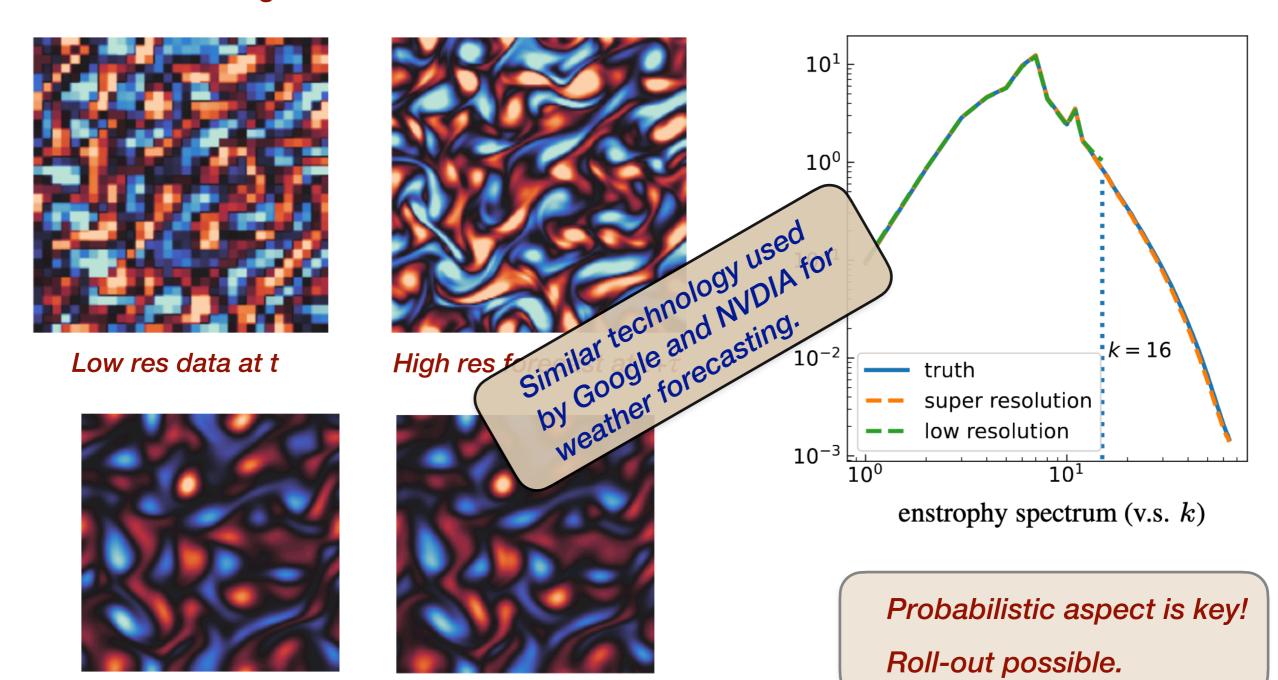
Set-up of Hairer & Mattingly (2006) for which NSE is provable ergodic with a unique IM.

Aim: Given ω_t in full- or low-resolution, forecast the ensemble of $\omega_{t+\tau}$ with $\tau > 0$ at full-resolution.

Probabilistic forecasting/downscaling

Chen, Goldstein, Albergo, Boffi, Albergo & V.-E. arXiv:2403.13724 (2024)

