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Probabllistic Approach to Unsupervised Learning

Working assumption to organize unlabeled data:

4 )

View the data points as samples from an unknown probability distribution.

Learn this distribution in a way that allows for generation of new samples
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5.ﬂ “annl] Each image = one data point in R?
Density estimation in high dimension!




Density Estimation

Old problem, intractable with traditional methods in high dimension
(binning, kernel density estimation,...)

Recent progress using tools from ML
(Boltzmann machines, Variational auto-encoder, GANS, ...)

piffusion



Density Estimation and Measure Transport

Old problem, intractable with traditional methods in high dimension
(binning, kernel density estimation,...)

Recent progress using tools from ML

(Boltzmann machines, Variational auto-encoder, GANSs, ...) )
piffusion

Breakthrough via transportation of measure



Generation with Flows and Diffusions

Aim: Construct an S/ODE Flow/diffusion matching
dX, = b(X,)dt + o, dW,
such that: if X._o ~ Wy = (Simple) base distribution, then X,_, ~ pu, = target distribution.
N\ Y
Dynamical transport of probability distributions Step 10

Benamou-Brenier, ...

Well-suited for generation and sampling:

- draw a sample from the base p,
- propagate it through the S/ODE;
- get a sample from the target ;.

How can we find b/(x) using a tractable variational formulation?




Score-Based Diffusion Models

Sohl-Dickstein et al. arXiv:15603.03585 (2015);
Ho et al. arXiv:2006.11239 (2020);
Song et al. arXiv:2011.13456 (2021)

Given samples from the data distribution ¢;:

Devolve them into Gaussian noise using e.g. an Ornstein-Ulhenbeck process;
Time-reverse the SDE to generate new samples from y, from samples from N(0,1d);

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

score functlon

& log p; (x ] | dt + g(t)dw

~

\_

Reverse SDE (noise — data) From Song's blog
\
Builds a path in distribution space between u,; and N(0,Id);
Reduces problem to the simulation-free regression of the score.
J
Hyvérinen JMLR 6 (2005);

Vincent, Neural Comp. 23, 1661 (2011)



Albergo & Vi-E. arXiv:2209.15571 (2022);
Albergo, Boffi, & V.-E. arXiv:2303.08797 (2023).
StOC h aSt I C | nte rpO | ants See also: Liu et al. arXiv:.2209.03003 (2022);
Lipman et al. arXiv:2210.02747 (2022):

Key idea: Build a process that connects a base distribution to the target

(The stochastic interpolant 1, is the process: A

I, = axy+ px; + 7,2, t € [0,1]

with: Xo~ Koo X1~ KU1y <7 N(O,Id); < 1 (xO, xl)

a0=ﬂ1 — 1, al =ﬂ0=y0=}/1 =O, a,ﬂ,yE Cl(O,l)

e.0. It = (1 — Z)XO + txl Wlth (XO, xl) ~ Ko ®//l1
Ho

I, easy to sample at all t € [0,1] using data
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Stochastic Interpolants

See also: Liu et al. arXiv:.2209.03003 (2022);
Lipman et al. arXiv.2210.02747 (2022):

Key idea: Build a process that connects a base distribution to the target

The stochastic interpolant 1, is the process: h

I, = axy+ px; + 7,2, t € [0,1]

with: Xo~ Koo X1~ KU1y <7 N(O,Id), < 1 (XO, xl)

a0=ﬂ1 — 1, al =ﬂ0=y0=}/1 =O, a,ﬂ,yE Cl((),l)

e.q. It = (1 — I)XO + txl with (Xo, xl) ~ Ko ®//l1

By definition: [, = xy ~ py, [} = x; ~ yy

I, easy to sample at all t € [0,1] using data

with samples
X0 ™~ Ho
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Stochastic Interpolants

See also: Liu et al. arXiv:.2209.03003 (2022);
Lipman et al. arXiv.2210.02747 (2022):

Key idea: Build a process that connects a base distribution to the target

The stochastic interpolant 1, is the process: h

I, = axy+ px; + 7,2, t € [0,1]

with: Xo~ Koo X1~ KU1y <7 N(O,Id), < 1 (XO, xl)

a0=ﬂ1 — 1, al =ﬂ0=y0=}/1 =O, a,ﬂ,yE Cl((),l)

e.0. It = (1 — I)XO + txl with (Xo, xl) ~ Ko ®//l1

By definition: [, = xy ~ py, [} = x; ~ yy

I, easy to sample at all t € [0,1] using data

some realizations of 1,
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Stochastic Interpolants

See also: Liu et al. arXiv:.2209.03003 (2022);
Lipman et al. arXiv.2210.02747 (2022):

Key idea: Build a process that connects a base distribution to the target

The stochastic interpolant 1, is the process: h

I, = axy+ px; + 7,2, t € [0,1]

with: Xo~ Koo X1~ KU1y <7 N(O,Id); < 1 (x(), xl)

a0=ﬂ1 — 1, al =ﬂ0=70=71 =O, a,ﬂ,yE Cl((),l)

e.0. It = (1 — I)XO + txl with (Xo, xl) ~ Ko ®//l1

By definition: 1, = xy ~ uy, I{ = x; ~ py

I, easy to sample at all t € [0,1] using data

motion of 1,
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Stochastic Interpolants

See also: Liu et al. arXiv:.2209.03003 (2022);
Lipman et al. arXiv.2210.02747 (2022):

Key idea: Build a process that connects a base distribution to the target

The stochastic interpolant 1, is the process: h
I, = axy+ px; + 7,2, t € [0,1]
with: Xo~ Koo X1~ KU1y <7 N(O,Id); < 1 (x(), xl)

a0=ﬂ1 — 1, al =ﬂ0=70=71 =O, a,ﬂ,yE Cl((),l)

motion of u, = law(l,) motion of I,




Albergo & Vi-E. arXiv:2209.15571 (2022);
. Albergo, Boffi, & V.-E. arXiv:2303.08797 (2023).
StOC h aSt I C | nte rpO | ants See also: Liu et al. arXiv.2209.03003 (2022);
Lipman et al. arXiv:2210.02747 (2022):

(The stochastic interpolant 1, is the process: A
[ = ax,+ px; + 7,2, t € [0,1]
with: Xo~ Moo X1~ My, 2~ NQOId), z 1L (xp,x7)
g a=p=1, ay=f=r=r=0 afyeC01l. >y
Note that:

- 1. is not necessarily a diffusion;
- base distribution does not need to be Gaussian;
- (xg, x;) can be correlated.




Stochastic Interpolants

Albergo & Vi-E. arXiv:2209.15571 (2022);
Albergo, Boffi, & V.-E. arXiv:2303.08797 (2023).

See also: Liu et al. arXiv.2209.03003 (2022);
Lipman et al. arXiv:2210.02747 (2022):

(The stochastic interpolant 1, is the process: A
I, = axy+ px; + 7,2, t € [0,1]
with: Xo~ Koo X1~ KU1y <7 N(O,Id); < 1 (xO, xl)
a0=ﬂ1 — 1, al =ﬂ1 =}/O=}/1 =O, a,ﬂ,yE Cl(O,l)
\_ _J

Without latent variable

Different a,, 5, and ¥,
give different processes.

x, = (1 —10xy+ tx




Stochastic Interpolants and Transport

4

Thm: the law of I, = a,x, + f,x; + 7,z is the same as the law of the solution to
X =b(X), Xy~ p Probability flow ODE

with the velocity b,(x) given by the conditional expectation

b(x) = E|]

1= x| = argmin€ | 1b(1) = 11
b[

_

b(x) = E[I,| I = x]