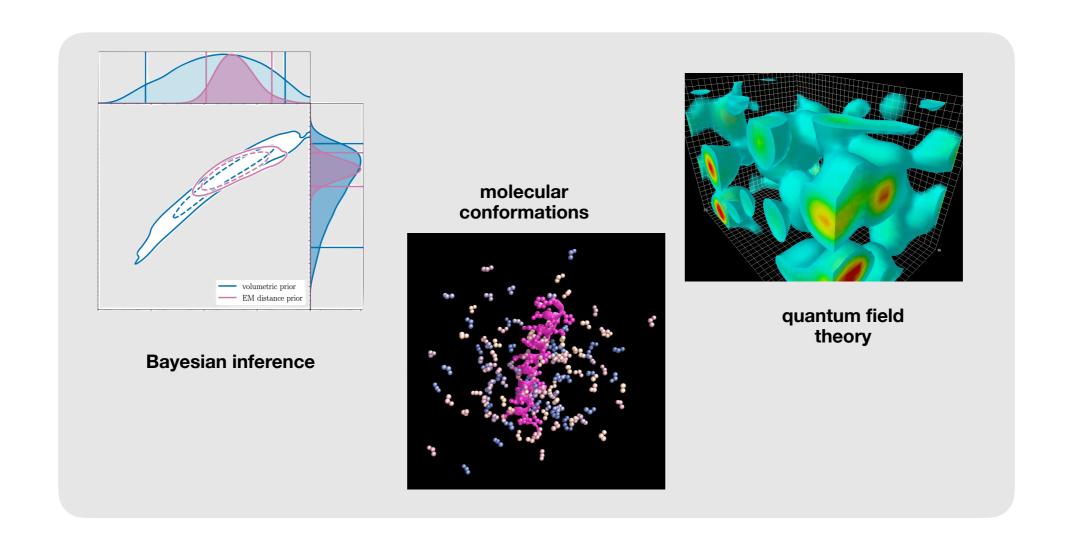
Forecasting and superresolution in 2D Navier-Stokes equation with random forcing on the torus



True vs forecasted conditional mean

Assisting Monte-Carlo Sampling

- Generic method in Statistical Mechanics, Bayesian Inference, Uncertainty Quantification, etc.
- ▶ Aim at sampling a target distribution known up to a normalized constant.
- ▶ Plagued by **slow convergence** hard to propose good new samples.



Assisting Monte-Carlo Sampling

- Generic method in Statistical Mechanics, Bayesian Inference, Uncertainty Quantification, etc.
- Aim at sampling a target distribution known up to a normalized constant.
- Plagued by slow convergence hard to propose good new samples.

Idea: learn generative models to get better samples.

Rezende et al., arXiv:1505.05770; Noé et al., Science 365 eaaw1147 (2019); Albergo, Kanwar, Shanahan, Phys. Rev. D 100, 034515 (2019); Gabrié, Rotskoff & V.-E. PNAS 119, e2109420119 (2021); Albergo & V.-E. arXiv:2410.02711 (2024)

Different set-up than standard ML:

Problems with model but no data initially (as opposed to data but no model)

Allow for infinite data generation with validation — verifiable Al!

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

EUGENE P. WIGNER

The Unreasonable Effectiveness of Machine Learning

Curses of Dimensionality (CoD):

The number of operations/parameters needed to optimize/integrate/approximate Lipschitz functions to precision δ depends exponentially on the input dimension d, $O(\delta^{-d})$.

[Bellman, 61]

Gridding does not scale:

2 points in d = 1; $2^2 = 4$ points in d = 2; ... $2^{1000} = 10^{300}$ points in d = 1000

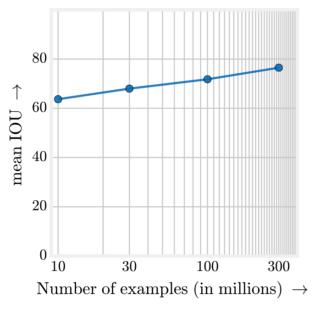
How come we can learn to generate images or texts which a priori live in very high dimensional spaces?

When, how, and why can neural networks approximate high dimensional functions?

Need for Theory

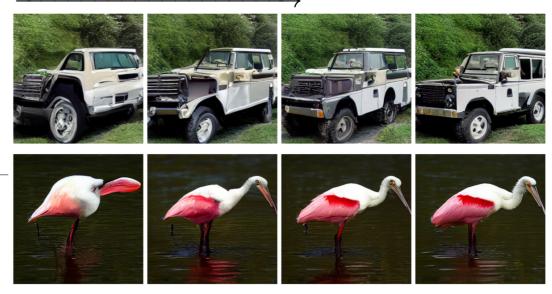
DL is very costly in terms of compute and data. Brute-force approach is not sustainable.

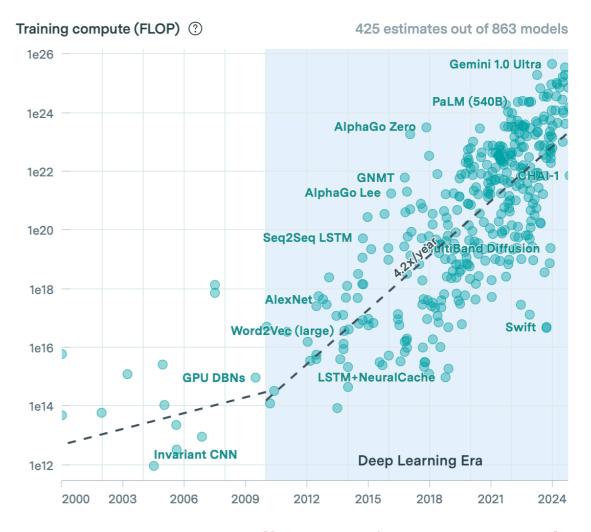
Initialization	mIOU
ImageNet	73.6
300M	75.3
ImageNet+300M	76.5



[Sun et al ICCV 2017]

Increasing transformer sizes





[Sevilla & Roldán, epoch.ai blog 2025]

Search...

All fields

Search

Help | Advanced Search

Computer Science > Machine Learning

[Submitted on 30 Sep 2022 (v1), last revised 20 Oct 2022 (this version, v2)]

Building Normalizing Flows with Stochastic Interpolants

Michael S. Albergo, Eric Vanden-Eijnden

A simple generative model based on a continuous-time normalizing flow between any pair of base and target probability densities is proposed. The velocity field of this flow is inferred from the probability current of a time-dependent density that interpolates between the base and the target in finite time. Unlike conventional normalizing flow inference methods based the maximum likelihood principle, which require costly backpropagation through ODE solvers, our interpolant approach leads to a simple quadratic loss for the velocity itself which is expressed in terms of expectations that are readily amenable to empirical estimation. The flow can be used to generate samples from either the base or target, and to estimate the likelihood at any time along the interpolant. In addition, the flow can be optimized to minimize the path length of the interpolant density, thereby paving the way for building optimal transport maps. The approach is also contextualized in its relation to diffusions. In particular, in situations where the base is a Gaussian density, we show that the velocity of our normalizing flow can also be used to construct a diffusion model to sample the target as well as estimating its score. This allows one to map methods based on stochastic differential equations to those using ordinary differential equations, simplifying the mechanics of the model, but capturing equivalent dynamics. Benchmarking on density estimation tasks illustrates that the learned flow can match and surpass maximum likelihood continuous flows at a fraction of the conventional ODE training costs.

Subjects: Machine Learning (cs.LG); Machine Learning (stat.ML)

arXiv:2209.15571 [cs.LG]

(or arXiv:2209.15571v2 [cs.LG] for this version) https://doi.org/10.48550/arXiv.2209.15571

Submission history

From: Michael Albergo [view email] [v1] Fri, 30 Sep 2022 16:30:31 UTC (3,383 KB) [v2] Thu, 20 Oct 2022 14:57:06 UTC (4,361 KB)

Download:

- PDF
- Other formats (license)

Current browse context: cs.LG

< prev | next > new | recent | 2209

Change to browse by:

CS stat

stat.ML

References & Citations

- NASA ADS
- Google Scholar
- · Semantic Scholar

Export Bibtex Citation

Search... All fields Search Help | Advanced Search

Computer Science > Machine Learning

[Submitted on 15 Mar 2023]