Stochastic Interpolants and Transport

@ A

Thm: the law of I, = a,x, + f,x; + 7,z is the same as the law of the solution to
X =b(X), Xy~ p Probability flow ODE

with the velocity b,(x) given by the conditional expectation

b(x) =L [it I = x] = argmin E [|l;t(lt) — jt|2]
b,

N\ Y

Proof: if y, is the distribution of , and ¢ is a test function, we have

J ¢(x)ﬂz(dx) = [E[Cb(lz)]
Rd

and so: d :
E[E[Cb(lt)] — [E[It ) V¢(It)]
Il Il
“ qb(x)at,ut(dx) — ‘ [E[Izllt — X] : qu(X)Mt(dX)
Rd Rd )

=b,(x)



Stochastic Interpolants and Transport

\
rThm: the law of I, = a,xy + f,x; + 7,z is the same as the law of the solution to

X =b(X), Xy~ p Probability flow ODE
with the velocity b,(x) given by the conditional expectation

b(x) = E|]

1= x| = argmin€ | 1b(1) = 11
b[

w

=1
Xt=0 R ,Lt 0

Hi Gives a generative model:
Xi—o~Ho = X1~

Not OT but finite path length in W,:

E[1Xi(rg) = %o °] < [ E[1],17]dr < oo

space



Stochastic Interpolants and Transport

@ A

Thm: the law of I, = a,x, + f,x; + 7,z is the same as the law of the solution to
X =b(X), Xy~ p Probability flow ODE

with the velocity b,(x) given by the conditional expectation

b(x) = E|]

1= x| = argmin€ | 1b(1) = 11
bl

\_ _

1
b= argminJ E [|15,(1,) — 1;|2] dt
b 0

Estimation of b = simulation-free regression problem

- Objective Lb(IS) and its gradient can be evaluated empirically using the samples I;

- Velocity b,(x) can be approximated e.g. by deep neural network (DNN);
- Minimization can be performed by SGD.



Score and diffusions

( )
Thm: The score s,(x) = Vlog[du,/dx] of the PDF of 1, is given for all ¢ € (0,1) by

s(X) = — yt_l[E[z |, = x] Stein’s identity

In addition, it is the unique minimizer of

1

L(5) = J E [|§;(I;) * + 2771z - §t(lt)] dt
0

AN

-

Corr: Forany e, > 0, u,(x) solves:
Oty + V- (Ib,(0) + €5,00) = €Dp, g = Hoy

and the solutions to the SDE
dX! = b(X))dt + €,5,(X)dt + +/2¢,dW,
Diffusion coefficient €,

F F adjustable post trainin
- Xeo~Hy = X1~ M 4 P QJ

are such that

Proof: Using V - (s,u,) = Au, , we see that this is the same equation as od,u, +V - (b,u,) =0



Score and diffusions

_

Corr: Forany ¢, > 0, the solutions to the SDE

dX!" = b(X")dt + e,s(X")dt + /2¢,dW,
are such that
X o~y = X ~p

~

Diffusion coefficient €,
adjustable post training

Y

~

Lem: If I = axy+ p,x, Xg ~ NQO,Id), x; ~pu, x9Lxg,

b (x) — P,x
atﬂ.t — a,p

then as(x) =

Only need to learn b,(x)

_J

Proof: Use

b(x) = E[l|1, = x] = &,E[x,|I, = x] + BE[x, |1, = x]

s(x) = — o 'E[x, | I, = x]

together with x=E[L|L =x] =ak[xy|l, =x]+ BE[x|] = x]



X, = cos(%m)xO + sin(%m)x1
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Stochastic interpolant
fixes the connecting distribution p,

P1

AdA

t =0.25

Diffusion coefficient e,

controls the way to sample p, [

ODE and SDE sample

the same i, in different ways

ODE gives one-to-one map;
SDE samples 1y more broadly

from any xy ~ U

t =0.50

t =0.75

trigonometric: y(¢t) =0

trigonometric: y(t) =

2t(1 —t) encoding-decoding: ~(t) = sin?(t)

1.00 0.00

0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
time time



Does better than memorizing the data set!