Stochastic Interpolants: A Unifying Framework for Flows and Diffusions

Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden

We introduce a class of generative models based on the stochastic interpolant framework proposed in Albergo & Vanden-Eijnden (2023) that unifies flow-based and diffusion-based methods. We first show how to construct a broad class of continuous-time stochastic processes whose time-dependent probability density function bridges two arbitrary densities exactly in finite time. These `stochastic interpolants' are built by combining data from the two densities with an additional latent variable, and the specific details of the construction can be leveraged to shape the resulting time-dependent density in a flexible way. We then show that the time-dependent density of the stochastic interpolant satisfies a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion; upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with a tunable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. Remarkably, we show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics; by contrast, we show that generative models based upon a deterministic dynamics must, in addition, control the Fisher divergence between the target and the model. Finally, we construct estimators for the likelihood and the cross-entropy of interpolant-based generative models, and demonstrate that such models recover the Schrödinger bridge between the two target densities when explicitly optimizing over the interpolant.

Subjects: Machine Learning (cs.LG); Disordered Systems and Neural Networks (cond-mat.dis-nn); Probability (math.PR)

Cite as: arXiv:2303.08797 [cs.LG]

(or arXiv:2303.08797v1 [cs.LG] for this version)

ssion history reenshot

rrom, wichael Albergo (view email)

[v1] Wed, 15 Mar 2023 17:43:42 UTC (5,381 KB)

Download:

- PDF
- Other formats

(license)

Current browse context: cs.LG

next > < prev new | recent | 2303

Change to browse by: cond-mat

cond-mat.dis-nn CS math

math.PR

References & Citations

- NASA ADS
- Google Scholar
- Semantic Scholar

Export Bibtex Citation

Search... All fields Search

Help | Advanced Search

Computer Science > Machine Learning

[Submitted on 5 Oct 2023]

Stochastic interpolants with data-dependent couplings

Michael S. Albergo, Mark Goldstein, Nicholas M. Boffi, Rajesh Ranganath, Eric Vanden-Eijnden

Generative models inspired by dynamical transport of measure — such as flows and diffusions — construct a continuous—time map between two probability densities. Conventionally, one of these is the target density, only accessible through samples, while the other is taken as a simple base density that is data—agnostic. In this work, using the framework of stochastic interpolants, we formalize how to \textit{couple} the base and the target densities. This enables us to incorporate information about class labels or continuous embeddings to construct dynamical transport maps that serve as conditional generative models. We show that these transport maps can be learned by solving a simple square loss regression problem analogous to the standard independent setting. We demonstrate the usefulness of constructing dependent couplings in practice through experiments in super–resolution and in–painting.

Subjects: Machine Learning (cs.LG); Machine Learning (stat.ML)

Cite as: arXiv:2310.03725 [cs.LG]

(or arXiv:2310.03725v1 [cs.LG] for this version) https://doi.org/10.48550/arXiv.2310.03725

Submission history

From: Mark Goldstein [view email]

[v1] Thu, 5 Oct 2023 17:46:31 UTC (16,569 KB)

Access Paper:

- Download PDF
- PostScript
- Other Formats

(view license)

Current browse context: **cs.LG**

< prev | next >
new | recent | 2310

Change to browse by:

cs stat

stat.ML

References & Citations

- NASA ADS
- Google Scholar
- Semantic Scholar

Export BibTeX Citation

Search...

All fields

Search

Help | Advanced Search

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 16 Jan 2024]

SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers

Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, Saining Xie

We present Scalable Interpolant Transformers (SiT), a family of generative models built on the backbone of Diffusion Transformers (DiT). The interpolant framework, which allows for connecting two distributions in a more flexible way than standard diffusion models, makes possible a modular study of various design choices impacting generative models built on dynamical transport: using discrete vs. continuous time learning, deciding the objective for the model to learn, choosing the interpolant connecting the distributions, and deploying a deterministic or stochastic sampler. By carefully introducing the above ingredients, SiT surpasses DiT uniformly across model sizes on the conditional ImageNet 256x256 benchmark using the exact same backbone, number of parameters, and GFLOPs. By exploring various diffusion coefficients, which can be tuned separately from learning, SiT achieves an FID-50K score of 2.06.