5 Nearest neighbors in training set



Model Params(M) Training Steps FID |

DiT-S 33 400K 68.4

SiT-S 33 400K 57.6

Scalable Interpolant Transformers b 0K s
, , , , DiT-L 458 400K 233

with Ma, A/bergo, BOffl, Goldstein & Xie (2023) SiT-L 458 400K 18.8

: - : : DiT-XL 675 400K 19.5
https://scalable-interpolant.github.io/ Si‘T_XL 675 100K 172
ImageNet 512x512 DiT-XL 675 ™ 9.6

SiT-XL 675 ™ 8.6

DiT-XL (cfget s) 675 ™ 2.27

SIT-XL (cfge1s) 675 ™ 2.06

ImageNet 256x256




Conditional Generation

p-

Thm: Given (xy, x;, &) ~ u(dxy, dx;, d&), let & = conditioning variables
L =oaxy+px+yrz,  z2~NQOld), z1(x,x,08),

and define b(x,&) = E [o'ctxo + ,thl + 7,211, = x, 5] and s/(x, &) = — yt‘l[E [z |1, = x, f]

Then, for any €, > 0 the solutions to

dXt — bt(Xp g)dt + €tSt(Xta é)dt + \V 2€tth’ Xt=0 ~ lu()(d'x() | é)

are such that
X,_; ~ u(dx, | &) = conditional measure of x, given &

N\

In addition, b,(x, &) is the unique minimizer of

1

L,(b) = [ E [Il%(lp E* = 2axy + fx, +7,2) - b, E)| dt
0

Similar story as before, with €, adjustable post-training



target = high-res image
base = low-res image + noise

Superresolution

Albergo et al. arXiv:2310.03725 (2023) velocity conditioned on low-res image
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Probabillistic video generation by roll-out

Chen, Goldstein, Albergo, Boffi, Albergo & V.-E. arXiv:2403.13724 (2024)

Video forecasting (frame-by-frame, with rollout)

original generated

Set up of: Davtyan, Proc. IEEE/CVF (2023).



Link with Score-Based Diffusion Models

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw

A

score functir{ |
dx = [£(x,) — ¢ (t)Vx log p1 (x)] dt + g(t)dw

Reverse SDE (noise — data) From Song’s paper

OU process: dX,=— X dr+dW, X,_o ~ W= data distribution

T
_ —— d _ —
X.=xe "+ | e dW, = xe “+V1l—e 2y
0




Score-Based Diffusion Models vs Interpolants

0 F°21aid§ii)t’:‘f;;§:fe)_,@
X, =xe "+ J e AW, = xe T+ 1 —e ¥z L
0 dx = [f(x,t) — ¢° (t)Vx log p; (x)| dt + g(t)dw @

Reverse SDE (noise — data)

_ d
Take: t=e " X = L=zV1-1"+xt _
- ~log? A ! Time rescaling

Stochastic interpolant with a, =+/1 — 1>, p, =t

- h

Stochastic interpolants disentangle two operations:

1. building a time-dependent u, connecting the base and target distributions, and;
2. sampling this u, using an ODE or an SDE with adjusted diffusion coefficient.

_ Y




Leveraging the flexibility of the formalism



Multitask Learning with Operator Interpolants

Negrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

Two observations:

- The coefficients o, p, in I, = a,xy + p,x; do not need to be scalar functions of time
- There is no reason to choose them beforehand (i.e. before training).