Comments: Code available: this https URL

Subjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)

Cite as: arXiv:2401.08740 [cs.CV]

(or arXiv:2401.08740v1 [cs.CV] for this version)

Submission history

From: Nanye Ma [view email]

[v1] Tue, 16 Jan 2024 18:55:25 UTC (16,564 KB)

Access Paper:

- Download PDF
- HTML (experimental)
- Other Formats

Current browse context: **cs.CV**

< prev | next >
new | recent | 2401

Change to browse by:

cs cs.LG

References & Citations

- NASA ADS
- Google Scholar
- Semantic Scholar

Export BibTeX Citation

Search... All fields ✓ Search
Help | Advanced Search

Computer Science > Machine Learning

[Submitted on 20 Mar 2024]

Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden

We propose a framework for probabilistic forecasting of dynamical systems based on generative modeling. Given observations of the system state over time, we formulate the forecasting problem as sampling from the conditional distribution of the future system state given its current state. To this end, we leverage the framework of stochastic interpolants, which facilitates the construction of a generative model between an arbitrary base distribution and the target. We design a fictitious, non-physical stochastic dynamics that takes as initial condition the current system state and produces as output a sample from the target conditional distribution in finite time and without bias. This process therefore maps a point mass centered at the current state onto a probabilistic ensemble of forecasts. We prove that the drift coefficient entering the stochastic differential equation (SDE) achieving this task is non-singular, and that it can be learned efficiently by square loss regression over the time-series data. We show that the drift and the diffusion coefficients of this SDE can be adjusted after training, and that a specific choice that minimizes the impact of the estimation error gives a Föllmer process. We highlight the utility of our approach on several complex, high-dimensional forecasting problems, including stochastically forced Navier-Stokes and video prediction on the KTH and CLEVRER datasets.

Subjects: Machine Learning (cs.LG); Machine Learning (stat.ML)

Cite as: arXiv:2403.13724 [cs.LG]

(or arXiv:2403.13724v1 [cs.LG] for this version) https://doi.org/10.48550/arXiv.2403.13724 1

Submission history

From: Mark Goldstein [view email]

E-41 W-4 20 M-4 2024 10-22-00 UTC /E 40E I/B\

Access Paper:

- View PDF
- HTML (experimental)
- TeX Source
- Other Formats

view license

Current browse context: cs.LG

< prev | next >
new | recent | 2403

Change to browse by:

cs stat

stat.ML

References & Citations

- NASA ADS
- Google Scholar
- Semantic Scholar

Export BibTeX Citation



Search... All fields Search

Help | Advanced Search

Computer Science > Machine Learning

[Submitted on 6 Aug 2025]

Multitask Learning with Stochastic Interpolants

Hugo Negrel, Florentin Coeurdoux, Michael S. Albergo, Eric Vanden-Eijnden

We propose a framework for learning maps between probability distributions that broadly generalizes the time dynamics of flow and diffusion models. To enable this, we generalize stochastic interpolants by replacing the scalar time variable with vectors, matrices, or linear operators, allowing us to bridge probability distributions across multiple dimensional spaces. This approach enables the construction of versatile generative models capable of fulfilling multiple tasks without task–specific training. Our operator–based interpolants not only provide a unifying theoretical perspective for existing generative models but also extend their capabilities. Through numerical experiments, we demonstrate the zero–shot efficacy of our method on conditional generation and inpainting, fine–tuning and posterior sampling, and multiscale modeling, suggesting its potential as a generic task–agnostic alternative to specialized models.

Subjects: Machine Learning (cs.LG); Dynamical Systems (math.DS)

Cite as: arXiv:2508.04605 [cs.LG]

(or arXiv:2508.04605v1 [cs.LG] for this version) https://doi.org/10.48550/arXiv.2508.04605

Submission history

From: Michael Albergo [view email]

reenshot d, 6 Aug 2025 16:25:19 UTC (15,701 KB)

Access Paper:

View PDF HTML (experimental) TeX Source Other Formats

view license

Current browse context: cs.LG

< prev | next >
new | recent | 2025-08

Change to browse by:

math.DS

References & Citations

NASA ADS Google Scholar Semantic Scholar

Export BibTeX Citation