Ghe operator interpolant I(a, ) is the process: A
[, p) = axq+ px; . Xg~Ho, X~y
where x,,x; € # (e.g. RY) and
a, [} are linear operators in that space.
\_ _J
(- )

The multitask drifts n ,(a, p, x) are the vector fields:

no(a, B, x) = [E[x0|l(a,ﬂ) = x], m(a, p,x) = Elx; [ I(a, f) = x]
\_ J




Multitask Learning with Operator Interpolant

Negrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

Ghe operator interpolant I(a, ) is the process: A
l(a,p) =axqg+ fx;, Xo~ Wy, X~ K
where x,,x, € # (e.g. RY) and
a, [} are linear operators in that space.
\_ _J
Ghe multitask drifts ny(a, p, x) and n(a, p, x) are the vector fields: A
no(a, B, x) = E[xy | (2, p) = x], m(a, f,x) = E[x; [ (a, ) = x]
. J

Estimation of n, 1, = simulation-free regression problem

. A 2
Ho = Cll’g}\mln [E(a,ﬂ)Ny[E(xo,xl)N/,t [ | 7’]0(“, ﬂa I(aa ﬂ)) — Xp | ]
Mo

e.g. p=1—a diagonal, I(a) =aOxy+(l—a)©x,,and v = U([0,1]1%)



Multitask Learning with Operator Interpolant

Negrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

8 )

Thm: Given any path (a,, f,),c0.1) the law of I(a,, p,) is the same as the law of the solution to

Xt — dt’/]()(ata ﬁ[a Xt) + ﬁt”l(ap ﬁta Xt)a X() g I(aOa /BO)
. _J

If we can sample [(¢, [},) we can generate sample along any ray emanating from it.

Ia)=a0xy+(1—a)0x; v="U(J0,1]9 Other choices of operators a, [}

Gaussian

In-paint .



Multitask Learning with Operator Interpolant

Negrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

Thm: Given any path (a,, f,),c0.1) the law of I(a,, p,) is the same as the law of the solution to

. . : d
Xt — 0‘;’70(05,;, ﬁta Xt) + ﬁt”l(ata 16[9 Xt)a X() — I(aOa ﬁO)

N\ Y

If we can sample I(«a, ;) we can generate sample along any ray emanating from it.

S )
Approach can be seen as a way of amortizing learning over a variety of tasks:
it enables generation strategies to be defined, optimized, or modified dynamically

at inference time without retraining.

\_ ),

If x, ~ N(O,/d) & x, L x; we can use the SDE

. _ : d
dX, = (a, — €, 1);70(%, P, X)dt + pn(a,, B, X)dt ++/2¢, dW,, Xy = l(ay, py)



Multitask Learning with Operator Interpolant

Negrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)

“n

- I

Robotics application

Inpainting, editing,
denoising, etc.

start

Clean Degraded Reconstructed Clean Degraded Reconstructed

Block imp
Y Y Y

~

Brushimp S | '
AU A

Rand imp

AFHQ-Cat CelebA



Posterior Sampling and Fine-Tuning

Negrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)
Objective: Sample the posterior distribution

ui(dx) = Z7'e"p, (dx)
where:

- pu(dx) is the prior distribution (sampleable)
- r(x) = %(x,Ax) + (b, x) is the likelihood (aka reward) function (given)

- Z = [e"u,(dx) < oo is the evidence / partition function (unknown)

Ghm: Let I(a,p) = axy+ px; and I(a, ) = axy+ px{, where xqy ~ pg, X1 ~ py, x; ~ ly A
and
no(a, B, x) = Elxy| L(a, f) = x], n(a, B, x) = E[x; | l(a, ) = x] prior
no(a, p,x) = Elxg | I(a, p) = x], n(a, p,x) = Elx; | IL(a, p) = x]  posterior
Then
(e o x) = a” BT (e B x,) + a” (e = BT x,)
ﬂ{(a’ﬂa X) — ﬂl(ara ﬂra xr)
if Ta Ta lp = plaTa™'p— A, x, =aal f1 (,BTa_Ta_lx + b) :
\_




Posterior Sampling and Fine-Tuning

Negrel, Coeurdoux, Albergo & V.-E. arXiv:2508.04605 (2025)
Original Corrupted Generated

Lattice ¢p* model: u(dop) =7
E@)=2x Y lp@ — @) +5x Y.
a~b a

True (MCMC) Generated

Prior (h = 0)

Posterior
(h = 0.02)



Likelihood control

Why use the SDE rather than the ODE?

The drift b(x) and the score s/(x) are only known approximately!

The ODE only offers control of the Wasserstein distance from the target,
whereas the SDE allows for control of the Kullback-Leibler divergence from the target.

\
Thm: Let ji (x) be the solution to the FPE
0+ V- (b, + €8)f) = €Ml g = Ho,
Then:
. 1 A . A €, . L
KLGuillfiy) < 5= (Ly(b) = min L)) + = (L(8) — min L($))
_ Y,

Proof = consequence of Girsanov theorem

In the context of SBDM.:
Chen et al. arXiv:2209.11215 (2022);
Lee et al. arXiv:2206.06227 (2022).



Empirical verification:

Gaussian mixture density in d=128

€ =6.0
Target
0.06 - 10
- ] >
?H\ 0.04 7 0
2 :
0.02 7
; 0 10
0.00 - ! ! ! ! T

1 N n
KL(p1lIpy) < 5= (Ly(B) = min L,(B) + %(Ls@) ~ min L($))

[Diﬁusion coefficient can be adjusted post-training! ]




Adjusting the Diffusion Coefficient

a8 )
Thm: for all t € [0,1] and any €, with ¢, = 6, > 0: Base = point mass
the law of I, = f,x; + o,W, is the same as the law of the solution to
1
dX, = b(X)dt+=(e] — 6))s(X)dt + € dW,, X, =0
where the drift b,(x) and the score s,(x) are given explicitly by
: b(x) — f.x
b(x) = [E[ﬁt'xl + o, W, |1, = x] s{x) = b t( ) ﬂt.
to(p,0, — P6,)
\_ J

Chen, Goldstein, Albergo, Boffi, Albergo & V.-E. arXiv:2403.13724 (2024)



Minimizing the impact of the estimation error

4 )
Thm: Let dX, = bt(Xt)a’l‘+%(€t2 — 67)s,(X,)dt + €,dW, = exact process
dX, = Ist()A(t)dH%(etz — 6)§,(X)dt + €dW, = estimated process
Then the path KL divergence Dy (Ps||Py) is minimized when ¢, = €/ with
F 14 : 2|12
e, = |2to(p; pio,— 6,) —o;
. )

Explicit expression for ¢, independent of the drift and the target distribution!



Connection with Follmer processes

4 )

Thm: Let dX, = bt(Xt)a’l‘+%(€t2 — 67)s,(X,)dt + €,dW, = exact process

dX, = I;t()A(,)dH%(etz — 6)§,(X)dt + €dW, = estimated process
Then the path KL divergence Dy (Ps||Py) is minimized when ¢, = €/ with
F -1/ : 2| 2
e, = |2to(p; pio,— 6,) —o;

- J
g F F - - F i R

Thm: The process X" = (X; ),c0.1) Obtained with €, = ¢, is a

Féllmer process = Schrédinger bridge between o, and

- J

Different interpretation/derivation of the Follmer process,
through minimization of the impact of estimation error.



Some Scientific Applications



Probabilistic forecasting and superresolution

Chen, Goldstein, Albergo, Boffi, Albergo & V.-E. arXiv:2403.13724 (2024)

2D Navier-Stokes equation with random forcing on the torus

do + v - Vodt = vAwdt — awdt + edn
v=Vip = oy iy, —Ay=o

dn = white-in-time forcing acting
on a few Fourier modes

Set-up of Hairer & Mattingly (2006) for which NSE is provable ergodic with a unique IM.

Aim: Given w;, in full- or low-resolution, forecast the ensemble of w, . with T > 0 at full-resolution.




Probabillistic forecasting/downscaling

Chen, Goldstein, Albergo, Boffi, Albergo & V.-E. arXiv:2403.13724 (2024)

Forecasting and superresolution in 2D Navier-Stokes equation
with random forcing on the torus

k=16

Low res data at t F = truth .
- —— super resolution :

- === |ow resolution

T [
enstrophy spectrum (v.s. k)

-

Probabilistic aspect is key!

Roll-out possible.
g i y

True vs forecasted conditional mean
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Assisting Monte-Carlo Sampling

» Generic method in Statistical Mechanics, Bayesian Inference, Uncertainty Quantification, etc.
» Aim at sampling a target distribution known up to a normalized constant.

» Plagued by slow convergence - hard to propose good new samples.

o N
N
/ \
/y\\
,/'5:;,’7 )

molecular
conformations
= volumetric prior /

EM distance prior

quantum field
theory

Bayesian inference




%

Assisting Monte-Carlo Sampling

» Generic method in Statistical Mechanics, Bayesian Inference, Uncertainty Quantification, etc.
» Aim at sampling a target distribution known up to a normalized constant.

» Plagued by slow convergence - hard to propose good new samples.

Idea: learn generative models to get better samples.

Rezende et al., arXiv:1505.05770; ....

Noée et al., Science 365 eaaw1147 (2019);

Albergo, Kanwar, Shanahan, Phys. Rev. D 100, 034515 (2019);
Gabrié, Rotskoff & V.-E. PNAS 119, €2109420119 (2021);
Albergo & V.-E. arXiv:2410.02711 (2024)

Different set-up than standard ML:
a )

Problems with model but no data initially (as opposed to data but no model)

Allow for infinite data generation with validation — verifiable Al !

. _J




The Unreasonable Effectiveness of Mathematics
in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University,
May 11, 1959

EUGENE P. WIGNER

The Unreasonable Effectiveness of Machine Learning

Curses of Dimensionality (CoD): Gridding does not scale:
2 pointsind = 1;

The number of operations/parameters needed 22=4pointsind =2,

to optimize/integrate/approximate Lipschitz
functions to precision 0 depends exponentially on

the input dimension d, O(6™%).

21000 = 70300 points in d = 1000

[Bellman, 61] i ghigs)

How come we can learn to generate
images or texts which a priori live in
very high dimensional spaces?

~
When, how, and why can neural networks

approximate high dimensional functions?

_J




Increasing transformer sizes
\

Need for Theory

DL is very costly in terms of compute and data.
Brute-force approach is not sustainable.

Training compute (FLOP) @ 25 estimates out of 863 n s

1626 -
Gemini 1.0 Ultra @ Q
PaLM (5408), 6@ P&
1e24 @ 09
AlphaGo Zero @ ) &
80 1e22 GNMT @ © @DasE Bkt «
AlphaGolee @ © oy ®@@z 50
o o . . T N ‘:”‘ ‘:_\“,‘,«*\‘4‘ K\‘J‘ / ) /
Initialization mIOU 60 : ° 5 LY
I~ e20 Seq2Seq LSTM @ S 8P @
O q<seq ® a0 P | ‘ -
ImageNet 73.6 = -
g 40 ) o ¢
300M 75.3 & 1e18 g Ny
' = - AlexNet'® OO0 .~
T b e
ImageNet+300M | 76.5 20 WordBVes (1arge) 899
1e16 oy’ 8 Ny XN
0 C ) #£ o o e o
10 30 100 300 - GPU DBNs ’/ 7 LSTIJ\‘/[_lTj-NeuraICache
Number of examples (in millions) — el - o o __--" 6
[Sun et al IOCV 2017] ol i
1612 o VHant CNN Deep Learning Era
2000 2003 2006 2009 2012 2015 2018 2021 2024

[Sevilla & Roldan, epoch.ai blog 2025]

Performance increases logarithmically with data volume Al quadruples its compute every year
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